Спрощена модель нейронної мережі дискретного часу для паралельного сортування

Date

2020-03-01

Journal Title

Journal ISSN

Volume Title

Publisher

Видавництво Львівської політехніки
Lviv Politechnic Publishing House

Abstract

Запропоновано модель паралельної сортувальної нейронної мережі дискретного часу. Модель описується системою різницевих рівнянь і ступінчастими функціями. Модель базується на спрощеній нейронній схемі дискретного часу, призначеній для ідентифікації максимальних/minimal за значеннями вхідних даних, яка описується різницевим рівнянням і ступінчастими функціями. Визначається обмеження згори на кількість ітерацій, необхідних для досягнення пошуковим процесом збіжності до встановленого стану. Модель не потребує знання діапазону зміни вхідних даних. Для використання моделі має бути відомою мінімальна різниця між значеннями вхідних даних. Мережа придатна для обробки невідомих вхідних даних зі скінченними значеннями, розміщеними у довільному невідомому скінченному діапазоні. Мережа характеризується незначними обчислювальною складністю і складністю програмної реалізації, довільною скінченною роздільною здатністю вхідних даних, швидкодією. Наведено результати комп’ютерного моделювання, які ілюструють ефективність мережі.
A model of parallel sorting neural network of discrete-time has been proposed. The model is described by system of difference equations and by step functions. The model is based on simplified neural circuit of discrete-time that identifies maximal/minimal values of input data and is described by difference equation and by step functions. A bound from above on a number of iterations required for reaching convergence of search process to steady state is determined. The model does not need a knowledge of change range of input data. In order to use the model a minimal difference between values of input data should be known. The network can process unknown input data with finite values, located in arbitrary unknown finite range. The network is characterized by moderate computational complexity and complexity of software implementation, any finite resolution of input data, speed,. Computing simulation results illustrating efficiency of the network are given.

Description

Keywords

паралельне сортування, нейронна мережа, різницеве рівняння, обчислювальна складність, апаратна реалізація, Parallel sorting, neural network, difference equation, computational complexity, hardware implementation

Citation

Тимощук П. В. Спрощена модель нейронної мережі дискретного часу для паралельного сортування / П. В. Тимощук // Комп’ютерні системи та мережі. — Львів : Видавництво Львівської політехніки, 2020. — Том 2. — № 1. — С. 94–101.

Endorsement

Review

Supplemented By

Referenced By