On the mathematical model of the transformation of natural numbers by a function of a split type
| dc.citation.epage | 50 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
| dc.citation.spage | 44 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Кособуцький, Петро | |
| dc.contributor.author | Нестор, Наталія | |
| dc.contributor.author | Kosobutskyy, Petro | |
| dc.contributor.author | Nestor, Nataliia | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-12-15T08:11:16Z | |
| dc.date.created | 2024-08-10 | |
| dc.date.issued | 2024-08-10 | |
| dc.description.abstract | У роботі обґрунтовано некоректність алгоритму, запропонованого в публікації M. Remer [A Comparative Analysis of the New –3(–n) – 1 Remer Conjecture and a Proof of the 3n + 1 Collatz Conjecture. Journal of Applied Mathematics and Physics, Vol. 11, No. 8, August 2023”] в термінах гіпотези Коллатца, а також те, що перетворення –3(–n) – 1 не еквівалентне гіпотезі Коллатца про натуральні числа 3n + 1. Отримані результати можуть бути використані в подальших дослідженнях. | |
| dc.description.abstract | In this work justified incorrectness of the algorithm proposed in the publication M. Remer [A Comparative Analysis of the New –3(–n) – 1 Remer Conjecture and a Proof of the 3n + 1 Collatz Conjecture. Journal of Applied Mathematics and Physics, Vol. 11, No. 8, August 2023] in terms of the Collatz conjecture. And also that the transformation –3(–n) – 1 is not equivalent to Collatz’s conjecture on the natural numbers 3n + 1. The obtained results can be used in further studies of the Collatz hypothesis. | |
| dc.format.extent | 44-50 | |
| dc.format.pages | 7 | |
| dc.identifier.citation | Kosobutskyy P. On the mathematical model of the transformation of natural numbers by a function of a split type / Petro Kosobutskyy, Nataliia Nestor // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 44–50. | |
| dc.identifier.citation2015 | Kosobutskyy P., Nestor N. On the mathematical model of the transformation of natural numbers by a function of a split type // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 2. P. 44–50. | |
| dc.identifier.citationenAPA | Kosobutskyy, P., & Nestor, N. (2024). On the mathematical model of the transformation of natural numbers by a function of a split type. Computer Systems of Design. Theory and Practice, 6(2), 44-50. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Kosobutskyy P., Nestor N. (2024) On the mathematical model of the transformation of natural numbers by a function of a split type. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 2, pp. 44-50. | |
| dc.identifier.doi | https://doi.org/10.23939/cds2024.02.044 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124057 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 2 (6), 2024 | |
| dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 2 (6), 2024 | |
| dc.relation.references | [1] M. Remer. “A Comparative Analysis of the New –3(–n) – 1 Remer Conjecture and a Proof of the 3n + 1 Collatz Conjecture”, Journal of Applied Mathematics and Physics, Vol. 11, No. 8, August 2023, https://doi.org/10.4236/jamp.2023.118143 | |
| dc.relation.references | [2] J. Lagarias. “The 3x + 1 problem: An annotated bibliography II (2000–2009)”, 2012, arXiv:math/0608208. | |
| dc.relation.references | [3] A. Grubiy. “Automaton implementations of the process of generating a Collatz sequence”, Cybernetics and Systems Analysis, 48, No. 1, 108–116 (2012), https://doi.org/10.1007/s10559-012-9380-4 | |
| dc.relation.references | [4] I. Rystsov, “Some remarks about the Collatz problem”, Cybernetics and Systems Analysis, 49, No. 3, 353–365 (2013), https://doi.org/10.1007/s10559-013-9518-z | |
| dc.relation.references | [5] D. Xu, D. Tamir, “Pseudo-random number generators based on the Collatz Conjecture”, Int. j. inf. tecnol. (2019) 11:453–459, https://doi.org/10.1007/s41870-019-00307-9 | |
| dc.relation.references | [6] P. Kosobutskyy, “The Collatz problem as a reverse problem on a graph tree formed from Q×2^n (Q = 1,3,5,7,…) Jacobsthal-type numbers” .arXiv:2306.14635v1 | |
| dc.relation.references | [7] Р. Kosobutsky, “Svitohliad 2022, No. 5 (97), 56–61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329. | |
| dc.relation.references | [8] Р. Kosobutskyy, Comment from article “M. Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023”, https://www.refaad.com/Journal/Article/1388,https://doi.org/10.31559/glm2022.12.4.4 | |
| dc.relation.references | [9] P. Kosobutskyy, A. Yedyharova, T. Slobodzyan. From Newtons binomial and Pascal’striangle to Collatz problem.CDS.2023; Vol. 5, No. 1: 121–127, https://doi.org/10.23939/cds2023.01.121 | |
| dc.relation.references | [10] P. Kosobutskyy, D. Rebot. Collatz Conjecture 3n±1 as a Newton Binomial Problem. CDS. 2023; Vol. 5, No. 1: 137–145, https://doi.org/10.23939/cds2023.01.137 | |
| dc.relation.references | [11] A. Horadam. 1996. Jacobsthal Representation Numbers. Fibonacci Quarterly. 34, 40–54 | |
| dc.relation.references | [12] M. Stein, S. Ulam; M. Well. (1964). American Mathematical Monthly, 71(5):516–520; M.Stein, S.Ulam. (1967) American Mathematical Monthly, 74(1) : 43–44, https://doi.org/10.2307/2314055 | |
| dc.relation.references | [13] P. Kosobutsky. Lviv mathematician Stanislav Ulam is the creator of the statistical modeling method or the Monte Carlo method. The world of physics. 2012, No. 4, 22–30. | |
| dc.relation.references | [14] L. Green. The Negative Collatz Sequence. (2022), v1.25. | |
| dc.relation.references | [15] N. Sloane. The On-line encyclopedia of integer sequences. The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Available online. https://oeis.org/A002450 | |
| dc.relation.referencesen | [1] M. Remer. "A Comparative Analysis of the New –3(–n) – 1 Remer Conjecture and a Proof of the 3n + 1 Collatz Conjecture", Journal of Applied Mathematics and Physics, Vol. 11, No. 8, August 2023, https://doi.org/10.4236/jamp.2023.118143 | |
| dc.relation.referencesen | [2] J. Lagarias. "The 3x + 1 problem: An annotated bibliography II (2000–2009)", 2012, arXiv:math/0608208. | |
| dc.relation.referencesen | [3] A. Grubiy. "Automaton implementations of the process of generating a Collatz sequence", Cybernetics and Systems Analysis, 48, No. 1, 108–116 (2012), https://doi.org/10.1007/s10559-012-9380-4 | |
| dc.relation.referencesen | [4] I. Rystsov, "Some remarks about the Collatz problem", Cybernetics and Systems Analysis, 49, No. 3, 353–365 (2013), https://doi.org/10.1007/s10559-013-9518-z | |
| dc.relation.referencesen | [5] D. Xu, D. Tamir, "Pseudo-random number generators based on the Collatz Conjecture", Int. j. inf. tecnol. (2019) 11:453–459, https://doi.org/10.1007/s41870-019-00307-9 | |
| dc.relation.referencesen | [6] P. Kosobutskyy, "The Collatz problem as a reverse problem on a graph tree formed from Q×2^n (Q = 1,3,5,7,…) Jacobsthal-type numbers" .arXiv:2306.14635v1 | |
| dc.relation.referencesen | [7] R. Kosobutsky, "Svitohliad 2022, No. 5 (97), 56–61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329. | |
| dc.relation.referencesen | [8] R. Kosobutskyy, Comment from article "M. Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023", https://www.refaad.com/Journal/Article/1388,https://doi.org/10.31559/glm2022.12.4.4 | |
| dc.relation.referencesen | [9] P. Kosobutskyy, A. Yedyharova, T. Slobodzyan. From Newtons binomial and Pascal’striangle to Collatz problem.CDS.2023; Vol. 5, No. 1: 121–127, https://doi.org/10.23939/cds2023.01.121 | |
| dc.relation.referencesen | [10] P. Kosobutskyy, D. Rebot. Collatz Conjecture 3n±1 as a Newton Binomial Problem. CDS. 2023; Vol. 5, No. 1: 137–145, https://doi.org/10.23939/cds2023.01.137 | |
| dc.relation.referencesen | [11] A. Horadam. 1996. Jacobsthal Representation Numbers. Fibonacci Quarterly. 34, 40–54 | |
| dc.relation.referencesen | [12] M. Stein, S. Ulam; M. Well. (1964). American Mathematical Monthly, 71(5):516–520; M.Stein, S.Ulam. (1967) American Mathematical Monthly, 74(1) : 43–44, https://doi.org/10.2307/2314055 | |
| dc.relation.referencesen | [13] P. Kosobutsky. Lviv mathematician Stanislav Ulam is the creator of the statistical modeling method or the Monte Carlo method. The world of physics. 2012, No. 4, 22–30. | |
| dc.relation.referencesen | [14] L. Green. The Negative Collatz Sequence. (2022), v1.25. | |
| dc.relation.referencesen | [15] N. Sloane. The On-line encyclopedia of integer sequences. The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Available online. https://oeis.org/A002450 | |
| dc.relation.uri | https://doi.org/10.4236/jamp.2023.118143 | |
| dc.relation.uri | https://doi.org/10.1007/s10559-012-9380-4 | |
| dc.relation.uri | https://doi.org/10.1007/s10559-013-9518-z | |
| dc.relation.uri | https://doi.org/10.1007/s41870-019-00307-9 | |
| dc.relation.uri | https://www.refaad.com/Journal/Article/1388,https://doi.org/10.31559/glm2022.12.4.4 | |
| dc.relation.uri | https://doi.org/10.23939/cds2023.01.121 | |
| dc.relation.uri | https://doi.org/10.23939/cds2023.01.137 | |
| dc.relation.uri | https://doi.org/10.2307/2314055 | |
| dc.relation.uri | https://oeis.org/A002450 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.rights.holder | © Kosobutskyy P., Nestor N., 2024 | |
| dc.subject | рекурентна послідовність | |
| dc.subject | числа Якобсталя | |
| dc.subject | гіпотеза Коллатца | |
| dc.subject | натуральні числа | |
| dc.subject | гіпотеза | |
| dc.subject | Recurrence sequence | |
| dc.subject | Jacobsthal numbers | |
| dc.subject | Collatz conjecture | |
| dc.subject | natural numbers | |
| dc.subject | conjecture | |
| dc.title | On the mathematical model of the transformation of natural numbers by a function of a split type | |
| dc.title.alternative | Про математичну модель перетворення натуральних чисел функцією розділеного типу | |
| dc.type | Article |