Resistance of Polylactide Materials to Water Mediums of the Various Natures
dc.citation.epage | 197 | |
dc.citation.issue | 2 | |
dc.citation.spage | 191 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | John Paul II Catholic University of Lublin | |
dc.contributor.author | Levytskyi, Volodymyr | |
dc.contributor.author | Katruk, Diana | |
dc.contributor.author | Masyuk, Andriy | |
dc.contributor.author | Kysil, Khrystyna | |
dc.contributor.author | Mykhailo Bratychak Jr. | |
dc.contributor.author | Chopyk, Nataliia | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T10:19:10Z | |
dc.date.available | 2024-01-09T10:19:10Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Досліджено вплив наповнювача (тальку), його концентрації, додаткового термооброблення і температури на закономірності водопоглинання полілактидних матеріалів. На основі отриманих даних визначено коефіцієнт дифузії води в полілактидних матеріалах та енергію активації процесу дифузії. Виявлено, що процес водопоглинання наповненими і термообробленими матеріалами на основі полілактиду відбувається повільніше і потребує більшої енергії активації процесу. Визначено стійкість розроблених полілактидних матеріалів до кислого і лужного середовищ, зокрема виявлено що в лужному середовищі руйнування полілактидних зразків відбувається швидше ніж в кислому. | |
dc.description.abstract | The influence of talc filler, its content, as well as an additional heat treatment and temperature on the regularities of polylactide materials water-absorption has been researched. Based on the obtained data, the water diffusion coefficient in polylactide materials and the activation energy of the diffusion process were determined. It was found that the process of water absorption by the filled and heat-treated materials based on polylactide proceeds slower and requires more activation energy of the process. Stability of the developed polylactide materials to acidic and alkaline media has been determined, in particular, it was found that the destruction of polylactide samples occurs faster in an alkaline medium than in an acidic one. | |
dc.format.extent | 191-197 | |
dc.format.pages | 7 | |
dc.identifier.citation | Resistance of Polylactide Materials to Water Mediums of the Various Natures / Volodymyr Levytskyi, Diana Katruk, Andriy Masyuk, Khrystyna Kysil, Mykhailo Bratychak Jr., Nataliia Chopyk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 191–197. | |
dc.identifier.citationen | Resistance of Polylactide Materials to Water Mediums of the Various Natures / Volodymyr Levytskyi, Diana Katruk, Andriy Masyuk, Khrystyna Kysil, Mykhailo Bratychak Jr., Nataliia Chopyk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 191–197. | |
dc.identifier.doi | doi.org/10.23939/chcht15.02.191 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60726 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (15), 2021 | |
dc.relation.references | [1] Niaounakis M.: Biopolymers: Applications and Trends. William Andrew, Oxford 2015. | |
dc.relation.references | [2] Thakur V., Thakur M., Pappu A.: Hybrid Polymer Composite Materials. Woodhead Publishing Ltd, Cambridge 2017. | |
dc.relation.references | [3] Sin L-T.., Tueen B.-S.: Polylactic Acid, 2nd edn. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. William Andrew, Oxford 2019. | |
dc.relation.references | [4] Murariu M., Dubois P.: Advan. Drug Deliv. Rev., 2016, 107, 17. https://doi.org/10.1016/j.addr.2016.04.003 | |
dc.relation.references | [5] Jiménez A., Peltzer M., Ruseckaite R.: Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications. Royal Society of Chemistry, Cambridge 2014. https://doi.org/10.1039/9781782624806 | |
dc.relation.references | [6] Carrasco F., Pages P., Gamez-Perez J. et al.: Polym. Degrad. Stab., 2010, 95, 116. https://doi.org/10.1016/j.polymdegradstab.2009.11.045 | |
dc.relation.references | [7] Tokiwa Y, Calabia B.: Appl. Microbiol. Biotechnol., 2006, 72, 244. https://doi.org/10.1007/s00253-006-0488-1 | |
dc.relation.references | [8] Stloukal P., Kalendova A., Mattausch H. et al.: Polym. Test., 2015, 41, 124. https://doi.org/10.1016/j.polymertesting.2014.10.015 | |
dc.relation.references | [9] Xu L., Crawford K., Gorman C.: Macromolecules, 2011, 44, 4777. https://doi.org/10.1021/ma2000948 | |
dc.relation.references | [10] Levytskyi V., Маsyuk A., Bilyi L. et al.: Mater. Sci., 2020, 55, 555. https://doi.org/10.1007/s11003-020-00338-9 | |
dc.relation.references | [11] Di Lorentso M., Androsch R.: Industrial Applications of Poly(lactic acid). Springer, New York 2018. https://doi.org/10.1007/978-3-319-75459-8 | |
dc.relation.references | [12] Moravskyi V., Levytskyi V., Bratychak Jr. M. et al.: Chem. Chem. Technol., 2019, 14, 347. https://doi.org/10.23939/chcht13.03.347 | |
dc.relation.references | [13] Saha S. Tsuji H.: Polym. Degrad. Stab., 2006, 91, 1665. https://doi.org/10.1016/j.polymdegradstab.2005.12.009 | |
dc.relation.references | [14] Androsch R., Schick C., Di Lorenzo M.:. Adv. Polym. Sci., 2016, 279, 235. https://doi.org/10.1007/12_2016_13 | |
dc.relation.references | [15] Levytskyj V., Laruk Yu., Humenetsky T., Sikora J.: Chem. Chem. Technol., 2015, 9, 199. https://doi.org/10.23939/chcht09.02.199 | |
dc.relation.references | [16] Koenig J.: Spectroscopy of Polymers, 2nd edn. Elsevier Science. New York 1999. https://doi.org/10.1016/B978-044410031-3/50005-0 | |
dc.relation.references | [17] Levytskyj V., Kochubei V., Gancho A.: Chem. Chem. Technol., 2013, 7, 169. https://doi.org/10.23939/chcht07.02.169 | |
dc.relation.references | [18] Faghri A., Zhang Y.: Transport Phenomena in Multiphase Systems. Academic Press, Cambridge 2006. https://doi.org/10.1016/B978-0-12-370610-2.50007-6 | |
dc.relation.references | [19] Suberlyak O., Levitskij V., Skorokhoda V., Godij A.: Ukr. Khim. Zh., 1998, 5-6, 122. | |
dc.relation.references | [20] Katruk D., Levytskyi V., Khromyak U. et al.: Int. J. Polym. Sci., 2019, 2019, 1. https://doi.org/10.1155/2019/2547384 | |
dc.relation.referencesen | [1] Niaounakis M., Biopolymers: Applications and Trends. William Andrew, Oxford 2015. | |
dc.relation.referencesen | [2] Thakur V., Thakur M., Pappu A., Hybrid Polymer Composite Materials. Woodhead Publishing Ltd, Cambridge 2017. | |
dc.relation.referencesen | [3] Sin L-T.., Tueen B.-S., Polylactic Acid, 2nd edn. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. William Andrew, Oxford 2019. | |
dc.relation.referencesen | [4] Murariu M., Dubois P., Advan. Drug Deliv. Rev., 2016, 107, 17. https://doi.org/10.1016/j.addr.2016.04.003 | |
dc.relation.referencesen | [5] Jiménez A., Peltzer M., Ruseckaite R., Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications. Royal Society of Chemistry, Cambridge 2014. https://doi.org/10.1039/9781782624806 | |
dc.relation.referencesen | [6] Carrasco F., Pages P., Gamez-Perez J. et al., Polym. Degrad. Stab., 2010, 95, 116. https://doi.org/10.1016/j.polymdegradstab.2009.11.045 | |
dc.relation.referencesen | [7] Tokiwa Y, Calabia B., Appl. Microbiol. Biotechnol., 2006, 72, 244. https://doi.org/10.1007/s00253-006-0488-1 | |
dc.relation.referencesen | [8] Stloukal P., Kalendova A., Mattausch H. et al., Polym. Test., 2015, 41, 124. https://doi.org/10.1016/j.polymertesting.2014.10.015 | |
dc.relation.referencesen | [9] Xu L., Crawford K., Gorman C., Macromolecules, 2011, 44, 4777. https://doi.org/10.1021/ma2000948 | |
dc.relation.referencesen | [10] Levytskyi V., Masyuk A., Bilyi L. et al., Mater. Sci., 2020, 55, 555. https://doi.org/10.1007/s11003-020-00338-9 | |
dc.relation.referencesen | [11] Di Lorentso M., Androsch R., Industrial Applications of Poly(lactic acid). Springer, New York 2018. https://doi.org/10.1007/978-3-319-75459-8 | |
dc.relation.referencesen | [12] Moravskyi V., Levytskyi V., Bratychak Jr. M. et al., Chem. Chem. Technol., 2019, 14, 347. https://doi.org/10.23939/chcht13.03.347 | |
dc.relation.referencesen | [13] Saha S. Tsuji H., Polym. Degrad. Stab., 2006, 91, 1665. https://doi.org/10.1016/j.polymdegradstab.2005.12.009 | |
dc.relation.referencesen | [14] Androsch R., Schick C., Di Lorenzo M.:. Adv. Polym. Sci., 2016, 279, 235. https://doi.org/10.1007/12_2016_13 | |
dc.relation.referencesen | [15] Levytskyj V., Laruk Yu., Humenetsky T., Sikora J., Chem. Chem. Technol., 2015, 9, 199. https://doi.org/10.23939/chcht09.02.199 | |
dc.relation.referencesen | [16] Koenig J., Spectroscopy of Polymers, 2nd edn. Elsevier Science. New York 1999. https://doi.org/10.1016/B978-044410031-3/50005-0 | |
dc.relation.referencesen | [17] Levytskyj V., Kochubei V., Gancho A., Chem. Chem. Technol., 2013, 7, 169. https://doi.org/10.23939/chcht07.02.169 | |
dc.relation.referencesen | [18] Faghri A., Zhang Y., Transport Phenomena in Multiphase Systems. Academic Press, Cambridge 2006. https://doi.org/10.1016/B978-0-12-370610-2.50007-6 | |
dc.relation.referencesen | [19] Suberlyak O., Levitskij V., Skorokhoda V., Godij A., Ukr. Khim. Zh., 1998, 5-6, 122. | |
dc.relation.referencesen | [20] Katruk D., Levytskyi V., Khromyak U. et al., Int. J. Polym. Sci., 2019, 2019, 1. https://doi.org/10.1155/2019/2547384 | |
dc.relation.uri | https://doi.org/10.1016/j.addr.2016.04.003 | |
dc.relation.uri | https://doi.org/10.1039/9781782624806 | |
dc.relation.uri | https://doi.org/10.1016/j.polymdegradstab.2009.11.045 | |
dc.relation.uri | https://doi.org/10.1007/s00253-006-0488-1 | |
dc.relation.uri | https://doi.org/10.1016/j.polymertesting.2014.10.015 | |
dc.relation.uri | https://doi.org/10.1021/ma2000948 | |
dc.relation.uri | https://doi.org/10.1007/s11003-020-00338-9 | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-75459-8 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.03.347 | |
dc.relation.uri | https://doi.org/10.1016/j.polymdegradstab.2005.12.009 | |
dc.relation.uri | https://doi.org/10.1007/12_2016_13 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.02.199 | |
dc.relation.uri | https://doi.org/10.1016/B978-044410031-3/50005-0 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.02.169 | |
dc.relation.uri | https://doi.org/10.1016/B978-0-12-370610-2.50007-6 | |
dc.relation.uri | https://doi.org/10.1155/2019/2547384 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Levytskyi V., Katruk D., Masyuk A., Kysil K., Bratychak Jr. M., Chopyk N., 2021 | |
dc.subject | полілактид | |
dc.subject | водопоглинання | |
dc.subject | хімічна стійкість | |
dc.subject | тальк | |
dc.subject | теромооброблення | |
dc.subject | polylactide | |
dc.subject | water absorption | |
dc.subject | chemical resistance | |
dc.subject | talc | |
dc.subject | heat treatment | |
dc.title | Resistance of Polylactide Materials to Water Mediums of the Various Natures | |
dc.title.alternative | Стійкість полілактидних матеріалів до водних середовищ різної природи | |
dc.type | Article |
Files
License bundle
1 - 1 of 1