Cyclic Silicon Organic Copolymers: Synthesis and Investigation. Review
| dc.citation.epage | 142 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Хімія та хімічна технологія | |
| dc.citation.spage | 131 | |
| dc.citation.volume | 18 | |
| dc.contributor.affiliation | Ivane Javakhishvili Tbilisi State University | |
| dc.contributor.author | Tatrishvili, Tamara | |
| dc.contributor.author | Mukbaniani, Omar | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-24T06:47:52Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Розглянуто синтез і дослідження циклічних кремнійорганічних полімерів з моно- та поліциклічними фрагментами в бічному ланцюзі. Для одержання моноциклічних полімерів використано реакцію гідросилілювання 1-гідро-3-вінілгексаметилциклотетрасилоксану. Реакцію проводили в розчині CCl4 при 75°C в присутності каталізатора Спаєра(H2PtCl6 ⋅ 6H2O) з отриманням полімеру, в'язкотекучого за кімнатної температури. Полімери досліджували методом ЯМР-спектроскопії. Полі(карбосилоксан) з циклічними фрагментами в метилсилоксановій основі синтезували через гідридне поліприєднання дивінілорганоциклосилоксану до дигідродиметилсилоксану. Напівкількісна оцінка, проведена за допомогою ЯМР-спектроскопії, показала, що співвідношення ізомерних 1,3- і 1,5-циклічних структур становить 1:1. Рентгеноструктурні дослідження показали, що кополімери є однофазними аморфними системами. Також в огляді обговорено синтез і дослідження кополімерів карбосилоксану, що містять гнучкі диметилсилоксанові та декаорганотрициклодекасилоксанові фрагменти в макроланцюзі. Гідридне поліприєднання дивінілвмісних сполук проведено для α,ω-дигідриддиметилсилоксанів різної довжини. Синтезовані кополімери охарактеризовано методами рентгенівської дифракції та ТГА. | |
| dc.description.abstract | This paper considers the synthesis and investigation of cyclic silicon-organic polymers with mono- and polycyclic fragments in the side chain. For obtaining monocyclic polymers, the hydrosilylation reaction of 1-hydro-3-vinylhexamethylcyclotetrasiloxane was used. The reaction was conducted in a CCl4 solution at 75°C in the presence of Speier’s catalyst (H2PtCl6 6H2O) to produce a viscous-flow at room temperature polymer. The polymers were studied by NMR spectroscopy. Poly(carbosiloxane) with cyclic fragments in the methyl-siloxane backbone was synthesized by the hydride polyaddition of divinylorganocyclosiloxane with dihydrodimethylsiloxane. A semi-quantitative assessment conducted using NMR spectroscopy revealed the ratio of isomeric 1,3- and 1,5-cyclic structures as 1:1. X-ray diffraction studies indicated that copolymers are single-phase amorphous systems. Also, in the review, synthesis and studies of carbosiloxane copolymers containing flexible dimethylsiloxane and decaorganotricyclodecasiloxane fragments in the backbone are discussed. Hydride polyaddition of divinyl-containing compounds was carried out for α,ω-dihydridedimethylsiloxanes of various lengths. The synthesized copolymers were characterized by the X-ray diffraction method and TGA. | |
| dc.format.extent | 131-142 | |
| dc.format.pages | 12 | |
| dc.identifier.citation | Tatrishvili T. Cyclic Silicon Organic Copolymers: Synthesis and Investigation. Review / Tamara Tatrishvili, Omar Mukbaniani // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 131–142. | |
| dc.identifier.citationen | Tatrishvili T. Cyclic Silicon Organic Copolymers: Synthesis and Investigation. Review / Tamara Tatrishvili, Omar Mukbaniani // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 131–142. | |
| dc.identifier.doi | doi.org/10.23939/chcht18.02.131 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111793 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія та хімічна технологія, 2 (18), 2024 | |
| dc.relation.ispartof | Chemistry & Chemical Technology, 2 (18), 2024 | |
| dc.relation.references | [1] Mukbaniani, O.; Tatrishvili, T.; Mukbaniani, N. Comb-Type Methylsiloxane Copolymers with Diorganosilylene Fragments as a Lateral Group. J. Appl. Polym. Sci. 2007, 104, 2161–2167. https://doi.org/10.1002/app.24474 | |
| dc.relation.references | [2] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Markarashvili, E.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499–506. https://doi.org/10.23939/chcht16.04.499 | |
| dc.relation.references | [3] Mukbaniani, O.; Tatrishvili, T.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807–819. https://doi.org/10.23939/chcht17.04.807 | |
| dc.relation.references | [4] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption Chem. Chem. Technol. 2022, 16, 377–386. https://doi.org/10.23939/chcht16.03.377 | |
| dc.relation.references | [5] Mukbaniani, O.; Scherf, U.; Karchkhadze, M. G.; Tatrishvili, T.; Khananashvili, L. Block-copolymers with Polyphenyl-α-Naphtylsilane Fragments in Dimethylsiloxane Chain. Int. J. Polym. Mater. 2001, 48, 311–330. https://doi.org/10.1080/00914030108050788 | |
| dc.relation.references | [6] Kakiuchi, F.; Nogami, K.; Chatani, N.; Seki, Y.; Murai, S. Dehydrogenative Silylation of 1,5-dienes with Hydrosilanes Catalyzed by RhCl(PPh3)3, Organometallics 1993, 12, 4748–4750. https://doi.org/10.1021/om00036a013 | |
| dc.relation.references | [7] Eisch, J.J.; Trainor, J.T. Organosilicon Compounds with Functional Groups Proximate to Silicon. J. Org. Chem. 1963, 28, 487–492. https://doi.org/10.1021/jo01037a053 | |
| dc.relation.references | [8] Eisch, J.J.; Galle, J.E. Organosilicon Compounds with Functional Groups Proximate to Silicon. J. Organomet. Chem 1988, 341, 293–313. https://doi.org/10.1016/0022-328X(88)89085-5 | |
| dc.relation.references | [9] Weber, W.P. Vinyl Silanes. In: Silicon Reagents for Organic Synthesis. Reactivity and Structure Concepts in Organic Chemistry, vol. 14; Springer, Berlin, Heidelberg, 1983. https://doi.org/10.1007/978-3-642-68661-0_7 | |
| dc.relation.references | [10] Mukbaniani, O.; Titvinidze, G.; Tatrishvili, T.; Mukbaniani, N.; Brostow, W.; Pietkiewicz, D. Formation of Polymethylsiloxanes with Alkyl Side Groups. J. Appl. Polym. Sci. 2007, 104, 1176–1183. https://doi.org/10.1002/app.25734 | |
| dc.relation.references | [11] Marciniec, B.; Maciejewski, H.; Pawluć, P. Chapter 5 - Hydrosilylation of Carbon–Carbon Multiple Bonds—Application in Synthesis and Materials Science. In Organosilicon Compounds Experiment (Physico-Chemical Studies) and Applications; Lee, V. Ya., Ed.; Elsevier Inc., 2017; pp 169–217. https://doi.org/10.1016/B978-0-12-814213-4.00005-8 | |
| dc.relation.references | [12] Mukbaniani, O.; Tatrishvili, T.; Koberidze, Kh.; Scherf, U. Hydride Addition of Methylhydridesiloxanes to Conjugated Cyclohexa-1,3-diene. Appl. Polym. Sci. 2010, 116, 1131–1137. https://doi.org/10.1002/app.31618 | |
| dc.relation.references | [13] Karchkhadze, M.G.; Mukbaniani, N.O.; Khananashvili, L.M.; Meladze, S.M.; Kvelashvili, N.G.; Doksopulo, T.P. Carbosiloxane Cyclolinear Copolymers with 1,7-Arrangement of Organocyclohexasiloxane Fragments in the Main Dimethylsiloxane Chain. Intern. J. Polym. Mater. 1998, 41, 89. https://doi.org/10.1080/00914039808034857 | |
| dc.relation.references | [14] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane. Chem. Chem. Technol. 2023, 17, 35–44. https://doi.org/10.23939/chcht17.01.035 | |
| dc.relation.references | [15] Mukbaniani, O.V.; Khananashvil, L.M. Organosiloxane Copolymers and Block Copolymers with Cyclolinear Structure of Macromolecules. Int. J. Polym. Mater. 1994, 27, 31–66. https://doi.org/10.1080/00914039408038292 | |
| dc.relation.references | [16] Duarte, A.L.; Hongli, W.; Kathrin, J.; Xinjiang, C.; Matthias, B. Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts. Angew. Chem. Int. Ed. 2021, 60, 550–565. https://doi.org/10.1002/anie.202008729 | |
| dc.relation.references | [17] Mukbaniani, O.V.; Khananashvili, L.M.; Karchkhadze, M.G.; Tkeshelashvili, R.Sh.; Mukbaniani, N.O. Organosilicon Copolymers with Carbotricyclodecasiloxane Fragments in the Dimethylsiloxane Chain. Int. J. Polym. Mater. 1996, 33, 47. https://doi.org/10.1080/00914039608028606 | |
| dc.relation.references | [18] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325 | |
| dc.relation.references | [19] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Chigvinadze, M.; Abadie, M.J.M. Synthesis of Cross-Linked Comb-Type Polysiloxane for Polymer Electrolyte Membranes. E-Polymers 2012, 12, 1–14. https://doi.org/10.1515/epoly.2012.12.1.1023 | |
| dc.relation.references | [20] Ngo, T.D. Biomimetic Technologies: Principles and Applications; 1st Edition, Kindle Edition; Woodhead Publishing, 2015; pp 365–371. | |
| dc.relation.references | [21] Emel, Y.; Iskender, Y. Silicone Containing Copolymers: Synthesis, Properties and Applications. Prog. Polym. Sci. 2014, 39, 1165–1195. https://doi.org/10.1016/j.progpolymsci.2013.11.003 | |
| dc.relation.references | [22] Eiichi, K.; Obata, T.; Aoshima, S.; Furukawa, J. Polyaddition of Dithiol Compounds to Divinyl Compounds: The Kinetics of the Model Addition Reaction of Thiophenols to Styrenes. Polym. J 1990, 22, 803–813. https://doi.org/10.1295/polymj.22.803 | |
| dc.relation.references | [23] Böhm, P. Functional Silicones and Silicone-Containing Block Copolymers. Ph.D. Thesis., Johannes Gutenberg-Universität, Mainz, Germany, 2012. | |
| dc.relation.references | [24] Scholl, R.L.; Maciel, G.E.; Musker, W.K. Silicon-29 Chemical Shifts of Organosilicon Compounds. J. Am. Chem. Soc. 1972, 94, 6376–6385. https://doi.org/10.1021/ja00773a02 | |
| dc.relation.references | [25] Dankert, F.; von Hänisch, C. Siloxane Coordination Revisited: Si−O Bond Character, Reactivity and Magnificent Molecular Shapes. Eur. J. Inorg. Chem. 2021, 29, 2907–2927. https://doi.org/10.1002/ejic.202100275 | |
| dc.relation.references | [26] The Chemistry of Organic Silicon Compounds, Volume 2; Rappoport, Z.; Apeloig, Y., Eds.; John Wiley & Sons, 1998. | |
| dc.relation.referencesen | [1] Mukbaniani, O.; Tatrishvili, T.; Mukbaniani, N. Comb-Type Methylsiloxane Copolymers with Diorganosilylene Fragments as a Lateral Group. J. Appl. Polym. Sci. 2007, 104, 2161–2167. https://doi.org/10.1002/app.24474 | |
| dc.relation.referencesen | [2] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Markarashvili, E.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499–506. https://doi.org/10.23939/chcht16.04.499 | |
| dc.relation.referencesen | [3] Mukbaniani, O.; Tatrishvili, T.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807–819. https://doi.org/10.23939/chcht17.04.807 | |
| dc.relation.referencesen | [4] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption Chem. Chem. Technol. 2022, 16, 377–386. https://doi.org/10.23939/chcht16.03.377 | |
| dc.relation.referencesen | [5] Mukbaniani, O.; Scherf, U.; Karchkhadze, M. G.; Tatrishvili, T.; Khananashvili, L. Block-copolymers with Polyphenyl-α-Naphtylsilane Fragments in Dimethylsiloxane Chain. Int. J. Polym. Mater. 2001, 48, 311–330. https://doi.org/10.1080/00914030108050788 | |
| dc.relation.referencesen | [6] Kakiuchi, F.; Nogami, K.; Chatani, N.; Seki, Y.; Murai, S. Dehydrogenative Silylation of 1,5-dienes with Hydrosilanes Catalyzed by RhCl(PPh3)3, Organometallics 1993, 12, 4748–4750. https://doi.org/10.1021/om00036a013 | |
| dc.relation.referencesen | [7] Eisch, J.J.; Trainor, J.T. Organosilicon Compounds with Functional Groups Proximate to Silicon. J. Org. Chem. 1963, 28, 487–492. https://doi.org/10.1021/jo01037a053 | |
| dc.relation.referencesen | [8] Eisch, J.J.; Galle, J.E. Organosilicon Compounds with Functional Groups Proximate to Silicon. J. Organomet. Chem 1988, 341, 293–313. https://doi.org/10.1016/0022-328X(88)89085-5 | |
| dc.relation.referencesen | [9] Weber, W.P. Vinyl Silanes. In: Silicon Reagents for Organic Synthesis. Reactivity and Structure Concepts in Organic Chemistry, vol. 14; Springer, Berlin, Heidelberg, 1983. https://doi.org/10.1007/978-3-642-68661-0_7 | |
| dc.relation.referencesen | [10] Mukbaniani, O.; Titvinidze, G.; Tatrishvili, T.; Mukbaniani, N.; Brostow, W.; Pietkiewicz, D. Formation of Polymethylsiloxanes with Alkyl Side Groups. J. Appl. Polym. Sci. 2007, 104, 1176–1183. https://doi.org/10.1002/app.25734 | |
| dc.relation.referencesen | [11] Marciniec, B.; Maciejewski, H.; Pawluć, P. Chapter 5 - Hydrosilylation of Carbon–Carbon Multiple Bonds-Application in Synthesis and Materials Science. In Organosilicon Compounds Experiment (Physico-Chemical Studies) and Applications; Lee, V. Ya., Ed.; Elsevier Inc., 2017; pp 169–217. https://doi.org/10.1016/B978-0-12-814213-4.00005-8 | |
| dc.relation.referencesen | [12] Mukbaniani, O.; Tatrishvili, T.; Koberidze, Kh.; Scherf, U. Hydride Addition of Methylhydridesiloxanes to Conjugated Cyclohexa-1,3-diene. Appl. Polym. Sci. 2010, 116, 1131–1137. https://doi.org/10.1002/app.31618 | |
| dc.relation.referencesen | [13] Karchkhadze, M.G.; Mukbaniani, N.O.; Khananashvili, L.M.; Meladze, S.M.; Kvelashvili, N.G.; Doksopulo, T.P. Carbosiloxane Cyclolinear Copolymers with 1,7-Arrangement of Organocyclohexasiloxane Fragments in the Main Dimethylsiloxane Chain. Intern. J. Polym. Mater. 1998, 41, 89. https://doi.org/10.1080/00914039808034857 | |
| dc.relation.referencesen | [14] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane. Chem. Chem. Technol. 2023, 17, 35–44. https://doi.org/10.23939/chcht17.01.035 | |
| dc.relation.referencesen | [15] Mukbaniani, O.V.; Khananashvil, L.M. Organosiloxane Copolymers and Block Copolymers with Cyclolinear Structure of Macromolecules. Int. J. Polym. Mater. 1994, 27, 31–66. https://doi.org/10.1080/00914039408038292 | |
| dc.relation.referencesen | [16] Duarte, A.L.; Hongli, W.; Kathrin, J.; Xinjiang, C.; Matthias, B. Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts. Angew. Chem. Int. Ed. 2021, 60, 550–565. https://doi.org/10.1002/anie.202008729 | |
| dc.relation.referencesen | [17] Mukbaniani, O.V.; Khananashvili, L.M.; Karchkhadze, M.G.; Tkeshelashvili, R.Sh.; Mukbaniani, N.O. Organosilicon Copolymers with Carbotricyclodecasiloxane Fragments in the Dimethylsiloxane Chain. Int. J. Polym. Mater. 1996, 33, 47. https://doi.org/10.1080/00914039608028606 | |
| dc.relation.referencesen | [18] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325 | |
| dc.relation.referencesen | [19] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Chigvinadze, M.; Abadie, M.J.M. Synthesis of Cross-Linked Comb-Type Polysiloxane for Polymer Electrolyte Membranes. E-Polymers 2012, 12, 1–14. https://doi.org/10.1515/epoly.2012.12.1.1023 | |
| dc.relation.referencesen | [20] Ngo, T.D. Biomimetic Technologies: Principles and Applications; 1st Edition, Kindle Edition; Woodhead Publishing, 2015; pp 365–371. | |
| dc.relation.referencesen | [21] Emel, Y.; Iskender, Y. Silicone Containing Copolymers: Synthesis, Properties and Applications. Prog. Polym. Sci. 2014, 39, 1165–1195. https://doi.org/10.1016/j.progpolymsci.2013.11.003 | |
| dc.relation.referencesen | [22] Eiichi, K.; Obata, T.; Aoshima, S.; Furukawa, J. Polyaddition of Dithiol Compounds to Divinyl Compounds: The Kinetics of the Model Addition Reaction of Thiophenols to Styrenes. Polym. J 1990, 22, 803–813. https://doi.org/10.1295/polymj.22.803 | |
| dc.relation.referencesen | [23] Böhm, P. Functional Silicones and Silicone-Containing Block Copolymers. Ph.D. Thesis., Johannes Gutenberg-Universität, Mainz, Germany, 2012. | |
| dc.relation.referencesen | [24] Scholl, R.L.; Maciel, G.E.; Musker, W.K. Silicon-29 Chemical Shifts of Organosilicon Compounds. J. Am. Chem. Soc. 1972, 94, 6376–6385. https://doi.org/10.1021/ja00773a02 | |
| dc.relation.referencesen | [25] Dankert, F.; von Hänisch, C. Siloxane Coordination Revisited: Si−O Bond Character, Reactivity and Magnificent Molecular Shapes. Eur. J. Inorg. Chem. 2021, 29, 2907–2927. https://doi.org/10.1002/ejic.202100275 | |
| dc.relation.referencesen | [26] The Chemistry of Organic Silicon Compounds, Volume 2; Rappoport, Z.; Apeloig, Y., Eds.; John Wiley & Sons, 1998. | |
| dc.relation.uri | https://doi.org/10.1002/app.24474 | |
| dc.relation.uri | https://doi.org/10.23939/chcht16.04.499 | |
| dc.relation.uri | https://doi.org/10.23939/chcht17.04.807 | |
| dc.relation.uri | https://doi.org/10.23939/chcht16.03.377 | |
| dc.relation.uri | https://doi.org/10.1080/00914030108050788 | |
| dc.relation.uri | https://doi.org/10.1021/om00036a013 | |
| dc.relation.uri | https://doi.org/10.1021/jo01037a053 | |
| dc.relation.uri | https://doi.org/10.1016/0022-328X(88)89085-5 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-642-68661-0_7 | |
| dc.relation.uri | https://doi.org/10.1002/app.25734 | |
| dc.relation.uri | https://doi.org/10.1016/B978-0-12-814213-4.00005-8 | |
| dc.relation.uri | https://doi.org/10.1002/app.31618 | |
| dc.relation.uri | https://doi.org/10.1080/00914039808034857 | |
| dc.relation.uri | https://doi.org/10.23939/chcht17.01.035 | |
| dc.relation.uri | https://doi.org/10.1080/00914039408038292 | |
| dc.relation.uri | https://doi.org/10.1002/anie.202008729 | |
| dc.relation.uri | https://doi.org/10.1080/00914039608028606 | |
| dc.relation.uri | https://doi.org/10.23939/chcht17.02.325 | |
| dc.relation.uri | https://doi.org/10.1515/epoly.2012.12.1.1023 | |
| dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2013.11.003 | |
| dc.relation.uri | https://doi.org/10.1295/polymj.22.803 | |
| dc.relation.uri | https://doi.org/10.1021/ja00773a02 | |
| dc.relation.uri | https://doi.org/10.1002/ejic.202100275 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Tatrishvili T., Mukbaniani O., 2024 | |
| dc.subject | кремнійорганічні полімери | |
| dc.subject | гідросилілювання | |
| dc.subject | каталізатор Спаєра | |
| dc.subject | карбосилоксанові кополімери | |
| dc.subject | silicon-organic polymers | |
| dc.subject | hydrosilylation | |
| dc.subject | Speier’s catalyst | |
| dc.subject | carbosiloxane copolymers | |
| dc.title | Cyclic Silicon Organic Copolymers: Synthesis and Investigation. Review | |
| dc.title.alternative | Циклічні кремнійорганічні кополімери: синтез та дослідження. Огляд | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1