The Influence of Organic and Inorganic Additives on the Specific Electrical Resistance of Coke

dc.citation.epage118
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage109
dc.citation.volume18
dc.contributor.affiliationNational Technical University Kharkiv Polytechnic Institute
dc.contributor.affiliationState Enterprise "Ukrainian State Research Institute for Carbochemistry (UKHIN)
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorMiroshnichenko, Denis
dc.contributor.authorBorisenko, Oleksandr
dc.contributor.authorKoval, Valentine
dc.contributor.authorZelenskii, Oleh
dc.contributor.authorSoloviov, Yevhen
dc.contributor.authorPyshyev, Serhiy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:19:53Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractМетою цього дослідження була оцінка впливу як неорганічних (нанопорошків карбіду бору та карбіду кремнію (карборунд)), так і органічної опіснюючої (нафтового коксу) добавок на якість коксу, виробленого в лабораторній печі, включаючи електричну структурність. Аналізуючи результати визначення якості отриманого коксу, можна констатувати, що введення фіксованої кількості (0,25–0,5 мас. %) неспікливих нанодобавок дає змогу регулювати процеси в пластичному стані з метою підвищення міцності коксу. Вплив такої модифікації на якість коксу істотно залежить від сортового складу вугільної шихти. Використання нанодобавок особливо актуальне для вугільної шихти з поганими спікливими властивостями. Введення 5% нафтового коксу у вугільні шихти приводить до збільшення валового випуску коксу на 1,2-1,3%; зниження зольності коксу на 0,2-0,3%; збільшення загального вмісту сірки в коксі на 0,15-0,23%; погіршення стану як механічної міцності (Р25 – на 0,1-0,6%; I10 – на 0,1-0,2%), так і міцності після реакції (CSR – на 0,6-1,0%), реакційної здатності (CRI – на 0,2-0,3%) коксу, а також структурної міцності (СМ на 0,3-0,4%), абразивної твердості (АТ на 0,7-1,0 мг) і питомого електричного опору (ρ на 0,002-0,007 Ом×см). Отримані дані можуть свідчити про збільшення ступеня впорядкованості структури коксу і появу більшої кількості наноструктур. Крім того, слід зазначити, що різкіше погіршення якості доменного коксу спостерігається у разі використання вугільної шихти, що характеризується нижчим вмістом вугілля ЦЗФ «Свято-Варваринська».
dc.description.abstractThis study aimed to evaluate the effect of both inorganic (boron carbide nanopowders and silicon carbide (carborundum) and organic lean (petroleum coke) additives on the quality of coke produced in a laboratory furnace, as well as on its electrical properties. Analyzing the results of the quality assessment of the obtained coke, it can be argued that the addition of a fixed amount (0.25-0.5 wt.%) of non-caking nanoadditives allows to regulate the process in the plastic state in order to increase the coke strength. This modification affects the coke quality and has a significant dependence on the grade composition of the coal charge. The use of nanoadditives is especially important for coal charges with poor coking properties. Adding 5% of petroleum coke to the coal charge leads to an increase in the gross coke yield by 1.2-1.3%; a decrease in coke ash content by 0.2-0.3%; an increase in the total sulfur content in coke by 0.15-0.23%; deterioration in both mechanical (P25 − by 0. 1-0.6%; I10 − by 0.1-0.2%) and coke strength after the reaction (CSR - by 0.6-1.0%), coke reactivity (CRI - by 0.2-0.3%), as well as structural strength (SS by 0.3-0.4%), abrasive hardness (AH by 0.7-1.0 mg) and specific electrical resistance (ρ by 0.002-0.007 Om×cm). The obtained data may indicate an increase in the order degree of the coke structure and the appearance of a larger number of nanostructures. In addition, it should be noted that a sharper deterioration in blast furnace coke quality is observed when using a coal charge characterized by a lower coal content of the Concentrating Factory Svyato-Varvarynska LLC.
dc.format.extent109-118
dc.format.pages10
dc.identifier.citationThe Influence of Organic and Inorganic Additives on the Specific Electrical Resistance of Coke / Denis Miroshnichenko, Oleksandr Borisenko, Valentine Koval, Oleh Zelenskii, Yevhen Soloviov, Serhiy Pyshyev // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 109–118.
dc.identifier.citationenThe Influence of Organic and Inorganic Additives on the Specific Electrical Resistance of Coke / Denis Miroshnichenko, Oleksandr Borisenko, Valentine Koval, Oleh Zelenskii, Yevhen Soloviov, Serhiy Pyshyev // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 109–118.
dc.identifier.doidoi.org/10.23939/chcht18.01.109
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111776
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Sakurovs, R.; Koval, L.; Grigor M.; Sokolova, A.; de Campo, L.; Rehm, K. Nanostructure of Cokes. Int J Coal Geol 2018, 188, 112–120. http://dx.doi.org/10.1016/j.coal.2018.02.006
dc.relation.references[2] Sakurovs, R.; Grigor, M.; Sokolova, A.; Mata, Ya. Effect of High Temperature on Nanopores in Coke. Fuel 2023, 334, 126821. https://doi.org/10.1016/j.fuel.2022.126821
dc.relation.references[3] Suarez-Ruiz, I.; Crelling, J.C. Coal-Derived Carbon Materials. In Applied Coal Petrology. The Role of Petrology in Coal Utiliztion; Suarez-Ruiz, I.; Crelling, J.C., Eds.; Burlington, 2008; pр 193–225. https://doi.org/10.1016/B978-0-08-045051-3.X0001-2
dc.relation.references[4] Zhu, H.-b.; Zhan, W.-l.; He, Z.-j.; Yu, Y.-c; Pang, Q.-h; Zhang, J.-h. Pore Structure Evolution During the Coke Graphitization Process in a Blast Furnace. Int. J. Miner. Metall. Mater. 2020, 27, 1226–1233. https://doi.org/10.1007/s12613-019-1927-1
dc.relation.references[5] Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Diez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. Effect of Charcoal Blending with a Vitrinite Rich Coking Coal on Coke Reactivity. Fuel Process. Technol. 2017, 155, 97–105. https://doi.org/10.1016/j.fuproc.2016.04.012
dc.relation.references[6] Zhang, H.; Bai, J.; Li, W.; Cheng, F. Comprehensive Evaluation of Inherent Mineral Composition and Carbon Structure Parameters on CO2 Reactivity of Metallurgical Coke. Fuel 2019, 235, 647–657. https://doi.org/10.1016/j.fuel.2018.07.131
dc.relation.references[7] Malaquias, B.; Flores, V.I.; Bagatini, M. Effect of High Petroleum Coke Additions on Metallurgical Coke Quality and Optical Texture. REM - International Engineering Journal 2020, 73. https://doi.org/10.1590/0370-44672019730097
dc.relation.references[8] Larionov, K.; Mishakov, I.; Slyusarskiy, K.; Vedyagin, A.A. Intensification of Bituminous Coal and Lignite Oxidation by Copper-Based Activating Additives. Int J Coal Sci Technol. 2021, 8, 141–153. https://doi.org/10.1007/s40789-020-00350-z
dc.relation.references[9] Shmeltser, E.O.; Lyalyuk, V.P.; Sokolova, V.P.; Miroshnichenko, D.V. The Using of Coal Blends with an Increased Content of Coals of the Middle Stage of Metamorphism for the Production of the Blast-Furnace Coke. Мessage 1. Рreparation of Coal Blends. Pet. Coal 2018, 60, 605–611.
dc.relation.references[10] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D. Lignite Oxidative Desulphurization: Notice 3—Process Technological Aspects and Application of Products. Int J Coal Sci Technol. 2019, 6, 63–73. https://doi.org/10.1007/s40789-018-0228-z
dc.relation.references[11] Shved, M.; Pyshyev, S.; Prysiazhnyi, Y. Effect of Oxidant Relative Flow Rate on Obtaining Raw Material for Pulverized Coal Production from High-Sulfuric Row Grade Coal. Chem. Chem. Technol. 2017, 11, 236–241. https://doi.org/10.23939/chcht11.02.236
dc.relation.references[12] Zelenskii, O.I. Modern Trends in the Use of Nonmetallurgical Additives in the Coke Production. J. Coal Chem. 2023, 3, 21–28.
dc.relation.references[13] Nag, D.; Karmakar, Sh.; Burgula, L.; Dash, J.; Dash P.S.; Ghorai S. Use of Organic Polymers for Improvement of Coking Potential of Poorcoking Coal. Int. J. Coal Prep. Util. 2020, 40, 427–437. https://doi.org/10.1080/19392699.2019.1686365
dc.relation.references[14] Zelenskii, O.; Vasil’ev, Y.; Sytnik, A.; Desna, N.; Spirina, E.; Grigorov, A. Metallurgical Cokemaking with the Improved Physicochemical Parameters at Avdeevka Coke Plant. Chem. J. Mold. 2018, 13, 32–37. https://doi.org/10.19261/cjm.2018.516
dc.relation.references[15] Wu, Q.; Sun, C.; Zhu, Z.-Z.; Wang, Y.-D.; Zhang, C.-Y. Effects of Boron Carbide on Coking Behavior and Chemical Structure of High Volatile Coking Coal during Carbonization. Materials 2021, 14, 302. https://doi.org/10.3390/ma14020302
dc.relation.references[16] Kumar, A.; Kaur, M.; Kumar, R.; Sengupta, P.R.; Raman V.; Bhatia, G. Effect of Incorporating Nano Silicon Carbide on the Properties of Green Coke Based Monolithic Carbon. Indian J. Eng. Mater. Sci. 2010, 17, 353–357.
dc.relation.references[17] Jayakumari, S.; Tangstad, M. Transformation of β-SiC from Charcoal, Coal, and Petroleum Coke to α-SiC at Higher Temperatures. Metall Mater Trans B 2020, 51, 2673–2688. https://doi.org/10.1007/s11663-020-01970-1
dc.relation.references[18] Tomas, P.; Manoj, B. Dielectric Performance of Graphene Nanostructures Prepared from Naturally Sourced Material. Mater. Today: Proc. 2021, 43, 3424–3427. https://doi.org/10.1016/j.matpr.2020.09.075
dc.relation.references[19] Miroshnichenko, D.V.; Saienko, L.; Demidov, D.; Pyshyev, S.V. Predicting the Yield of Coke and its Byproducts on the Basis of Ultimate and Petrographic Analysis. Pet. Coal 2018, 60, 402–415.
dc.relation.references[20] Miroshnichenko, D.V.; Saienko, N.; Popov, Y.; Demidov, D.; Nikolaichuk, Y.V. Preparation of Oxidized Coal. Pet. Coal 2018, 60, 113–119.
dc.relation.references[21] Barsky, V.; Vlasov, G.; Rudnitsky, A. Composition and Structure of Coal Organic Mass. 3. Dinamics of Coal Chemical Structure During Metamorphism. Chem. Chem. Technol. 2011, 5, 285–290. https://doi.org/10.23939/chcht05.03.285
dc.relation.references[22] Pyshyev, S.; Zbykovskyy, Y.; Shvets, I.; Miroshnichenko, D.; Kravchenko, S.; Stelmachenko, S.; Demchuk, Y.; Vytrykush N. Modeling of Coke Distribution in a Dry Quenching Zon. ACS Omega. 2023, 8, 19464–19473. https://doi:10.1021/acsomega.3c00747
dc.relation.references[23] Pyshyev, S.; Prysiazhnyi, Y.; Miroshnichenko, D.; Bilushchak, H.; Pyshyeva, R. Desulphurization and Usage of Medium-Metamorphized Black Coal. 1. Determination of the Optimal Conditions for Oxidative Desulphurization. Chem. Chem. Technol. 2014, 8, 225–234. https://doi.org/10.23939/chcht08.02.225
dc.relation.references[24] Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Díez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. On the Reduction Behavior, Structural and Mechanical Features of Iron Ore-Carbon Briquettes. Fuel Process. Technol. 2017, 155, 238–245. https://doi.org/10.1016/j.fuproc.2016.07.004
dc.relation.referencesen[1] Sakurovs, R.; Koval, L.; Grigor M.; Sokolova, A.; de Campo, L.; Rehm, K. Nanostructure of Cokes. Int J Coal Geol 2018, 188, 112–120. http://dx.doi.org/10.1016/j.coal.2018.02.006
dc.relation.referencesen[2] Sakurovs, R.; Grigor, M.; Sokolova, A.; Mata, Ya. Effect of High Temperature on Nanopores in Coke. Fuel 2023, 334, 126821. https://doi.org/10.1016/j.fuel.2022.126821
dc.relation.referencesen[3] Suarez-Ruiz, I.; Crelling, J.C. Coal-Derived Carbon Materials. In Applied Coal Petrology. The Role of Petrology in Coal Utiliztion; Suarez-Ruiz, I.; Crelling, J.C., Eds.; Burlington, 2008; pr 193–225. https://doi.org/10.1016/B978-0-08-045051-3.X0001-2
dc.relation.referencesen[4] Zhu, H.-b.; Zhan, W.-l.; He, Z.-j.; Yu, Y.-c; Pang, Q.-h; Zhang, J.-h. Pore Structure Evolution During the Coke Graphitization Process in a Blast Furnace. Int. J. Miner. Metall. Mater. 2020, 27, 1226–1233. https://doi.org/10.1007/s12613-019-1927-1
dc.relation.referencesen[5] Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Diez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. Effect of Charcoal Blending with a Vitrinite Rich Coking Coal on Coke Reactivity. Fuel Process. Technol. 2017, 155, 97–105. https://doi.org/10.1016/j.fuproc.2016.04.012
dc.relation.referencesen[6] Zhang, H.; Bai, J.; Li, W.; Cheng, F. Comprehensive Evaluation of Inherent Mineral Composition and Carbon Structure Parameters on CO2 Reactivity of Metallurgical Coke. Fuel 2019, 235, 647–657. https://doi.org/10.1016/j.fuel.2018.07.131
dc.relation.referencesen[7] Malaquias, B.; Flores, V.I.; Bagatini, M. Effect of High Petroleum Coke Additions on Metallurgical Coke Quality and Optical Texture. REM - International Engineering Journal 2020, 73. https://doi.org/10.1590/0370-44672019730097
dc.relation.referencesen[8] Larionov, K.; Mishakov, I.; Slyusarskiy, K.; Vedyagin, A.A. Intensification of Bituminous Coal and Lignite Oxidation by Copper-Based Activating Additives. Int J Coal Sci Technol. 2021, 8, 141–153. https://doi.org/10.1007/s40789-020-00350-z
dc.relation.referencesen[9] Shmeltser, E.O.; Lyalyuk, V.P.; Sokolova, V.P.; Miroshnichenko, D.V. The Using of Coal Blends with an Increased Content of Coals of the Middle Stage of Metamorphism for the Production of the Blast-Furnace Coke. Message 1. Rreparation of Coal Blends. Pet. Coal 2018, 60, 605–611.
dc.relation.referencesen[10] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D. Lignite Oxidative Desulphurization: Notice 3-Process Technological Aspects and Application of Products. Int J Coal Sci Technol. 2019, 6, 63–73. https://doi.org/10.1007/s40789-018-0228-z
dc.relation.referencesen[11] Shved, M.; Pyshyev, S.; Prysiazhnyi, Y. Effect of Oxidant Relative Flow Rate on Obtaining Raw Material for Pulverized Coal Production from High-Sulfuric Row Grade Coal. Chem. Chem. Technol. 2017, 11, 236–241. https://doi.org/10.23939/chcht11.02.236
dc.relation.referencesen[12] Zelenskii, O.I. Modern Trends in the Use of Nonmetallurgical Additives in the Coke Production. J. Coal Chem. 2023, 3, 21–28.
dc.relation.referencesen[13] Nag, D.; Karmakar, Sh.; Burgula, L.; Dash, J.; Dash P.S.; Ghorai S. Use of Organic Polymers for Improvement of Coking Potential of Poorcoking Coal. Int. J. Coal Prep. Util. 2020, 40, 427–437. https://doi.org/10.1080/19392699.2019.1686365
dc.relation.referencesen[14] Zelenskii, O.; Vasil’ev, Y.; Sytnik, A.; Desna, N.; Spirina, E.; Grigorov, A. Metallurgical Cokemaking with the Improved Physicochemical Parameters at Avdeevka Coke Plant. Chem. J. Mold. 2018, 13, 32–37. https://doi.org/10.19261/cjm.2018.516
dc.relation.referencesen[15] Wu, Q.; Sun, C.; Zhu, Z.-Z.; Wang, Y.-D.; Zhang, C.-Y. Effects of Boron Carbide on Coking Behavior and Chemical Structure of High Volatile Coking Coal during Carbonization. Materials 2021, 14, 302. https://doi.org/10.3390/ma14020302
dc.relation.referencesen[16] Kumar, A.; Kaur, M.; Kumar, R.; Sengupta, P.R.; Raman V.; Bhatia, G. Effect of Incorporating Nano Silicon Carbide on the Properties of Green Coke Based Monolithic Carbon. Indian J. Eng. Mater. Sci. 2010, 17, 353–357.
dc.relation.referencesen[17] Jayakumari, S.; Tangstad, M. Transformation of b-SiC from Charcoal, Coal, and Petroleum Coke to α-SiC at Higher Temperatures. Metall Mater Trans B 2020, 51, 2673–2688. https://doi.org/10.1007/s11663-020-01970-1
dc.relation.referencesen[18] Tomas, P.; Manoj, B. Dielectric Performance of Graphene Nanostructures Prepared from Naturally Sourced Material. Mater. Today: Proc. 2021, 43, 3424–3427. https://doi.org/10.1016/j.matpr.2020.09.075
dc.relation.referencesen[19] Miroshnichenko, D.V.; Saienko, L.; Demidov, D.; Pyshyev, S.V. Predicting the Yield of Coke and its Byproducts on the Basis of Ultimate and Petrographic Analysis. Pet. Coal 2018, 60, 402–415.
dc.relation.referencesen[20] Miroshnichenko, D.V.; Saienko, N.; Popov, Y.; Demidov, D.; Nikolaichuk, Y.V. Preparation of Oxidized Coal. Pet. Coal 2018, 60, 113–119.
dc.relation.referencesen[21] Barsky, V.; Vlasov, G.; Rudnitsky, A. Composition and Structure of Coal Organic Mass. 3. Dinamics of Coal Chemical Structure During Metamorphism. Chem. Chem. Technol. 2011, 5, 285–290. https://doi.org/10.23939/chcht05.03.285
dc.relation.referencesen[22] Pyshyev, S.; Zbykovskyy, Y.; Shvets, I.; Miroshnichenko, D.; Kravchenko, S.; Stelmachenko, S.; Demchuk, Y.; Vytrykush N. Modeling of Coke Distribution in a Dry Quenching Zon. ACS Omega. 2023, 8, 19464–19473. https://doi:10.1021/acsomega.3c00747
dc.relation.referencesen[23] Pyshyev, S.; Prysiazhnyi, Y.; Miroshnichenko, D.; Bilushchak, H.; Pyshyeva, R. Desulphurization and Usage of Medium-Metamorphized Black Coal. 1. Determination of the Optimal Conditions for Oxidative Desulphurization. Chem. Chem. Technol. 2014, 8, 225–234. https://doi.org/10.23939/chcht08.02.225
dc.relation.referencesen[24] Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Díez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. On the Reduction Behavior, Structural and Mechanical Features of Iron Ore-Carbon Briquettes. Fuel Process. Technol. 2017, 155, 238–245. https://doi.org/10.1016/j.fuproc.2016.07.004
dc.relation.urihttp://dx.doi.org/10.1016/j.coal.2018.02.006
dc.relation.urihttps://doi.org/10.1016/j.fuel.2022.126821
dc.relation.urihttps://doi.org/10.1016/B978-0-08-045051-3.X0001-2
dc.relation.urihttps://doi.org/10.1007/s12613-019-1927-1
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2016.04.012
dc.relation.urihttps://doi.org/10.1016/j.fuel.2018.07.131
dc.relation.urihttps://doi.org/10.1590/0370-44672019730097
dc.relation.urihttps://doi.org/10.1007/s40789-020-00350-z
dc.relation.urihttps://doi.org/10.1007/s40789-018-0228-z
dc.relation.urihttps://doi.org/10.23939/chcht11.02.236
dc.relation.urihttps://doi.org/10.1080/19392699.2019.1686365
dc.relation.urihttps://doi.org/10.19261/cjm.2018.516
dc.relation.urihttps://doi.org/10.3390/ma14020302
dc.relation.urihttps://doi.org/10.1007/s11663-020-01970-1
dc.relation.urihttps://doi.org/10.1016/j.matpr.2020.09.075
dc.relation.urihttps://doi.org/10.23939/chcht05.03.285
dc.relation.urihttps://doi:10.1021/acsomega.3c00747
dc.relation.urihttps://doi.org/10.23939/chcht08.02.225
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2016.07.004
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Miroshnichenko D., Borisenko O., Koval V., Zelenskii O, Soloviov Ye., Pyshyev S., 2024
dc.subjectнафтовий кокс
dc.subjectвугільні шихти
dc.subjectкоксування
dc.subjectякість доменного коксу
dc.subjectекологічна структурність
dc.subjectнанопори
dc.subjectмодифікація
dc.subjectнанодобавки
dc.subjectкарбід бору
dc.subjectкарбід кремнію
dc.subjectpetroleum coke
dc.subjectcoal blends
dc.subjectcoking
dc.subjectblast furnace coke quality
dc.subjectelectrical resistivity
dc.subjectnanopores
dc.subjectmodification
dc.subjectnanoadditives
dc.subjectboron carbide
dc.subjectsilicon carbide
dc.titleThe Influence of Organic and Inorganic Additives on the Specific Electrical Resistance of Coke
dc.title.alternativeВплив органічних і неорганічних добавок на питомий електричний опір коксу
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Miroshnichenko_D-The_Influence_of_109-118.pdf
Size:
6.93 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Miroshnichenko_D-The_Influence_of_109-118__COVER.png
Size:
574.54 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: