Study on Hydrodynamic Parameters of the Oxidative Desulfurization of High Sulfur Straight-Run Oil Fractions
dc.citation.epage | 411 | |
dc.citation.issue | 3 | |
dc.citation.spage | 403 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Pyshyev, Serhiy | |
dc.contributor.author | Bratychak, Michael | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T08:54:35Z | |
dc.date.available | 2024-01-09T08:54:35Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Встановлено необхідні гідродинамічні параметри процесу знесірчення прямогонних гасових (SRKF) і дизельних фракцій (SRDF) внаслідок окиснення сірчистих органічних сполук з наступним вилученням продуктів окиснення. Гідродинамічні параметри, які характеризуються лінійною швидкістю руху оксиданту (повітря) та фіктивним часом контакту між оксидантом і сировиною, дають можливість здійснювати процес без перемішування. Запропонована технологія може використовуватися для очищення нафтових палив малотонажних виробництв, коли економічно невигідно або технологічно неможливо використовувати гідроочищення. Показано, що даний процес можна застосовувати для доочищення гідрогенізатів та часткового знесірчення прямогонних фракцій з метою виробництва компонентів палив з покращеними мастильними властивостями. | |
dc.description.abstract | The article deals with the determination of hydrodynamic parameters necessary to conduct the desulfurization process of straight-run kerosene (SRKF) and straight-run diesel fractions (SRDF) via oxidation of sulfuric organic compounds, followed by the removal of oxidation products. The established parameters which are characterized by the linear rate of the oxidant (air) movement and the dummy contact time between the oxidant and the feedstock allow the process to be carried out without stirring. The proposed technology can be used for the purification of petroleum fuels produced by a small scale, when hydrotreating is economically unprofitable or technologically impossible. This process can also be used for the aftertreatment of hydrogenates and partial desulfurization of straight-run fractions to produce fuel components with improved lubricating properties. | |
dc.format.extent | 403-411 | |
dc.format.pages | 9 | |
dc.identifier.citation | Pyshyev S. Study on Hydrodynamic Parameters of the Oxidative Desulfurization of High Sulfur Straight-Run Oil Fractions / Serhiy Pyshyev, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 3. — P. 403–411. | |
dc.identifier.citationen | Pyshyev S. Study on Hydrodynamic Parameters of the Oxidative Desulfurization of High Sulfur Straight-Run Oil Fractions / Serhiy Pyshyev, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 3. — P. 403–411. | |
dc.identifier.doi | doi.org/10.23939/chcht14.03.403 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60672 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (14), 2020 | |
dc.relation.references | [1] Ismagilov Z., Yashnik S., Kerzhentsev M. et al.: Cat. Rev. Sci. Eng., 2011, 53, 199. https://doi.org/10.1080/01614940.2011.596426 | |
dc.relation.references | [2] Regulatory Impact Analysis: Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements. United States Environmental Protection Agency, Air and Radiation, EPA420-R-00-026, December 2000. | |
dc.relation.references | [3] United States Environmental Protection Agency, February, 2001. https://www.epa.gov | |
dc.relation.references | [4] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). http://data.europa.eu/eli/dir/2010/75/oj | |
dc.relation.references | [5] Link D., Baltrus J., Rothenberger K. et al.: Energ. Fuel., 2003, 17, 1292. https://doi.org/10.1021/ef0300747 | |
dc.relation.references | [6] World jet fuel specifications. 2008. http://large.stanford.edu/courses/2017/ph240/chhoa1/docs/exxon2008.pdf | |
dc.relation.references | [7] Boichenko S., Vovk O., Iakovlieva, A.: Chem. Chem. Technol., 2013, 7, 305. https://doi.org/10.23939/chcht07.03.305 | |
dc.relation.references | [8] Yakovleva A., Boichenko S., Lejda K. et al.: Chem. Technolog. Fuels Oils, 2017, 53, 1. https://doi.org/10.1007/s10553-017-0774-x | |
dc.relation.references | [9] Iakovlieva A., Boichenko S., Gay A.: Chem. Chem. Technol., 2014, 8, 107. https://doi.org/10.23939/chcht08.01.107 | |
dc.relation.references | [10] Banisharif F., Dehghani M., Capel-Sánchez M., CamposMartin J.: Ind. Eng. Chem. Res., 2017, 56, 3839. https://doi.org/10.1021/acs.iecr.7b00089 | |
dc.relation.references | [11] Babich I., Moulijn J.: Fuel, 2003, 82, 607. https://doi.org/10.1016/S0016-2361(02)00324-1 | |
dc.relation.references | [12] Wang B., Dai B., Kang L., Zhu M.: Fuel, 2020, 265, 117029. | |
dc.relation.references | [13] Liu W., Li T., Yu G. et al.: Fuel, 2020, 265, 116967. https://doi.org/10.1016/j.fuel.2019.116967 | |
dc.relation.references | [14] Mirante F., Alves A. et al.: Fuel, 2020, 259, 116213. https://doi.org/10.1016/j.fuel.2019.116213 | |
dc.relation.references | [15]Julião D., Mirante F. et al.: Fuel, 2019, 241, 616. https://doi.org/10.1016/j.fuel.2018.11.095 | |
dc.relation.references | [16] Pysh’yev S., Bratychak M., Lazorko O., Shyshchak O.: Pol. J. Environ. Stud., 2005, 14, 123. | |
dc.relation.references | [17] Lazorko О., Pysh’yev S., Bratychak M.: Chem.Chem.Technol., 2008, 2, 309. | |
dc.relation.references | [18] Pysh’yev S., Lazorko О., Bratychak M.: Chem. Chem. Technol., 2009, 3, 77. | |
dc.relation.references | [19] Pysh’yev S., Lazorko О., Bratychak M.: Chem. Chem. Technol., 2009, 3, 163. | |
dc.relation.references | [20] Paniv P., Pysh’yev S., Haivanovych V., Lazorko O.: Khimia i Technologia Topliva i Masel, 2006, 3, 7. | |
dc.relation.references | [21] Pysh’yev S.: Chem. Chem. Technol., 2012, 6, 229. https://doi.org/10.23939/chcht06.02.229 | |
dc.relation.references | [22] Antonyshyn V., Humenetsky V.: Visnyk Nats. Univ. Lvivska Polytechnika, 1974, 82, 94. | |
dc.relation.references | [23] Gun R.: Neftianye Bitumy. Lhimia, Moskva 1973. | |
dc.relation.references | [24] Levych V.: Physico-Khimicheskaya Hydrodynamika. Izd-vo AN SSSR, Moskva 1952. | |
dc.relation.referencesen | [1] Ismagilov Z., Yashnik S., Kerzhentsev M. et al., Cat. Rev. Sci. Eng., 2011, 53, 199. https://doi.org/10.1080/01614940.2011.596426 | |
dc.relation.referencesen | [2] Regulatory Impact Analysis: Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements. United States Environmental Protection Agency, Air and Radiation, EPA420-R-00-026, December 2000. | |
dc.relation.referencesen | [3] United States Environmental Protection Agency, February, 2001. https://www.epa.gov | |
dc.relation.referencesen | [4] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). http://data.europa.eu/eli/dir/2010/75/oj | |
dc.relation.referencesen | [5] Link D., Baltrus J., Rothenberger K. et al., Energ. Fuel., 2003, 17, 1292. https://doi.org/10.1021/ef0300747 | |
dc.relation.referencesen | [6] World jet fuel specifications. 2008. http://large.stanford.edu/courses/2017/ph240/chhoa1/docs/exxon2008.pdf | |
dc.relation.referencesen | [7] Boichenko S., Vovk O., Iakovlieva, A., Chem. Chem. Technol., 2013, 7, 305. https://doi.org/10.23939/chcht07.03.305 | |
dc.relation.referencesen | [8] Yakovleva A., Boichenko S., Lejda K. et al., Chem. Technolog. Fuels Oils, 2017, 53, 1. https://doi.org/10.1007/s10553-017-0774-x | |
dc.relation.referencesen | [9] Iakovlieva A., Boichenko S., Gay A., Chem. Chem. Technol., 2014, 8, 107. https://doi.org/10.23939/chcht08.01.107 | |
dc.relation.referencesen | [10] Banisharif F., Dehghani M., Capel-Sánchez M., CamposMartin J., Ind. Eng. Chem. Res., 2017, 56, 3839. https://doi.org/10.1021/acs.iecr.7b00089 | |
dc.relation.referencesen | [11] Babich I., Moulijn J., Fuel, 2003, 82, 607. https://doi.org/10.1016/S0016-2361(02)00324-1 | |
dc.relation.referencesen | [12] Wang B., Dai B., Kang L., Zhu M., Fuel, 2020, 265, 117029. | |
dc.relation.referencesen | [13] Liu W., Li T., Yu G. et al., Fuel, 2020, 265, 116967. https://doi.org/10.1016/j.fuel.2019.116967 | |
dc.relation.referencesen | [14] Mirante F., Alves A. et al., Fuel, 2020, 259, 116213. https://doi.org/10.1016/j.fuel.2019.116213 | |
dc.relation.referencesen | [15]Julião D., Mirante F. et al., Fuel, 2019, 241, 616. https://doi.org/10.1016/j.fuel.2018.11.095 | |
dc.relation.referencesen | [16] Pysh’yev S., Bratychak M., Lazorko O., Shyshchak O., Pol. J. Environ. Stud., 2005, 14, 123. | |
dc.relation.referencesen | [17] Lazorko O., Pysh’yev S., Bratychak M., Chem.Chem.Technol., 2008, 2, 309. | |
dc.relation.referencesen | [18] Pysh’yev S., Lazorko O., Bratychak M., Chem. Chem. Technol., 2009, 3, 77. | |
dc.relation.referencesen | [19] Pysh’yev S., Lazorko O., Bratychak M., Chem. Chem. Technol., 2009, 3, 163. | |
dc.relation.referencesen | [20] Paniv P., Pysh’yev S., Haivanovych V., Lazorko O., Khimia i Technologia Topliva i Masel, 2006, 3, 7. | |
dc.relation.referencesen | [21] Pysh’yev S., Chem. Chem. Technol., 2012, 6, 229. https://doi.org/10.23939/chcht06.02.229 | |
dc.relation.referencesen | [22] Antonyshyn V., Humenetsky V., Visnyk Nats. Univ. Lvivska Polytechnika, 1974, 82, 94. | |
dc.relation.referencesen | [23] Gun R., Neftianye Bitumy. Lhimia, Moskva 1973. | |
dc.relation.referencesen | [24] Levych V., Physico-Khimicheskaya Hydrodynamika. Izd-vo AN SSSR, Moskva 1952. | |
dc.relation.uri | https://doi.org/10.1080/01614940.2011.596426 | |
dc.relation.uri | https://www.epa.gov | |
dc.relation.uri | http://data.europa.eu/eli/dir/2010/75/oj | |
dc.relation.uri | https://doi.org/10.1021/ef0300747 | |
dc.relation.uri | http://large.stanford.edu/courses/2017/ph240/chhoa1/docs/exxon2008.pdf | |
dc.relation.uri | https://doi.org/10.23939/chcht07.03.305 | |
dc.relation.uri | https://doi.org/10.1007/s10553-017-0774-x | |
dc.relation.uri | https://doi.org/10.23939/chcht08.01.107 | |
dc.relation.uri | https://doi.org/10.1021/acs.iecr.7b00089 | |
dc.relation.uri | https://doi.org/10.1016/S0016-2361(02)00324-1 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2019.116967 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2019.116213 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2018.11.095 | |
dc.relation.uri | https://doi.org/10.23939/chcht06.02.229 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Pyshyev S., Bratychak M., 2020 | |
dc.subject | сірка | |
dc.subject | реактивне паливо | |
dc.subject | дизельне паливо | |
dc.subject | оксидаційне знесірчення | |
dc.subject | гідродинамічні параметри | |
dc.subject | мастильна здатність | |
dc.subject | sulfur | |
dc.subject | jet fuel | |
dc.subject | diesel fuel | |
dc.subject | oxidative desulfurization | |
dc.subject | hydrodynamic parameters | |
dc.subject | lubricity | |
dc.title | Study on Hydrodynamic Parameters of the Oxidative Desulfurization of High Sulfur Straight-Run Oil Fractions | |
dc.title.alternative | Дослідження гідродинамічних параметрів оксидаційного знесірчення прямогонних нафтових фракцій з високим вмістом сірки | |
dc.type | Article |
Files
License bundle
1 - 1 of 1