The Influence of Organic and Inorganic Additives on the Specific Electrical Resistance of Coke
| dc.citation.epage | 118 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Хімія та хімічна технологія | |
| dc.citation.spage | 109 | |
| dc.citation.volume | 18 | |
| dc.contributor.affiliation | National Technical University Kharkiv Polytechnic Institute | |
| dc.contributor.affiliation | State Enterprise "Ukrainian State Research Institute for Carbochemistry (UKHIN) | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Miroshnichenko, Denis | |
| dc.contributor.author | Borisenko, Oleksandr | |
| dc.contributor.author | Koval, Valentine | |
| dc.contributor.author | Zelenskii, Oleh | |
| dc.contributor.author | Soloviov, Yevhen | |
| dc.contributor.author | Pyshyev, Serhiy | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-24T06:19:53Z | |
| dc.date.created | 2024-03-01 | |
| dc.date.issued | 2024-03-01 | |
| dc.description.abstract | Метою цього дослідження була оцінка впливу як неорганічних (нанопорошків карбіду бору та карбіду кремнію (карборунд)), так і органічної опіснюючої (нафтового коксу) добавок на якість коксу, виробленого в лабораторній печі, включаючи електричну структурність. Аналізуючи результати визначення якості отриманого коксу, можна констатувати, що введення фіксованої кількості (0,25–0,5 мас. %) неспікливих нанодобавок дає змогу регулювати процеси в пластичному стані з метою підвищення міцності коксу. Вплив такої модифікації на якість коксу істотно залежить від сортового складу вугільної шихти. Використання нанодобавок особливо актуальне для вугільної шихти з поганими спікливими властивостями. Введення 5% нафтового коксу у вугільні шихти приводить до збільшення валового випуску коксу на 1,2-1,3%; зниження зольності коксу на 0,2-0,3%; збільшення загального вмісту сірки в коксі на 0,15-0,23%; погіршення стану як механічної міцності (Р25 – на 0,1-0,6%; I10 – на 0,1-0,2%), так і міцності після реакції (CSR – на 0,6-1,0%), реакційної здатності (CRI – на 0,2-0,3%) коксу, а також структурної міцності (СМ на 0,3-0,4%), абразивної твердості (АТ на 0,7-1,0 мг) і питомого електричного опору (ρ на 0,002-0,007 Ом×см). Отримані дані можуть свідчити про збільшення ступеня впорядкованості структури коксу і появу більшої кількості наноструктур. Крім того, слід зазначити, що різкіше погіршення якості доменного коксу спостерігається у разі використання вугільної шихти, що характеризується нижчим вмістом вугілля ЦЗФ «Свято-Варваринська». | |
| dc.description.abstract | This study aimed to evaluate the effect of both inorganic (boron carbide nanopowders and silicon carbide (carborundum) and organic lean (petroleum coke) additives on the quality of coke produced in a laboratory furnace, as well as on its electrical properties. Analyzing the results of the quality assessment of the obtained coke, it can be argued that the addition of a fixed amount (0.25-0.5 wt.%) of non-caking nanoadditives allows to regulate the process in the plastic state in order to increase the coke strength. This modification affects the coke quality and has a significant dependence on the grade composition of the coal charge. The use of nanoadditives is especially important for coal charges with poor coking properties. Adding 5% of petroleum coke to the coal charge leads to an increase in the gross coke yield by 1.2-1.3%; a decrease in coke ash content by 0.2-0.3%; an increase in the total sulfur content in coke by 0.15-0.23%; deterioration in both mechanical (P25 − by 0. 1-0.6%; I10 − by 0.1-0.2%) and coke strength after the reaction (CSR - by 0.6-1.0%), coke reactivity (CRI - by 0.2-0.3%), as well as structural strength (SS by 0.3-0.4%), abrasive hardness (AH by 0.7-1.0 mg) and specific electrical resistance (ρ by 0.002-0.007 Om×cm). The obtained data may indicate an increase in the order degree of the coke structure and the appearance of a larger number of nanostructures. In addition, it should be noted that a sharper deterioration in blast furnace coke quality is observed when using a coal charge characterized by a lower coal content of the Concentrating Factory Svyato-Varvarynska LLC. | |
| dc.format.extent | 109-118 | |
| dc.format.pages | 10 | |
| dc.identifier.citation | The Influence of Organic and Inorganic Additives on the Specific Electrical Resistance of Coke / Denis Miroshnichenko, Oleksandr Borisenko, Valentine Koval, Oleh Zelenskii, Yevhen Soloviov, Serhiy Pyshyev // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 109–118. | |
| dc.identifier.citationen | The Influence of Organic and Inorganic Additives on the Specific Electrical Resistance of Coke / Denis Miroshnichenko, Oleksandr Borisenko, Valentine Koval, Oleh Zelenskii, Yevhen Soloviov, Serhiy Pyshyev // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 109–118. | |
| dc.identifier.doi | doi.org/10.23939/chcht18.01.109 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111776 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія та хімічна технологія, 1 (18), 2024 | |
| dc.relation.ispartof | Chemistry & Chemical Technology, 1 (18), 2024 | |
| dc.relation.references | [1] Sakurovs, R.; Koval, L.; Grigor M.; Sokolova, A.; de Campo, L.; Rehm, K. Nanostructure of Cokes. Int J Coal Geol 2018, 188, 112–120. http://dx.doi.org/10.1016/j.coal.2018.02.006 | |
| dc.relation.references | [2] Sakurovs, R.; Grigor, M.; Sokolova, A.; Mata, Ya. Effect of High Temperature on Nanopores in Coke. Fuel 2023, 334, 126821. https://doi.org/10.1016/j.fuel.2022.126821 | |
| dc.relation.references | [3] Suarez-Ruiz, I.; Crelling, J.C. Coal-Derived Carbon Materials. In Applied Coal Petrology. The Role of Petrology in Coal Utiliztion; Suarez-Ruiz, I.; Crelling, J.C., Eds.; Burlington, 2008; pр 193–225. https://doi.org/10.1016/B978-0-08-045051-3.X0001-2 | |
| dc.relation.references | [4] Zhu, H.-b.; Zhan, W.-l.; He, Z.-j.; Yu, Y.-c; Pang, Q.-h; Zhang, J.-h. Pore Structure Evolution During the Coke Graphitization Process in a Blast Furnace. Int. J. Miner. Metall. Mater. 2020, 27, 1226–1233. https://doi.org/10.1007/s12613-019-1927-1 | |
| dc.relation.references | [5] Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Diez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. Effect of Charcoal Blending with a Vitrinite Rich Coking Coal on Coke Reactivity. Fuel Process. Technol. 2017, 155, 97–105. https://doi.org/10.1016/j.fuproc.2016.04.012 | |
| dc.relation.references | [6] Zhang, H.; Bai, J.; Li, W.; Cheng, F. Comprehensive Evaluation of Inherent Mineral Composition and Carbon Structure Parameters on CO2 Reactivity of Metallurgical Coke. Fuel 2019, 235, 647–657. https://doi.org/10.1016/j.fuel.2018.07.131 | |
| dc.relation.references | [7] Malaquias, B.; Flores, V.I.; Bagatini, M. Effect of High Petroleum Coke Additions on Metallurgical Coke Quality and Optical Texture. REM - International Engineering Journal 2020, 73. https://doi.org/10.1590/0370-44672019730097 | |
| dc.relation.references | [8] Larionov, K.; Mishakov, I.; Slyusarskiy, K.; Vedyagin, A.A. Intensification of Bituminous Coal and Lignite Oxidation by Copper-Based Activating Additives. Int J Coal Sci Technol. 2021, 8, 141–153. https://doi.org/10.1007/s40789-020-00350-z | |
| dc.relation.references | [9] Shmeltser, E.O.; Lyalyuk, V.P.; Sokolova, V.P.; Miroshnichenko, D.V. The Using of Coal Blends with an Increased Content of Coals of the Middle Stage of Metamorphism for the Production of the Blast-Furnace Coke. Мessage 1. Рreparation of Coal Blends. Pet. Coal 2018, 60, 605–611. | |
| dc.relation.references | [10] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D. Lignite Oxidative Desulphurization: Notice 3—Process Technological Aspects and Application of Products. Int J Coal Sci Technol. 2019, 6, 63–73. https://doi.org/10.1007/s40789-018-0228-z | |
| dc.relation.references | [11] Shved, M.; Pyshyev, S.; Prysiazhnyi, Y. Effect of Oxidant Relative Flow Rate on Obtaining Raw Material for Pulverized Coal Production from High-Sulfuric Row Grade Coal. Chem. Chem. Technol. 2017, 11, 236–241. https://doi.org/10.23939/chcht11.02.236 | |
| dc.relation.references | [12] Zelenskii, O.I. Modern Trends in the Use of Nonmetallurgical Additives in the Coke Production. J. Coal Chem. 2023, 3, 21–28. | |
| dc.relation.references | [13] Nag, D.; Karmakar, Sh.; Burgula, L.; Dash, J.; Dash P.S.; Ghorai S. Use of Organic Polymers for Improvement of Coking Potential of Poorcoking Coal. Int. J. Coal Prep. Util. 2020, 40, 427–437. https://doi.org/10.1080/19392699.2019.1686365 | |
| dc.relation.references | [14] Zelenskii, O.; Vasil’ev, Y.; Sytnik, A.; Desna, N.; Spirina, E.; Grigorov, A. Metallurgical Cokemaking with the Improved Physicochemical Parameters at Avdeevka Coke Plant. Chem. J. Mold. 2018, 13, 32–37. https://doi.org/10.19261/cjm.2018.516 | |
| dc.relation.references | [15] Wu, Q.; Sun, C.; Zhu, Z.-Z.; Wang, Y.-D.; Zhang, C.-Y. Effects of Boron Carbide on Coking Behavior and Chemical Structure of High Volatile Coking Coal during Carbonization. Materials 2021, 14, 302. https://doi.org/10.3390/ma14020302 | |
| dc.relation.references | [16] Kumar, A.; Kaur, M.; Kumar, R.; Sengupta, P.R.; Raman V.; Bhatia, G. Effect of Incorporating Nano Silicon Carbide on the Properties of Green Coke Based Monolithic Carbon. Indian J. Eng. Mater. Sci. 2010, 17, 353–357. | |
| dc.relation.references | [17] Jayakumari, S.; Tangstad, M. Transformation of β-SiC from Charcoal, Coal, and Petroleum Coke to α-SiC at Higher Temperatures. Metall Mater Trans B 2020, 51, 2673–2688. https://doi.org/10.1007/s11663-020-01970-1 | |
| dc.relation.references | [18] Tomas, P.; Manoj, B. Dielectric Performance of Graphene Nanostructures Prepared from Naturally Sourced Material. Mater. Today: Proc. 2021, 43, 3424–3427. https://doi.org/10.1016/j.matpr.2020.09.075 | |
| dc.relation.references | [19] Miroshnichenko, D.V.; Saienko, L.; Demidov, D.; Pyshyev, S.V. Predicting the Yield of Coke and its Byproducts on the Basis of Ultimate and Petrographic Analysis. Pet. Coal 2018, 60, 402–415. | |
| dc.relation.references | [20] Miroshnichenko, D.V.; Saienko, N.; Popov, Y.; Demidov, D.; Nikolaichuk, Y.V. Preparation of Oxidized Coal. Pet. Coal 2018, 60, 113–119. | |
| dc.relation.references | [21] Barsky, V.; Vlasov, G.; Rudnitsky, A. Composition and Structure of Coal Organic Mass. 3. Dinamics of Coal Chemical Structure During Metamorphism. Chem. Chem. Technol. 2011, 5, 285–290. https://doi.org/10.23939/chcht05.03.285 | |
| dc.relation.references | [22] Pyshyev, S.; Zbykovskyy, Y.; Shvets, I.; Miroshnichenko, D.; Kravchenko, S.; Stelmachenko, S.; Demchuk, Y.; Vytrykush N. Modeling of Coke Distribution in a Dry Quenching Zon. ACS Omega. 2023, 8, 19464–19473. https://doi:10.1021/acsomega.3c00747 | |
| dc.relation.references | [23] Pyshyev, S.; Prysiazhnyi, Y.; Miroshnichenko, D.; Bilushchak, H.; Pyshyeva, R. Desulphurization and Usage of Medium-Metamorphized Black Coal. 1. Determination of the Optimal Conditions for Oxidative Desulphurization. Chem. Chem. Technol. 2014, 8, 225–234. https://doi.org/10.23939/chcht08.02.225 | |
| dc.relation.references | [24] Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Díez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. On the Reduction Behavior, Structural and Mechanical Features of Iron Ore-Carbon Briquettes. Fuel Process. Technol. 2017, 155, 238–245. https://doi.org/10.1016/j.fuproc.2016.07.004 | |
| dc.relation.referencesen | [1] Sakurovs, R.; Koval, L.; Grigor M.; Sokolova, A.; de Campo, L.; Rehm, K. Nanostructure of Cokes. Int J Coal Geol 2018, 188, 112–120. http://dx.doi.org/10.1016/j.coal.2018.02.006 | |
| dc.relation.referencesen | [2] Sakurovs, R.; Grigor, M.; Sokolova, A.; Mata, Ya. Effect of High Temperature on Nanopores in Coke. Fuel 2023, 334, 126821. https://doi.org/10.1016/j.fuel.2022.126821 | |
| dc.relation.referencesen | [3] Suarez-Ruiz, I.; Crelling, J.C. Coal-Derived Carbon Materials. In Applied Coal Petrology. The Role of Petrology in Coal Utiliztion; Suarez-Ruiz, I.; Crelling, J.C., Eds.; Burlington, 2008; pr 193–225. https://doi.org/10.1016/B978-0-08-045051-3.X0001-2 | |
| dc.relation.referencesen | [4] Zhu, H.-b.; Zhan, W.-l.; He, Z.-j.; Yu, Y.-c; Pang, Q.-h; Zhang, J.-h. Pore Structure Evolution During the Coke Graphitization Process in a Blast Furnace. Int. J. Miner. Metall. Mater. 2020, 27, 1226–1233. https://doi.org/10.1007/s12613-019-1927-1 | |
| dc.relation.referencesen | [5] Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Diez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. Effect of Charcoal Blending with a Vitrinite Rich Coking Coal on Coke Reactivity. Fuel Process. Technol. 2017, 155, 97–105. https://doi.org/10.1016/j.fuproc.2016.04.012 | |
| dc.relation.referencesen | [6] Zhang, H.; Bai, J.; Li, W.; Cheng, F. Comprehensive Evaluation of Inherent Mineral Composition and Carbon Structure Parameters on CO2 Reactivity of Metallurgical Coke. Fuel 2019, 235, 647–657. https://doi.org/10.1016/j.fuel.2018.07.131 | |
| dc.relation.referencesen | [7] Malaquias, B.; Flores, V.I.; Bagatini, M. Effect of High Petroleum Coke Additions on Metallurgical Coke Quality and Optical Texture. REM - International Engineering Journal 2020, 73. https://doi.org/10.1590/0370-44672019730097 | |
| dc.relation.referencesen | [8] Larionov, K.; Mishakov, I.; Slyusarskiy, K.; Vedyagin, A.A. Intensification of Bituminous Coal and Lignite Oxidation by Copper-Based Activating Additives. Int J Coal Sci Technol. 2021, 8, 141–153. https://doi.org/10.1007/s40789-020-00350-z | |
| dc.relation.referencesen | [9] Shmeltser, E.O.; Lyalyuk, V.P.; Sokolova, V.P.; Miroshnichenko, D.V. The Using of Coal Blends with an Increased Content of Coals of the Middle Stage of Metamorphism for the Production of the Blast-Furnace Coke. Message 1. Rreparation of Coal Blends. Pet. Coal 2018, 60, 605–611. | |
| dc.relation.referencesen | [10] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D. Lignite Oxidative Desulphurization: Notice 3-Process Technological Aspects and Application of Products. Int J Coal Sci Technol. 2019, 6, 63–73. https://doi.org/10.1007/s40789-018-0228-z | |
| dc.relation.referencesen | [11] Shved, M.; Pyshyev, S.; Prysiazhnyi, Y. Effect of Oxidant Relative Flow Rate on Obtaining Raw Material for Pulverized Coal Production from High-Sulfuric Row Grade Coal. Chem. Chem. Technol. 2017, 11, 236–241. https://doi.org/10.23939/chcht11.02.236 | |
| dc.relation.referencesen | [12] Zelenskii, O.I. Modern Trends in the Use of Nonmetallurgical Additives in the Coke Production. J. Coal Chem. 2023, 3, 21–28. | |
| dc.relation.referencesen | [13] Nag, D.; Karmakar, Sh.; Burgula, L.; Dash, J.; Dash P.S.; Ghorai S. Use of Organic Polymers for Improvement of Coking Potential of Poorcoking Coal. Int. J. Coal Prep. Util. 2020, 40, 427–437. https://doi.org/10.1080/19392699.2019.1686365 | |
| dc.relation.referencesen | [14] Zelenskii, O.; Vasil’ev, Y.; Sytnik, A.; Desna, N.; Spirina, E.; Grigorov, A. Metallurgical Cokemaking with the Improved Physicochemical Parameters at Avdeevka Coke Plant. Chem. J. Mold. 2018, 13, 32–37. https://doi.org/10.19261/cjm.2018.516 | |
| dc.relation.referencesen | [15] Wu, Q.; Sun, C.; Zhu, Z.-Z.; Wang, Y.-D.; Zhang, C.-Y. Effects of Boron Carbide on Coking Behavior and Chemical Structure of High Volatile Coking Coal during Carbonization. Materials 2021, 14, 302. https://doi.org/10.3390/ma14020302 | |
| dc.relation.referencesen | [16] Kumar, A.; Kaur, M.; Kumar, R.; Sengupta, P.R.; Raman V.; Bhatia, G. Effect of Incorporating Nano Silicon Carbide on the Properties of Green Coke Based Monolithic Carbon. Indian J. Eng. Mater. Sci. 2010, 17, 353–357. | |
| dc.relation.referencesen | [17] Jayakumari, S.; Tangstad, M. Transformation of b-SiC from Charcoal, Coal, and Petroleum Coke to α-SiC at Higher Temperatures. Metall Mater Trans B 2020, 51, 2673–2688. https://doi.org/10.1007/s11663-020-01970-1 | |
| dc.relation.referencesen | [18] Tomas, P.; Manoj, B. Dielectric Performance of Graphene Nanostructures Prepared from Naturally Sourced Material. Mater. Today: Proc. 2021, 43, 3424–3427. https://doi.org/10.1016/j.matpr.2020.09.075 | |
| dc.relation.referencesen | [19] Miroshnichenko, D.V.; Saienko, L.; Demidov, D.; Pyshyev, S.V. Predicting the Yield of Coke and its Byproducts on the Basis of Ultimate and Petrographic Analysis. Pet. Coal 2018, 60, 402–415. | |
| dc.relation.referencesen | [20] Miroshnichenko, D.V.; Saienko, N.; Popov, Y.; Demidov, D.; Nikolaichuk, Y.V. Preparation of Oxidized Coal. Pet. Coal 2018, 60, 113–119. | |
| dc.relation.referencesen | [21] Barsky, V.; Vlasov, G.; Rudnitsky, A. Composition and Structure of Coal Organic Mass. 3. Dinamics of Coal Chemical Structure During Metamorphism. Chem. Chem. Technol. 2011, 5, 285–290. https://doi.org/10.23939/chcht05.03.285 | |
| dc.relation.referencesen | [22] Pyshyev, S.; Zbykovskyy, Y.; Shvets, I.; Miroshnichenko, D.; Kravchenko, S.; Stelmachenko, S.; Demchuk, Y.; Vytrykush N. Modeling of Coke Distribution in a Dry Quenching Zon. ACS Omega. 2023, 8, 19464–19473. https://doi:10.1021/acsomega.3c00747 | |
| dc.relation.referencesen | [23] Pyshyev, S.; Prysiazhnyi, Y.; Miroshnichenko, D.; Bilushchak, H.; Pyshyeva, R. Desulphurization and Usage of Medium-Metamorphized Black Coal. 1. Determination of the Optimal Conditions for Oxidative Desulphurization. Chem. Chem. Technol. 2014, 8, 225–234. https://doi.org/10.23939/chcht08.02.225 | |
| dc.relation.referencesen | [24] Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Díez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. On the Reduction Behavior, Structural and Mechanical Features of Iron Ore-Carbon Briquettes. Fuel Process. Technol. 2017, 155, 238–245. https://doi.org/10.1016/j.fuproc.2016.07.004 | |
| dc.relation.uri | http://dx.doi.org/10.1016/j.coal.2018.02.006 | |
| dc.relation.uri | https://doi.org/10.1016/j.fuel.2022.126821 | |
| dc.relation.uri | https://doi.org/10.1016/B978-0-08-045051-3.X0001-2 | |
| dc.relation.uri | https://doi.org/10.1007/s12613-019-1927-1 | |
| dc.relation.uri | https://doi.org/10.1016/j.fuproc.2016.04.012 | |
| dc.relation.uri | https://doi.org/10.1016/j.fuel.2018.07.131 | |
| dc.relation.uri | https://doi.org/10.1590/0370-44672019730097 | |
| dc.relation.uri | https://doi.org/10.1007/s40789-020-00350-z | |
| dc.relation.uri | https://doi.org/10.1007/s40789-018-0228-z | |
| dc.relation.uri | https://doi.org/10.23939/chcht11.02.236 | |
| dc.relation.uri | https://doi.org/10.1080/19392699.2019.1686365 | |
| dc.relation.uri | https://doi.org/10.19261/cjm.2018.516 | |
| dc.relation.uri | https://doi.org/10.3390/ma14020302 | |
| dc.relation.uri | https://doi.org/10.1007/s11663-020-01970-1 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2020.09.075 | |
| dc.relation.uri | https://doi.org/10.23939/chcht05.03.285 | |
| dc.relation.uri | https://doi:10.1021/acsomega.3c00747 | |
| dc.relation.uri | https://doi.org/10.23939/chcht08.02.225 | |
| dc.relation.uri | https://doi.org/10.1016/j.fuproc.2016.07.004 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Miroshnichenko D., Borisenko O., Koval V., Zelenskii O, Soloviov Ye., Pyshyev S., 2024 | |
| dc.subject | нафтовий кокс | |
| dc.subject | вугільні шихти | |
| dc.subject | коксування | |
| dc.subject | якість доменного коксу | |
| dc.subject | екологічна структурність | |
| dc.subject | нанопори | |
| dc.subject | модифікація | |
| dc.subject | нанодобавки | |
| dc.subject | карбід бору | |
| dc.subject | карбід кремнію | |
| dc.subject | petroleum coke | |
| dc.subject | coal blends | |
| dc.subject | coking | |
| dc.subject | blast furnace coke quality | |
| dc.subject | electrical resistivity | |
| dc.subject | nanopores | |
| dc.subject | modification | |
| dc.subject | nanoadditives | |
| dc.subject | boron carbide | |
| dc.subject | silicon carbide | |
| dc.title | The Influence of Organic and Inorganic Additives on the Specific Electrical Resistance of Coke | |
| dc.title.alternative | Вплив органічних і неорганічних добавок на питомий електричний опір коксу | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1