The Problem of Road Bitumen Technological Aging and Ways to Solve It. A Review

dc.citation.epage294
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage284
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorDonchenko, Myroslava
dc.contributor.authorGrynyshyn, Oleg
dc.contributor.authorPrysiazhnyi, Yuriy
dc.contributor.authorPyshyev, Serhiy
dc.contributor.authorKohut, Ananiy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:49Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractРозглянуто основні закономірності процесу технологічного старіння нафтових бітумів, зокрема механізми та перетворення, що при цьому відбуваються. Наведено перелік основних лабораторних методів моделювання вказаних процесів, а також вказано, як змінювалась технічна суть методик від перших розробок і до сьогодні. Вказано ряд сполук, які можуть бути використані як інгібітори технологічного старіння, зокрема антиоксиданти та пластифікатори, а також ряд «натуральних» речовин, що здатні виявляти такі властивості.
dc.description.abstractThis paper discusses the main features of technological aging of bitumen, in particular, the mechanisms and transformations that accompany this process. The main laboratory methods for modeling the above processes are considered. It is described how the technical essence of the methods has changed from the first developments to the present. A number of compounds that can be used as inhibitors of technological aging, including antioxidants and plasticizers, as well as some “natural” substances that have these properties, are presented.
dc.format.extent284-294
dc.format.pages11
dc.identifier.citationThe Problem of Road Bitumen Technological Aging and Ways to Solve It. A Review / Myroslava Donchenko, Oleg Grynyshyn, Yuriy Prysiazhnyi, Serhiy Pyshyev, Ananiy Kohut // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 284–294.
dc.identifier.citationenThe Problem of Road Bitumen Technological Aging and Ways to Solve It. A Review / Myroslava Donchenko, Oleg Grynyshyn, Yuriy Prysiazhnyi, Serhiy Pyshyev, Ananiy Kohut // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 284–294.
dc.identifier.doidoi.org/10.23939/chcht18.02.284
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111790
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Enkorr Home Page. https://enkorr.ua/uk/news/Mirovomu_sprosu_na_neft_ugrozhayut_e-lektrokari_i_zelenie_toplivnie_tehnologii-MEA/234610 (accessed 2023-12-30).
dc.relation.references[2] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54–62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
dc.relation.references[3] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438–442. https://doi.org/10.23939/chcht15.03.438
dc.relation.references[4] Donchenko, M.; Grynyshyn, O.; Demchuk Yu.; Topilnytskyy P.; Turba Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681–687. https://doi.org/10.23939/chcht17.03.681
dc.relation.references[5] Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. Understanding the Bitumen Ageing Phenomenon: A Review. Constr. Build. Mater. 2018, 192, 593–609. https://doi.org/10.1016/j.conbuildmat.2018.10.169
dc.relation.references[6] Bell, C.A. Summary Report on Aging on Asphalt-Aggregate Systems; Oregon State University, Corvallis, 1989.
dc.relation.references[7] Lu, X.; Talon, Y.; Redelius, P. Aging of Bituminous Binders – Laboratory Tests and Field Data. In Proceedings of the 4th Euroasphalt and Eurobitumen Congress; European Asphalt Pavement Association: Copenhagen, 2008.
dc.relation.references[8] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608–620. https://doi.org/10.23939/chcht15.04.608
dc.relation.references[9] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916–622. https://doi.org/10.23939/chcht17.04.916
dc.relation.references[10] Bratychak, M.; Gunka, V. Khimiya nafty ta hazu; Publishing House of Lviv Polytechnic National University: Lviv, 2020.
dc.relation.references[11] Petersen, J.C. A Thin Film Accelerated Aging Test for Evaluating Asphalt Oxidative Aging. J. Transp. Res. Board 1989, 58, 220–237.
dc.relation.references[12] Zupanick, M.; Baselice, V. Characterizing Asphalt Volatility. J. Transp. Res. Board 1997, 1586, 971223. https://doi.org/10.3141/1586-01
dc.relation.references[13] Miró, R.; Martínez, A.; Moreno-Navarro, F.; Rubio-Gámez, M. Effect of Ageing and Temperature on the Fatigue Behaviour of Bitumens. Mater. Des. 2015, 86, 129–137. http://dx.doi.org/10.1016/j.matdes.2015.07.076
dc.relation.references[14] Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; Ice Publishing: London, 2015.
dc.relation.references[15] Petersen, J. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships explores the current physicochemical understanding of the chemistry, kinetics, and mechanisms of asphalt oxidation and its influence on asphalt durability. In Transportation Research Circular E-C140, 2009.
dc.relation.references[16] Santagata, E.; Baglieri, O.; Dalmazzo, D.; Tsantilis, L. Experimental Investigation on the Combined Effects of Physical Hardening and Chemical Ageing on Low Temperature Properties of Bituminous Binders. In 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials. RILEM Bookseries, vol 11; Canestrari, F.; Partl, M., Eds.; Springer: Dordrecht, 2016; pp 631–641. https://doi.org/10.1007/978-94-017-7342-3_51
dc.relation.references[17] Mertens, P. ASTM. Comm. D – 8 Chicago III Meeting, 1960.
dc.relation.references[18] Wang, D.; Cannone Falchetto, A.; Poulikakos, L.; Hofko, B.; Porot, L. (2019). RILEM TC 252-CMB report: Rheological modeling of asphalt binder under different short and long-term aging temperatures. Materials and Structures, 2019, 52, 1–12. https://doi.org/10.1617/s11527-019-1371-8
dc.relation.references[19] Airey, G. D. State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials. Int. J. Pavement Eng. 2003, 4, 165–176. http://dx.doi.org/10.1080/1029843042000198568
dc.relation.references[20] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688–700. https://doi.org/10.23939/chcht17.03.688
dc.relation.references[21] Thomas, K.; Harnsberger, P.; Guffey, F. An Evaluation of Asphalt Ridge (UTHA) Tar Sand Bitumen as a Feedstock for the Production of Asphalt and Turbine Fuels. Fuel sci. technol. int. 1994, 12, 281–302. https://doi.org/10.1080/08843759408916179
dc.relation.references[22] Juristyarini, P.; Davison, R.; Glover, C. Development of an Asphalt Aging Procedure to Assess Long-Term Binder Performance. Pet Sci Technol 2011, 29, 2258–2268. https://doi.org/10.1080/10916461003699192
dc.relation.references[23] Pakter, M.; Bratchun, V.; Stukalov, O.; Bespalov, V.; Dolya, A. Zakonomirnosti tekhnologichnogo starinnya naftovykh dorozhnikh bitumiv ta asfaltobetonnykh sumishey. Suchasne promyslove ta cyvilne budivnyctvo 2014, 10, 225–235.
dc.relation.references[24] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and use adhesive promoters to bitumen from the phenolic fraction of coal tar. Int J Adhes Adhes 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.references[25] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
dc.relation.references[26] Cong, P.; Wang, J.; Li, K.; Chen, S. Physical and Rheological Properties of Asphalt Binders Containing Various Antiaging Agents. Fuel 2012, 97, 678–684. https://doi.org/10.1016/j.fuel.2012.02.028
dc.relation.references[27] Camargo, I. G. D. N.; Dhia, T. B.; Loulizi, A.; Hofko, B.; Mirwald, J. (2021). Anti-aging additives: Proposed evaluation process based on literature review. Road Mater. Pavement Des. 2021, 22, S134-S153. https://doi.org/10.1080/14680629.2021.1906738
dc.relation.references[28] Budziński, B.; Ratajczak, M.; Majer, S.; Wilmański, A. Influence of bitumen grade and air voids on low-temperature cracking of asphalt. Case Stud. Constr. Mater. 2023, 19, e02255. https://doi.org/10.1016/j.cscm.2023.e02255
dc.relation.references[29] Ghavibazoo, A.; Abdelrahman, M.; Ragab, M. Evaluation of Oxidization of Crumb Rubber–Modified Asphalt during Short-Term Aging. J. Transp. Res. Board 2015, 2505, 84–91. https://doi.org/10.3141/2505-11
dc.relation.references[30] Cortés, C.; Pérez-Lepe, A.; Fermoso, J.; Costa, A.; Guisado, F.; Esquena, J.; Potti, J. Envejecimiento foto-oxidativo de betunes asfálticos. Comunicación 21. In V Jornada Nacional ASEFMA; ASEFMA, 2010; pp 227–238.
dc.relation.references[31] Zeng, G.; Shen, A.; Lyu, Z.; Kang, C.; Cui, H.; Ren, G.; Yue, G. (2023). Research on anti-aging properties of POE/SBS compound-modified asphalt in high-altitude regions. Constr. Build. Mater. 2023, 376, 131060. https://doi.org/10.1016/j.conbuildmat.2023.131060
dc.relation.references[32] Yakovlieva, A.; Boichenko, S.; Shkilniuk, I.; Bakhtyn, A.; Kale, U.; Nagy, A. Assessment of influence of anti-icing fluids based on ethylene and propylene glycol on environment and airport infrastructure. Int. J. Sustain. Aviat. 2022, 8, 54–74. https://doi.org/10.1504/IJSA.2022.120613
dc.relation.references[33] Dessouky, S.; Contreras, D.; Sánchez, J.; Park, D. Anti-Oxidants’ Effect on Bitumen Rheology and Mixes’ Mechanical Performance. In Innovative Materials and Design for Sustainable Transportation Infrastructure; Zhao, S.; Liu, J., Zhang, X., Eds.; Fairbanks, Alaska, 2015; pp 8–18. https://doi.org/10.1061/9780784479278.002
dc.relation.references[34] Martin, K. Laboratory Evaluation of Antioxidants for Bitumen. Proc. Aust. Road Res. Board 1968, 4, 431.
dc.relation.references[35] Dessouky, S.; Ilias, M.; Park, D.; Kim, I. Influence of Antioxidant-Enhanced Polymers in Bitumen Rheology and Bituminous Concrete Mixtures Mechanical Performance. Adv. Mater. Sci. Eng. 2015, 2015, 214585. https://doi.org/10.1155/2015/214585
dc.relation.references[36] Duan, H.; Kuang, H.; Zhang, H.; Liu, J.; Luo, H.; Cao, J. Investigation on Microstructure and Aging Resistance of Bitumen Modified by Zinc Oxide/Expanded Vermiculite Composite Synthesized with Different Methods. Fuel 2022, 324, 124590. https://doi.org/10.1016/j.fuel.2022.124590
dc.relation.references[37] Zhuang, C.; Chen, Y. The effect of nano-SiO2 on concrete properties: a review. Nanotechnol. Rev. 2019, 8, 562–572. https://doi.org/10.1515/ntrev-2019-0050
dc.relation.references[38] Jin, J.; Tan, Y.; Liu, R.; Zheng, J.; Zhang, J. (2019). Synergy effect of attapulgite, rubber, and diatomite on organic montmorillonite-modified asphalt. J. Mater. Civ. Eng. 2019, 31, 04018388. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002601
dc.relation.references[39] Saleh, T.A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov. 2020, 20, 101067. https://doi.org/10.1016/j.eti.2020.101067
dc.relation.references[40] Zhang, H.; Luo, H.; Duan, H.; Cao, J. Influence of Zinc Oxide/Expanded Vermiculite Composite on the Rheological and Anti-Aging Properties of Bitumen. Fuel 2022, 315, 123165. https://doi.org/10.1016/j.fuel.2022.123165
dc.relation.references[41] Ghanoon, S. A.; Tanzadeh, J.; Mirsepahi, M. Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder. Constr. Build. Mater. 2020, 238, 117592. https://doi.org/10.1016/j.conbuildmat.2019.117592
dc.relation.references[42] Fini, E.H.; Hajikarimi, P.; Rahi, M.; Nejad, F.M. Physiochemical, Rheological, and Oxidative Aging Characteristics of Asphalt Binder in the Presence of Mesoporous Silica Nanoparticles. J. Mater. Civ. Eng. 2016, 28, 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001423
dc.relation.references[43] Bonica, C.; Toraldo, E.; Andena, L.; Marano, C.; Mariani, E. The Effects of Fibers on the Performance of Bituminous Mastics for Road Pavements. Compos. Part B Eng. 2016, 95, 76–81. https://doi.org/10.1016/j.compositesb.2016.03.069
dc.relation.references[44] Farias, L. G. A.; Leitinho, J. L.; Amoni, B. D. C.; Bastos, J. B.; Soares, J. B.; Soares, S. D. A.; de Sant'Ana, H. B. Effects of nanoclay and nanocomposites on bitumen rheological properties. Constr. Build. Mater. 2016, 125, 873–883. https://doi.org/10.1016/j.conbuildmat.2016.08.127
dc.relation.references[45] Kordi, Z.; Shafabakhsh, G. Evaluating Mechanical Properties of Stone Mastic Asphalt Modified with Nano Fe2O3. Constr. Build. Mater. 2017, 134, 530–539. https://doi.org/10.1016/j.conbuildmat.2016.12.202
dc.relation.references[46] Shafabakhsh, G.; Mirabdolazimi, S.M.; Sadeghnejad, M. Evaluation the Effect of Nano-TiO2 on the Rutting and Fatigue Behavior of Asphalt Mixtures. Constr. Build. Mater. 2014, 54, 566–571. https://doi.org/10.1016/j.conbuildmat.2013.12.064
dc.relation.references[47] Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. Developments of nano materials and technologies on asphalt materials–A review. Constr. Build. Mater. 2017, 143, 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158
dc.relation.references[48] Yarahmadi, A.M.; Shafabakhsh, G.; Asakereh, A. Laboratory Investigation of the Effect of Nano-CaCO3 on Rutting and Fatigue of Stone Mastic Asphalt Mixtures. Constr. Build. Mater. 2022, 317, 126127. https://doi.org/10.1016/j.conbuildmat.2021.126127
dc.relation.references[49] Xiao, N.; Zhang, Y.; Xia, H.; Lei, Y.; Luo, Y. Effects of Organic Nano Calcium Carbonate on Aging Resistance of Bio-Asphalt. Adv. Mater. Sci. Eng. 2022, 2022, 6043030. https://doi.org/10.1155/2022/6043030
dc.relation.references[50] Caputo, P.; Porto, M.; Angelico, R.; Loise, V.; Calandra, P.; Oliviero Rossi, C. Bitumen and Asphalt Concrete Modified by Nanometer-Sized Particles: Basic Concepts, the State of the Art and Future Perspectives of the Nanoscale Approach. Adv. Colloid Interface Sci. 2020, 285, 102283. https://doi.org/10.1016/j.cis.2020.102283
dc.relation.references[51] Mousavi, M.; Fini, E. Silanization Mechanism of Silica Nanoparticles in Bitumen Using 3-Aminopropyl Triethoxysilane (APTES) and 3-Glycidyloxypropyl Trimethoxysilane (GPTMS). ACS Sustain. Chem. Eng. 2020, 8, 3231–3240. https://doi.org/10.1021/acssuschemeng.9b06741
dc.relation.references[52] Li, Z.; Guo, T.; Chen, Y.; Liu, Q.; Chen, Y. The Properties of Nano-CaCO3/Nano-ZnO/SBR Composite-Modified Asphalt. Nanotechnol. Rev. 2021, 10, 1253–1265. https://doi.org/10.1515/ntrev-2021-0082
dc.relation.references[53] Kim, J.H.; Kang, M.; Kim, Y.J.; Won, J.; Park, N.; Kang, Y.S. Dye-Sensitized Nanocrystalline Solar Cells Based on Composite Polymer Electrolytes Containing Fumed Silica Nanoparticles. Chem. Commun. 2004, 14, 1662–1663, https://doi.org/10.1039/B405215C
dc.relation.references[54] Kim, K.; Kim, H.; Kim, H.J. Enhancing Thermo-Mechanical Properties of Epoxy Composites Using Fumed Silica with Different Surface Treatment. Polymers 2021, 13, 2691. https://doi.org/10.3390/polym13162691
dc.relation.references[55] Zheng, Z.; Song, Y.; Wang, X.; Zheng, Q. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses. J. Rheol. 2015, 59, 971–993. https://doi.org/10.1122/1.4922010
dc.relation.references[56] Zhou, S.; Li, S.; Yan, C. Influence of Fumed Silica Nanoparticles on the Rheological and Anti-Aging Properties of Bitumen. Constr. Build. Mater. 2023, 397, 132388. https://doi.org/10.1016/j.conbuildmat.2023.132388
dc.relation.references[57] Su, Y.; Tang, S.; Cai, M.; Nie, Y.; Hu, B.; Wu, S.; Cheng, C. Thermal Oxidative Aging Mechanism of Lignin Modified Bitumen. Constr. Build. Mater. 2023, 363, 129863. https://doi.org/10.1016/j.conbuildmat.2022.129863
dc.relation.references[58] Xu, G.; Wang, H.; Zhu, H. Rheological Properties and Anti-Aging Performance of Bitumen Binder Modified with Wood Lignin. Constr. Build. Mater. 2017, 151, 801–808. https://doi.org/10.1016/j.conbuildmat.2017.06.151
dc.relation.references[59] Xie, S.; Li, Q.; Karki, P.; Zhou, F.; Yuan, J.S. Lignin as Renewable and Superior Bitumen Binder Modifier. ACS Sustain. Chem. Eng. 2017, 5, 2817–2823. https://doi.org/10.1021/acssuschemeng.6b03064
dc.relation.references[60] Zhao, C.; Xie, S.; Pu, Y.; Zhang, R.; Huang, F.; Ragauskas, A.J.; Yuan, J.S. Synergistic Enzymatic and Microbial Lignin Conversion. Green Chem. 2016, 18, 1306–1312. https://doi.org/10.1039/C5GC01955A
dc.relation.references[61] Malinowski, S.; Woszuk, A.; Franus, W. Modern Two-Component Modifiers Inhibiting the Aging Process of Road Bitumen. Constr. Build. Mater. 2023, 409, 133838. https://doi.org/10.1016/j.conbuildmat.2023.133838
dc.relation.references[62] Lizardi-Mendoza, J.; Argüelles Monal, W.M.; Goycoolea Valencia, F.M. Chemical Characteristics and Functional Properties of Chitosan. In Chitosan in the Preservation of Agricultural Commodities; Elsevier Inc., 2016; pp 3–31. https://doi.org/10.1016/B978-0-12-802735-6.00001-X
dc.relation.references[63] Bano, I.; Arshad, M.; Yasin, T.; Ghauri, M.A.; Younus, M. Chitosan: A potential Biopolymer for Wound Management. Int. J. Biol. Macromol. 2017, 102, 380–383. https://doi.org/10.1016/j.ijbiomac.2017.04.047
dc.relation.references[64] Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an Environment Friendly Biomaterial – A Review on Recent Modifications and Applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. https://doi.org/10.1016/j.ijbiomac.2019.10.113
dc.relation.references[65] Hamed, I.; Ozogul, F.; Regenstein, J.M. Industrial Applications of Crustacean by-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. Technol. 2016, 48, 40–50. https://doi.org/10.1016/j.tifs.2015.11.007
dc.relation.references[66] Philibert, T.; Lee, B.H.; Fabien, N. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Appl. Biochem. Biotechnol. 2017, 181, 1314–1337. https://doi.org/10.1007/s12010-016-2286-2
dc.relation.references[67] Leceta, I.; Etxabide, A.; Cabezudo, S.; De La Caba, K.; Guerrero, P. Bio-Based Films Prepared with by-Products and Wastes: Environmental Assessment. J. Clean. Prod. 2014, 64, 218–227. https://doi.org/10.1016/j.jclepro.2013.07.054
dc.relation.references[68] Kumar, D.; Gihar, S.; Shrivash, M.K.; Kumar, P.; Kundu, P.P. A Review on the Synthesis of Graft Copolymers of Chitosan and their Potential Applications. Int. J. Biol. Macromol. 2020, 163, 2097–2112. https://doi.org/10.1016/j.ijbiomac.2020.09.060
dc.relation.references[69] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95–102. https://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.references[70] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
dc.relation.references[71] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
dc.relation.references[72] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
dc.relation.references[73] Gunka, V.; Hidei, V.; Sidun, I.; Demchuk, Y.; Stadnik, V.; Shapoval, P.; Sobol, Kh.; Vytrykush N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
dc.relation.references[74] Hadi Nahi, M.; Kamaruddin, I.; Napiah, M. The Utilization of Rice Husks powder as an Antioxidant in Asphalt Binder. Appl. Mech. Mater. 2014, 567, 539–544. https://doi.org/10.4028/www.scientific.net/AMM.567.539
dc.relation.references[75] Tan, X.; He, Y.; Zhang, M.; Zhang, J. Research on low temperature properties and physical hardening effect of asphalt components. Case Stud. Constr. Mater. 2023, 19, e02484. https://doi.org/10.1016/j.cscm.2023.e02484
dc.relation.references[76] Rossi, C.; Caputo, P.; Ashimova, S.; Fabozzi, A.; D’Errico, G.; Angelico, R. Effects of Natural Antioxidant Agents on the Bitumen Aging Process: An EPR and Rheological Investigation. Appl. Sci. 2018, 8, 1405. https://doi.org/10.3390/app8081405
dc.relation.references[77] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211–220. https://doi.org/10.23939/chcht17.01.211
dc.relation.references[78] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701–710. https://doi.org/10.23939/chcht17.03.701
dc.relation.references[79] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of humic acids from low-grade metamorphism coal for the modification of biofilms based on polyvinyl alcohol. Pet. Coal 2021, 63, 953–962.
dc.relation.references[80] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
dc.relation.references[81] Prysiazhnyi, Y.; Grynyshyn, O.; Pyshyev, S.; Korchak, B.; Bratychak, M. Resins with Oxygen-Containing Functional Groups Obtained from Products of Fossil Fuels Processing: A Review of Achievements. Chem. Chem. Technol. 2023, 17, 574–591. https://doi.org/10.23939/chcht17.03.574
dc.relation.references[82] Pyshyev, S.; Zbykovskyy, Y.; Shvets, I.; Demchuk, Y.; Vytrykush, N. Modeling of Coke Distribution in a Dry Quenching Zone. ACS Omega 2023, 8, 19464–19473. https://doi.org/10.1021/acsomega.3c00747
dc.relation.references[83] Lebedev, V.; Miroshnichenko, D.; Vytrykush, N.; Pyshyev, S.; Masikevych, A.; Filenko, O.; Tsereniuk, O.; Lysenko, L. Novel Biodegradable Polymers Modified by Humic Acids. Mater. Chem. Phys. 2024, 313, 128778. https://doi.org/10.1016/j.matchemphys.2023.128778
dc.relation.references[84] Zhang, C.; Dong, H.; Wang, T.; Li, Y.; Xu, S.; Zheng, Y.; Que, Y.; Chen, Y. Effect of Different Organic Layered Double Hydroxides on the Anti-Aging Property of Bitumen. Constr. Build. Mater. 2023, 367, 130316. https://doi.org/10.1016/j.conbuildmat.2023.130316
dc.relation.references[85] Celauro, C.; Teresi, R.; Dintcheva, N.T. Evaluation of Anti-Aging Effect in Biochar-Modified Bitumen. Sustainability 2023, 15, 10583. https://doi.org/10.3390/su151310583
dc.relation.references[86] Pyrig, Ya.; Galkin, A.; Oksak, S. Porivnyannya vlastyvostei bitumnyh vyazhuchyh pislya starinnya riznymy metodamy. Budivnytstvo ta tsyvilʹna inzheneriya 2022, 26, 92–107. https://doi.org/10.36100/dorogimosti2022.26.092
dc.relation.references[87] EN 12607-2:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. Part 2. TFOT method, 2018.
dc.relation.references[88] Hveem, F.N.; Zube, E.; Skog, J. Proposed new tests and specifications for paving grade asphalts. Association of Asphalt Paving Technologists Proceedings 1963, 32, 247–327.
dc.relation.references[89] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air Part 1. RTFOT method, 2014.
dc.relation.references[90] Hamad, R. Tekhnycheskye trebovanyya i metody ispytanyya bytumnykh vyazhushchykh po prohramme SHRP. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu 2017, 79, 66–72.
dc.relation.references[91] Bahia, H.; Hislop, W.; Zhai, H.; Rangel, A. Classification of Asphalt Binders into Simple and Complex Binders. Association of Asphalt Paving Technologists Proceedings 1998, 67, 1–41.
dc.relation.references[92] Y Hu, Y.; Si, W.; Kang, X.; Xue, Y.; Wang, H.; Parry, T.; Airey, G. D. State of the Art: Multiscale Evaluation of Bitumen Ageing Behaviour. Fuel 2022, 326, 125045. https://doi.org/10.1016/j.fuel.2022.125045
dc.relation.referencesen[1] Enkorr Home Page. https://enkorr.ua/uk/news/Mirovomu_sprosu_na_neft_ugrozhayut_e-lektrokari_i_zelenie_toplivnie_tehnologii-MEA/234610 (accessed 2023-12-30).
dc.relation.referencesen[2] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54–62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
dc.relation.referencesen[3] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438–442. https://doi.org/10.23939/chcht15.03.438
dc.relation.referencesen[4] Donchenko, M.; Grynyshyn, O.; Demchuk Yu.; Topilnytskyy P.; Turba Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681–687. https://doi.org/10.23939/chcht17.03.681
dc.relation.referencesen[5] Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. Understanding the Bitumen Ageing Phenomenon: A Review. Constr. Build. Mater. 2018, 192, 593–609. https://doi.org/10.1016/j.conbuildmat.2018.10.169
dc.relation.referencesen[6] Bell, C.A. Summary Report on Aging on Asphalt-Aggregate Systems; Oregon State University, Corvallis, 1989.
dc.relation.referencesen[7] Lu, X.; Talon, Y.; Redelius, P. Aging of Bituminous Binders – Laboratory Tests and Field Data. In Proceedings of the 4th Euroasphalt and Eurobitumen Congress; European Asphalt Pavement Association: Copenhagen, 2008.
dc.relation.referencesen[8] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608–620. https://doi.org/10.23939/chcht15.04.608
dc.relation.referencesen[9] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916–622. https://doi.org/10.23939/chcht17.04.916
dc.relation.referencesen[10] Bratychak, M.; Gunka, V. Khimiya nafty ta hazu; Publishing House of Lviv Polytechnic National University: Lviv, 2020.
dc.relation.referencesen[11] Petersen, J.C. A Thin Film Accelerated Aging Test for Evaluating Asphalt Oxidative Aging. J. Transp. Res. Board 1989, 58, 220–237.
dc.relation.referencesen[12] Zupanick, M.; Baselice, V. Characterizing Asphalt Volatility. J. Transp. Res. Board 1997, 1586, 971223. https://doi.org/10.3141/1586-01
dc.relation.referencesen[13] Miró, R.; Martínez, A.; Moreno-Navarro, F.; Rubio-Gámez, M. Effect of Ageing and Temperature on the Fatigue Behaviour of Bitumens. Mater. Des. 2015, 86, 129–137. http://dx.doi.org/10.1016/j.matdes.2015.07.076
dc.relation.referencesen[14] Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; Ice Publishing: London, 2015.
dc.relation.referencesen[15] Petersen, J. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships explores the current physicochemical understanding of the chemistry, kinetics, and mechanisms of asphalt oxidation and its influence on asphalt durability. In Transportation Research Circular E-P.140, 2009.
dc.relation.referencesen[16] Santagata, E.; Baglieri, O.; Dalmazzo, D.; Tsantilis, L. Experimental Investigation on the Combined Effects of Physical Hardening and Chemical Ageing on Low Temperature Properties of Bituminous Binders. In 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials. RILEM Bookseries, vol 11; Canestrari, F.; Partl, M., Eds.; Springer: Dordrecht, 2016; pp 631–641. https://doi.org/10.1007/978-94-017-7342-3_51
dc.relation.referencesen[17] Mertens, P. ASTM. Comm. D – 8 Chicago III Meeting, 1960.
dc.relation.referencesen[18] Wang, D.; Cannone Falchetto, A.; Poulikakos, L.; Hofko, B.; Porot, L. (2019). RILEM TC 252-CMB report: Rheological modeling of asphalt binder under different short and long-term aging temperatures. Materials and Structures, 2019, 52, 1–12. https://doi.org/10.1617/s11527-019-1371-8
dc.relation.referencesen[19] Airey, G. D. State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials. Int. J. Pavement Eng. 2003, 4, 165–176. http://dx.doi.org/10.1080/1029843042000198568
dc.relation.referencesen[20] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688–700. https://doi.org/10.23939/chcht17.03.688
dc.relation.referencesen[21] Thomas, K.; Harnsberger, P.; Guffey, F. An Evaluation of Asphalt Ridge (UTHA) Tar Sand Bitumen as a Feedstock for the Production of Asphalt and Turbine Fuels. Fuel sci. technol. int. 1994, 12, 281–302. https://doi.org/10.1080/08843759408916179
dc.relation.referencesen[22] Juristyarini, P.; Davison, R.; Glover, C. Development of an Asphalt Aging Procedure to Assess Long-Term Binder Performance. Pet Sci Technol 2011, 29, 2258–2268. https://doi.org/10.1080/10916461003699192
dc.relation.referencesen[23] Pakter, M.; Bratchun, V.; Stukalov, O.; Bespalov, V.; Dolya, A. Zakonomirnosti tekhnologichnogo starinnya naftovykh dorozhnikh bitumiv ta asfaltobetonnykh sumishey. Suchasne promyslove ta cyvilne budivnyctvo 2014, 10, 225–235.
dc.relation.referencesen[24] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and use adhesive promoters to bitumen from the phenolic fraction of coal tar. Int J Adhes Adhes 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.referencesen[25] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
dc.relation.referencesen[26] Cong, P.; Wang, J.; Li, K.; Chen, S. Physical and Rheological Properties of Asphalt Binders Containing Various Antiaging Agents. Fuel 2012, 97, 678–684. https://doi.org/10.1016/j.fuel.2012.02.028
dc.relation.referencesen[27] Camargo, I. G. D. N.; Dhia, T. B.; Loulizi, A.; Hofko, B.; Mirwald, J. (2021). Anti-aging additives: Proposed evaluation process based on literature review. Road Mater. Pavement Des. 2021, 22, S134-S153. https://doi.org/10.1080/14680629.2021.1906738
dc.relation.referencesen[28] Budziński, B.; Ratajczak, M.; Majer, S.; Wilmański, A. Influence of bitumen grade and air voids on low-temperature cracking of asphalt. Case Stud. Constr. Mater. 2023, 19, e02255. https://doi.org/10.1016/j.cscm.2023.e02255
dc.relation.referencesen[29] Ghavibazoo, A.; Abdelrahman, M.; Ragab, M. Evaluation of Oxidization of Crumb Rubber–Modified Asphalt during Short-Term Aging. J. Transp. Res. Board 2015, 2505, 84–91. https://doi.org/10.3141/2505-11
dc.relation.referencesen[30] Cortés, C.; Pérez-Lepe, A.; Fermoso, J.; Costa, A.; Guisado, F.; Esquena, J.; Potti, J. Envejecimiento foto-oxidativo de betunes asfálticos. Comunicación 21. In V Jornada Nacional ASEFMA; ASEFMA, 2010; pp 227–238.
dc.relation.referencesen[31] Zeng, G.; Shen, A.; Lyu, Z.; Kang, C.; Cui, H.; Ren, G.; Yue, G. (2023). Research on anti-aging properties of POE/SBS compound-modified asphalt in high-altitude regions. Constr. Build. Mater. 2023, 376, 131060. https://doi.org/10.1016/j.conbuildmat.2023.131060
dc.relation.referencesen[32] Yakovlieva, A.; Boichenko, S.; Shkilniuk, I.; Bakhtyn, A.; Kale, U.; Nagy, A. Assessment of influence of anti-icing fluids based on ethylene and propylene glycol on environment and airport infrastructure. Int. J. Sustain. Aviat. 2022, 8, 54–74. https://doi.org/10.1504/IJSA.2022.120613
dc.relation.referencesen[33] Dessouky, S.; Contreras, D.; Sánchez, J.; Park, D. Anti-Oxidants’ Effect on Bitumen Rheology and Mixes’ Mechanical Performance. In Innovative Materials and Design for Sustainable Transportation Infrastructure; Zhao, S.; Liu, J., Zhang, X., Eds.; Fairbanks, Alaska, 2015; pp 8–18. https://doi.org/10.1061/9780784479278.002
dc.relation.referencesen[34] Martin, K. Laboratory Evaluation of Antioxidants for Bitumen. Proc. Aust. Road Res. Board 1968, 4, 431.
dc.relation.referencesen[35] Dessouky, S.; Ilias, M.; Park, D.; Kim, I. Influence of Antioxidant-Enhanced Polymers in Bitumen Rheology and Bituminous Concrete Mixtures Mechanical Performance. Adv. Mater. Sci. Eng. 2015, 2015, 214585. https://doi.org/10.1155/2015/214585
dc.relation.referencesen[36] Duan, H.; Kuang, H.; Zhang, H.; Liu, J.; Luo, H.; Cao, J. Investigation on Microstructure and Aging Resistance of Bitumen Modified by Zinc Oxide/Expanded Vermiculite Composite Synthesized with Different Methods. Fuel 2022, 324, 124590. https://doi.org/10.1016/j.fuel.2022.124590
dc.relation.referencesen[37] Zhuang, C.; Chen, Y. The effect of nano-SiO2 on concrete properties: a review. Nanotechnol. Rev. 2019, 8, 562–572. https://doi.org/10.1515/ntrev-2019-0050
dc.relation.referencesen[38] Jin, J.; Tan, Y.; Liu, R.; Zheng, J.; Zhang, J. (2019). Synergy effect of attapulgite, rubber, and diatomite on organic montmorillonite-modified asphalt. J. Mater. Civ. Eng. 2019, 31, 04018388. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002601
dc.relation.referencesen[39] Saleh, T.A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov. 2020, 20, 101067. https://doi.org/10.1016/j.eti.2020.101067
dc.relation.referencesen[40] Zhang, H.; Luo, H.; Duan, H.; Cao, J. Influence of Zinc Oxide/Expanded Vermiculite Composite on the Rheological and Anti-Aging Properties of Bitumen. Fuel 2022, 315, 123165. https://doi.org/10.1016/j.fuel.2022.123165
dc.relation.referencesen[41] Ghanoon, S. A.; Tanzadeh, J.; Mirsepahi, M. Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder. Constr. Build. Mater. 2020, 238, 117592. https://doi.org/10.1016/j.conbuildmat.2019.117592
dc.relation.referencesen[42] Fini, E.H.; Hajikarimi, P.; Rahi, M.; Nejad, F.M. Physiochemical, Rheological, and Oxidative Aging Characteristics of Asphalt Binder in the Presence of Mesoporous Silica Nanoparticles. J. Mater. Civ. Eng. 2016, 28, 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001423
dc.relation.referencesen[43] Bonica, C.; Toraldo, E.; Andena, L.; Marano, C.; Mariani, E. The Effects of Fibers on the Performance of Bituminous Mastics for Road Pavements. Compos. Part B Eng. 2016, 95, 76–81. https://doi.org/10.1016/j.compositesb.2016.03.069
dc.relation.referencesen[44] Farias, L. G. A.; Leitinho, J. L.; Amoni, B. D. C.; Bastos, J. B.; Soares, J. B.; Soares, S. D. A.; de Sant'Ana, H. B. Effects of nanoclay and nanocomposites on bitumen rheological properties. Constr. Build. Mater. 2016, 125, 873–883. https://doi.org/10.1016/j.conbuildmat.2016.08.127
dc.relation.referencesen[45] Kordi, Z.; Shafabakhsh, G. Evaluating Mechanical Properties of Stone Mastic Asphalt Modified with Nano Fe2O3. Constr. Build. Mater. 2017, 134, 530–539. https://doi.org/10.1016/j.conbuildmat.2016.12.202
dc.relation.referencesen[46] Shafabakhsh, G.; Mirabdolazimi, S.M.; Sadeghnejad, M. Evaluation the Effect of Nano-TiO2 on the Rutting and Fatigue Behavior of Asphalt Mixtures. Constr. Build. Mater. 2014, 54, 566–571. https://doi.org/10.1016/j.conbuildmat.2013.12.064
dc.relation.referencesen[47] Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. Developments of nano materials and technologies on asphalt materials–A review. Constr. Build. Mater. 2017, 143, 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158
dc.relation.referencesen[48] Yarahmadi, A.M.; Shafabakhsh, G.; Asakereh, A. Laboratory Investigation of the Effect of Nano-CaCO3 on Rutting and Fatigue of Stone Mastic Asphalt Mixtures. Constr. Build. Mater. 2022, 317, 126127. https://doi.org/10.1016/j.conbuildmat.2021.126127
dc.relation.referencesen[49] Xiao, N.; Zhang, Y.; Xia, H.; Lei, Y.; Luo, Y. Effects of Organic Nano Calcium Carbonate on Aging Resistance of Bio-Asphalt. Adv. Mater. Sci. Eng. 2022, 2022, 6043030. https://doi.org/10.1155/2022/6043030
dc.relation.referencesen[50] Caputo, P.; Porto, M.; Angelico, R.; Loise, V.; Calandra, P.; Oliviero Rossi, C. Bitumen and Asphalt Concrete Modified by Nanometer-Sized Particles: Basic Concepts, the State of the Art and Future Perspectives of the Nanoscale Approach. Adv. Colloid Interface Sci. 2020, 285, 102283. https://doi.org/10.1016/j.cis.2020.102283
dc.relation.referencesen[51] Mousavi, M.; Fini, E. Silanization Mechanism of Silica Nanoparticles in Bitumen Using 3-Aminopropyl Triethoxysilane (APTES) and 3-Glycidyloxypropyl Trimethoxysilane (GPTMS). ACS Sustain. Chem. Eng. 2020, 8, 3231–3240. https://doi.org/10.1021/acssuschemeng.9b06741
dc.relation.referencesen[52] Li, Z.; Guo, T.; Chen, Y.; Liu, Q.; Chen, Y. The Properties of Nano-CaCO3/Nano-ZnO/SBR Composite-Modified Asphalt. Nanotechnol. Rev. 2021, 10, 1253–1265. https://doi.org/10.1515/ntrev-2021-0082
dc.relation.referencesen[53] Kim, J.H.; Kang, M.; Kim, Y.J.; Won, J.; Park, N.; Kang, Y.S. Dye-Sensitized Nanocrystalline Solar Cells Based on Composite Polymer Electrolytes Containing Fumed Silica Nanoparticles. Chem. Commun. 2004, 14, 1662–1663, https://doi.org/10.1039/B405215C
dc.relation.referencesen[54] Kim, K.; Kim, H.; Kim, H.J. Enhancing Thermo-Mechanical Properties of Epoxy Composites Using Fumed Silica with Different Surface Treatment. Polymers 2021, 13, 2691. https://doi.org/10.3390/polym13162691
dc.relation.referencesen[55] Zheng, Z.; Song, Y.; Wang, X.; Zheng, Q. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses. J. Rheol. 2015, 59, 971–993. https://doi.org/10.1122/1.4922010
dc.relation.referencesen[56] Zhou, S.; Li, S.; Yan, C. Influence of Fumed Silica Nanoparticles on the Rheological and Anti-Aging Properties of Bitumen. Constr. Build. Mater. 2023, 397, 132388. https://doi.org/10.1016/j.conbuildmat.2023.132388
dc.relation.referencesen[57] Su, Y.; Tang, S.; Cai, M.; Nie, Y.; Hu, B.; Wu, S.; Cheng, C. Thermal Oxidative Aging Mechanism of Lignin Modified Bitumen. Constr. Build. Mater. 2023, 363, 129863. https://doi.org/10.1016/j.conbuildmat.2022.129863
dc.relation.referencesen[58] Xu, G.; Wang, H.; Zhu, H. Rheological Properties and Anti-Aging Performance of Bitumen Binder Modified with Wood Lignin. Constr. Build. Mater. 2017, 151, 801–808. https://doi.org/10.1016/j.conbuildmat.2017.06.151
dc.relation.referencesen[59] Xie, S.; Li, Q.; Karki, P.; Zhou, F.; Yuan, J.S. Lignin as Renewable and Superior Bitumen Binder Modifier. ACS Sustain. Chem. Eng. 2017, 5, 2817–2823. https://doi.org/10.1021/acssuschemeng.6b03064
dc.relation.referencesen[60] Zhao, C.; Xie, S.; Pu, Y.; Zhang, R.; Huang, F.; Ragauskas, A.J.; Yuan, J.S. Synergistic Enzymatic and Microbial Lignin Conversion. Green Chem. 2016, 18, 1306–1312. https://doi.org/10.1039/P.5GC01955A
dc.relation.referencesen[61] Malinowski, S.; Woszuk, A.; Franus, W. Modern Two-Component Modifiers Inhibiting the Aging Process of Road Bitumen. Constr. Build. Mater. 2023, 409, 133838. https://doi.org/10.1016/j.conbuildmat.2023.133838
dc.relation.referencesen[62] Lizardi-Mendoza, J.; Argüelles Monal, W.M.; Goycoolea Valencia, F.M. Chemical Characteristics and Functional Properties of Chitosan. In Chitosan in the Preservation of Agricultural Commodities; Elsevier Inc., 2016; pp 3–31. https://doi.org/10.1016/B978-0-12-802735-6.00001-X
dc.relation.referencesen[63] Bano, I.; Arshad, M.; Yasin, T.; Ghauri, M.A.; Younus, M. Chitosan: A potential Biopolymer for Wound Management. Int. J. Biol. Macromol. 2017, 102, 380–383. https://doi.org/10.1016/j.ijbiomac.2017.04.047
dc.relation.referencesen[64] Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an Environment Friendly Biomaterial – A Review on Recent Modifications and Applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. https://doi.org/10.1016/j.ijbiomac.2019.10.113
dc.relation.referencesen[65] Hamed, I.; Ozogul, F.; Regenstein, J.M. Industrial Applications of Crustacean by-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. Technol. 2016, 48, 40–50. https://doi.org/10.1016/j.tifs.2015.11.007
dc.relation.referencesen[66] Philibert, T.; Lee, B.H.; Fabien, N. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Appl. Biochem. Biotechnol. 2017, 181, 1314–1337. https://doi.org/10.1007/s12010-016-2286-2
dc.relation.referencesen[67] Leceta, I.; Etxabide, A.; Cabezudo, S.; De La Caba, K.; Guerrero, P. Bio-Based Films Prepared with by-Products and Wastes: Environmental Assessment. J. Clean. Prod. 2014, 64, 218–227. https://doi.org/10.1016/j.jclepro.2013.07.054
dc.relation.referencesen[68] Kumar, D.; Gihar, S.; Shrivash, M.K.; Kumar, P.; Kundu, P.P. A Review on the Synthesis of Graft Copolymers of Chitosan and their Potential Applications. Int. J. Biol. Macromol. 2020, 163, 2097–2112. https://doi.org/10.1016/j.ijbiomac.2020.09.060
dc.relation.referencesen[69] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95–102. https://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.referencesen[70] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
dc.relation.referencesen[71] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
dc.relation.referencesen[72] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
dc.relation.referencesen[73] Gunka, V.; Hidei, V.; Sidun, I.; Demchuk, Y.; Stadnik, V.; Shapoval, P.; Sobol, Kh.; Vytrykush N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
dc.relation.referencesen[74] Hadi Nahi, M.; Kamaruddin, I.; Napiah, M. The Utilization of Rice Husks powder as an Antioxidant in Asphalt Binder. Appl. Mech. Mater. 2014, 567, 539–544. https://doi.org/10.4028/www.scientific.net/AMM.567.539
dc.relation.referencesen[75] Tan, X.; He, Y.; Zhang, M.; Zhang, J. Research on low temperature properties and physical hardening effect of asphalt components. Case Stud. Constr. Mater. 2023, 19, e02484. https://doi.org/10.1016/j.cscm.2023.e02484
dc.relation.referencesen[76] Rossi, C.; Caputo, P.; Ashimova, S.; Fabozzi, A.; D’Errico, G.; Angelico, R. Effects of Natural Antioxidant Agents on the Bitumen Aging Process: An EPR and Rheological Investigation. Appl. Sci. 2018, 8, 1405. https://doi.org/10.3390/app8081405
dc.relation.referencesen[77] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211–220. https://doi.org/10.23939/chcht17.01.211
dc.relation.referencesen[78] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701–710. https://doi.org/10.23939/chcht17.03.701
dc.relation.referencesen[79] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of humic acids from low-grade metamorphism coal for the modification of biofilms based on polyvinyl alcohol. Pet. Coal 2021, 63, 953–962.
dc.relation.referencesen[80] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
dc.relation.referencesen[81] Prysiazhnyi, Y.; Grynyshyn, O.; Pyshyev, S.; Korchak, B.; Bratychak, M. Resins with Oxygen-Containing Functional Groups Obtained from Products of Fossil Fuels Processing: A Review of Achievements. Chem. Chem. Technol. 2023, 17, 574–591. https://doi.org/10.23939/chcht17.03.574
dc.relation.referencesen[82] Pyshyev, S.; Zbykovskyy, Y.; Shvets, I.; Demchuk, Y.; Vytrykush, N. Modeling of Coke Distribution in a Dry Quenching Zone. ACS Omega 2023, 8, 19464–19473. https://doi.org/10.1021/acsomega.3c00747
dc.relation.referencesen[83] Lebedev, V.; Miroshnichenko, D.; Vytrykush, N.; Pyshyev, S.; Masikevych, A.; Filenko, O.; Tsereniuk, O.; Lysenko, L. Novel Biodegradable Polymers Modified by Humic Acids. Mater. Chem. Phys. 2024, 313, 128778. https://doi.org/10.1016/j.matchemphys.2023.128778
dc.relation.referencesen[84] Zhang, C.; Dong, H.; Wang, T.; Li, Y.; Xu, S.; Zheng, Y.; Que, Y.; Chen, Y. Effect of Different Organic Layered Double Hydroxides on the Anti-Aging Property of Bitumen. Constr. Build. Mater. 2023, 367, 130316. https://doi.org/10.1016/j.conbuildmat.2023.130316
dc.relation.referencesen[85] Celauro, C.; Teresi, R.; Dintcheva, N.T. Evaluation of Anti-Aging Effect in Biochar-Modified Bitumen. Sustainability 2023, 15, 10583. https://doi.org/10.3390/su151310583
dc.relation.referencesen[86] Pyrig, Ya.; Galkin, A.; Oksak, S. Porivnyannya vlastyvostei bitumnyh vyazhuchyh pislya starinnya riznymy metodamy. Budivnytstvo ta tsyvilʹna inzheneriya 2022, 26, 92–107. https://doi.org/10.36100/dorogimosti2022.26.092
dc.relation.referencesen[87] EN 12607-2:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. Part 2. TFOT method, 2018.
dc.relation.referencesen[88] Hveem, F.N.; Zube, E.; Skog, J. Proposed new tests and specifications for paving grade asphalts. Association of Asphalt Paving Technologists Proceedings 1963, 32, 247–327.
dc.relation.referencesen[89] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air Part 1. RTFOT method, 2014.
dc.relation.referencesen[90] Hamad, R. Tekhnycheskye trebovanyya i metody ispytanyya bytumnykh vyazhushchykh po prohramme SHRP. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu 2017, 79, 66–72.
dc.relation.referencesen[91] Bahia, H.; Hislop, W.; Zhai, H.; Rangel, A. Classification of Asphalt Binders into Simple and Complex Binders. Association of Asphalt Paving Technologists Proceedings 1998, 67, 1–41.
dc.relation.referencesen[92] Y Hu, Y.; Si, W.; Kang, X.; Xue, Y.; Wang, H.; Parry, T.; Airey, G. D. State of the Art: Multiscale Evaluation of Bitumen Ageing Behaviour. Fuel 2022, 326, 125045. https://doi.org/10.1016/j.fuel.2022.125045
dc.relation.urihttps://enkorr.ua/uk/news/Mirovomu_sprosu_na_neft_ugrozhayut_e-lektrokari_i_zelenie_toplivnie_tehnologii-MEA/234610
dc.relation.urihttps://doi.org/10.32434/0321-4095-2023-148-3-54-62
dc.relation.urihttps://doi.org/10.23939/chcht15.03.438
dc.relation.urihttps://doi.org/10.23939/chcht17.03.681
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.10.169
dc.relation.urihttps://doi.org/10.23939/chcht15.04.608
dc.relation.urihttps://doi.org/10.23939/chcht17.04.916
dc.relation.urihttps://doi.org/10.3141/1586-01
dc.relation.urihttp://dx.doi.org/10.1016/j.matdes.2015.07.076
dc.relation.urihttps://doi.org/10.1007/978-94-017-7342-3_51
dc.relation.urihttps://doi.org/10.1617/s11527-019-1371-8
dc.relation.urihttp://dx.doi.org/10.1080/1029843042000198568
dc.relation.urihttps://doi.org/10.23939/chcht17.03.688
dc.relation.urihttps://doi.org/10.1080/08843759408916179
dc.relation.urihttps://doi.org/10.1080/10916461003699192
dc.relation.urihttps://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.urihttps://doi.org/10.3390/coatings12121934
dc.relation.urihttps://doi.org/10.1016/j.fuel.2012.02.028
dc.relation.urihttps://doi.org/10.1080/14680629.2021.1906738
dc.relation.urihttps://doi.org/10.1016/j.cscm.2023.e02255
dc.relation.urihttps://doi.org/10.3141/2505-11
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2023.131060
dc.relation.urihttps://doi.org/10.1504/IJSA.2022.120613
dc.relation.urihttps://doi.org/10.1061/9780784479278.002
dc.relation.urihttps://doi.org/10.1155/2015/214585
dc.relation.urihttps://doi.org/10.1016/j.fuel.2022.124590
dc.relation.urihttps://doi.org/10.1515/ntrev-2019-0050
dc.relation.urihttps://doi.org/10.1061/(ASCE)MT.1943-5533.0002601
dc.relation.urihttps://doi.org/10.1016/j.eti.2020.101067
dc.relation.urihttps://doi.org/10.1016/j.fuel.2022.123165
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.117592
dc.relation.urihttps://doi.org/10.1061/(ASCE)MT.1943-5533.0001423
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2016.03.069
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.08.127
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.12.202
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2013.12.064
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2017.03.158
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2021.126127
dc.relation.urihttps://doi.org/10.1155/2022/6043030
dc.relation.urihttps://doi.org/10.1016/j.cis.2020.102283
dc.relation.urihttps://doi.org/10.1021/acssuschemeng.9b06741
dc.relation.urihttps://doi.org/10.1515/ntrev-2021-0082
dc.relation.urihttps://doi.org/10.1039/B405215C
dc.relation.urihttps://doi.org/10.3390/polym13162691
dc.relation.urihttps://doi.org/10.1122/1.4922010
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2023.132388
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2022.129863
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2017.06.151
dc.relation.urihttps://doi.org/10.1021/acssuschemeng.6b03064
dc.relation.urihttps://doi.org/10.1039/C5GC01955A
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2023.133838
dc.relation.urihttps://doi.org/10.1016/B978-0-12-802735-6.00001-X
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2017.04.047
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2019.10.113
dc.relation.urihttps://doi.org/10.1016/j.tifs.2015.11.007
dc.relation.urihttps://doi.org/10.1007/s12010-016-2286-2
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2013.07.054
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2020.09.060
dc.relation.urihttps://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.urihttps://doi.org/10.23939/chcht16.01.142
dc.relation.urihttps://doi.org/10.3390/ma15051774
dc.relation.urihttps://doi.org/10.3390/ma15165693
dc.relation.urihttps://doi.org/10.3390/coatings13071183
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMM.567.539
dc.relation.urihttps://doi.org/10.1016/j.cscm.2023.e02484
dc.relation.urihttps://doi.org/10.3390/app8081405
dc.relation.urihttps://doi.org/10.23939/chcht17.01.211
dc.relation.urihttps://doi.org/10.23939/chcht17.03.701
dc.relation.urihttps://doi.org/10.23939/chcht17.02.357
dc.relation.urihttps://doi.org/10.23939/chcht17.03.574
dc.relation.urihttps://doi.org/10.1021/acsomega.3c00747
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2023.128778
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2023.130316
dc.relation.urihttps://doi.org/10.3390/su151310583
dc.relation.urihttps://doi.org/10.36100/dorogimosti2022.26.092
dc.relation.urihttps://doi.org/10.1016/j.fuel.2022.125045
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Donchenko M., Grynyshyn O., Prysiazhnyi Yu., Pyshyev S., Kohut A., 2024
dc.subjectмодифікація бітуму
dc.subjectтехнологічне старіння
dc.subjectкороткочасне старіння
dc.subjectгумат калію
dc.subjectbitumen modification
dc.subjecttechnological aging
dc.subjectshort-term aging
dc.subjectaging resistance
dc.titleThe Problem of Road Bitumen Technological Aging and Ways to Solve It. A Review
dc.title.alternativeПроблема технологічного старіння дорожніх нафтових бітумів та шляхи її вирішення. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Donchenko_M-The_Problem_of_Road_Bitumen_284-294.pdf
Size:
616.37 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Donchenko_M-The_Problem_of_Road_Bitumen_284-294__COVER.png
Size:
528.09 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: