Evolution of two-dimensional cellular automata. New forms of presentation
dc.citation.epage | 90 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Український журнал інформаційних технологій | |
dc.citation.spage | 85 | |
dc.citation.volume | 3 | |
dc.contributor.affiliation | Державний університет інфраструктури та технологій | |
dc.contributor.affiliation | State University of Infrastructure and Technology | |
dc.contributor.author | Білан, С. М. | |
dc.contributor.author | Bilan, S. M. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-03-23T10:27:01Z | |
dc.date.available | 2023-03-23T10:27:01Z | |
dc.date.created | 2021-10-10 | |
dc.date.issued | 2021-10-10 | |
dc.description.abstract | Розглянуто клітинні автомати та форми відображення їх еволюції. Відомі й широко використовуються форми еволюції елементарних клітинних автоматів, що дало змогу фахівцям моделювати різні динамічні процеси та поведінку систем різного спрямування. В контексті легкої побудови форми еволюції елементарних клітинних автоматів труднощі виникають у представленні форми еволюції двовимірних клітинних автоматів, як синхронних, так і асинхронних. Еволюція двовимірних клітинних автоматів подається множиною станів двовимірних форм клітинних автоматів, що ускладнює сприйняття та визначення динаміки зміни станів. В статті запропоновано подання еволюції двовимірних клітинних автоматів у вигляді масивів двійкових кодів для кожної клітини поля. Кожний часовий такт зміни станів визначається станом логічної “1” або “0”, причому кожний наступний стан визначається збільшенням двійкового розряду на одиницю. Тобто формується двійковий код у бік старших розрядів. Отриманий двійковий код зумовлює код кольору, який призначається відповідній клітині на кожному кроці ітерації еволюції. Внаслідок такого кодування формується двовимірна матриця кольорів (кольорове зображення), яка за кольоровою структурою (розташування кольорів на двовимірному масиві) указує на еволюцію двовимірного клітинного автомата. Для представлення еволюції використано кодування Волфрама, яке збільшує кількість правил для двовимірного клітинного автомата. Правила використано для сусідства фон Неймана без урахування власного стану аналізованої клітини. Відповідно до отриманого двовимірного масиву кодів формується дискретне кольорове зображення. Колір кожного пікселя такого зображення кодується отриманим еволюційним кодом відповідної клітини двовимірного клітинного автомата з тими самими координатами. Запропонований підхід дає змогу простежувати поведінку клітинного автомата в часі залежно від його початкових станів. | |
dc.description.abstract | The paper considers cellular automata and forms of reflection of their evolution. Forms of evolution of elementary cellular automata are known and widely used, which allowed specialists to model different dynamic processes and behavior of systems in different directions. In the context of the easy construction of the form of evolution of elementary cellular automata, difficulties arise in representing the form of evolution of two-dimensional cellular automata, both synchronous and asynchronous. The evolution of two-dimensional cellular automata is represented by a set of states of two-dimensional forms of cellular automataon, which is displayed in different colors on a two-dimensional image The paper proposes the evolution of two-dimensional cel the own state of the analyzed cell. In accordance with the obtained two-dimensional array of codes, a discrete color image is formed. The color of each pixel of such an image is encoded by the obtained evolution code of the corresponding cell of the two-dimensional cellular automaton with the same coordinates. The bitness of the code depends on the number of time steps of evolution. The proposed approach allows us to trace the behavior of the cellular automaton in time depending on its initial states. Experimental analysis of various rules for the von Neumann neighborhood made it possible to determine various rules that allow the shift of an image in different directions, as well as various affine transformations over images. Using this approach, it is possible to describe various dynamic processes and natural phenomena. | |
dc.format.extent | 85-90 | |
dc.format.pages | 6 | |
dc.identifier.citation | Bilan S. M. Evolution of two-dimensional cellular automata. New forms of presentation / S. M. Bilan // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 1. — P. 85–90. | |
dc.identifier.citationen | Bilan S. M. (2021) Evolution of two-dimensional cellular automata. New forms of presentation. Ukrainian Journal of Information Technology (Lviv), vol. 3, no 1, pp. 85-90. | |
dc.identifier.doi | https://doi.org/10.23939/ujit2021.03.085 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57765 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Український журнал інформаційних технологій, 1 (3), 2021 | |
dc.relation.ispartof | Ukrainian Journal of Information Technology, 1 (3), 2021 | |
dc.relation.references | [1] ACRI. (2016). Effects of Agents Fear, Desire and Knowledge on Their Success When Crossing a CA Based Highway, at ABSim-CA Second International Workshop on Agent-Based Simulation & Cellular Automata, at the 12th International Conference on Cellular Automata for Research and Industry. ACRI 2016, Proceedings (September 05-08, 2016), Fez (Morocco), Sept. 05-08, 2016, Talk given on September 8. Retrieved from: http://acri2016.complexworld.net | |
dc.relation.references | [2] Adamatzky, A. (2010). Game of life Cellular automata. Springer-Verlag London, 579. https://doi.org/10.1007/978-1-84996-217-9 | |
dc.relation.references | [3] Adamatzky, A. (2018). Cellular automata. A volume in the Enciclopedia of cjmplexity and systems science. Second edition. Springer Science + business media LLC, part of springer Nature. https://doi.org/10.1007/978-1-4939-8700-9 | |
dc.relation.references | [4] Bidlo, M. & Vasicek, Z. (2013). Evolution of cellular automata with conditionally matching rules. 2013 IEEE Congress on Evolutionary Computation, 1178–1185. https://doi.org/10.1109/CEC.2013.6557699 | |
dc.relation.references | [5] Bidlo, M. (2016). On Routine Evolution of Complex Cellular Automata IEEE Transactions on Evolutionary Computation, 20, 742–754. https://doi.org/10.1109/TEVC.2016.2516242 | |
dc.relation.references | [6] Bidlo, M. (2019). Comparison of Evolutionary Development of Cellular Automata Using Various Representations inproceedings, MENDEL, Soft Computing Journal, 25(1), 95–102. https://doi.org/10.13164/mendel.2019.1.095 | |
dc.relation.references | [7] Bilan, S. M. (2018). Formation Methods, Models, and Hardware Implementation of Pseudorandom Number Generators: Emerging Research and Opportunities. IGI Global. https://doi.org/10.4018/978-1-5225-2773-2 | |
dc.relation.references | [8] Bilan, S. M., & Al-Zoubi, S. I. (2019). Handbook of Research on Intelligent Data Processing and Information Security Systems. Edited by Hershey, USA: IGI Global. https://doi.org/10.4018/978-1-7998-1290-6 | |
dc.relation.references | [9] Bilan, S. M., Bilan, M. M., & Motornyuk, R. L. (2021). New Methods and Paradigms for Modeling Dynamic Processes Based on Cellular Automata. IGI Global. https://doi.org/10.4018/978-1-7998-2649-1 | |
dc.relation.references | [10] Bilan, Stepan, Elhoseny, Mohamed, & Hemanth, D. Jude (Eds.). (2020). Biometric Identification Technologies Based on Modern Data Mining Methods. Springer. https://doi.org/10.1007/978-3-030-48378-4 | |
dc.relation.references | [11] Breukelaar, R. & B¨ack, T. (2005). Using a genetic algorithm to evolve behavior in multi dimensional cellular automata. In Proceedings of the 2005 Genetic and Evolutionary Computation Conference, GECCO 2005. ACM, 107–114. https://doi.org/10.1145/1068009.1068024 | |
dc.relation.references | [12] Chavoya, A. & Duthen, Y. (2007). Use of a genetic algorithm to evolve an extended artificial regulatory network for cell pattern generation. In GECCO 07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, 1062–1062, New York, NY, USA. ACM. https://doi.org/10.1145/1276958.1277167 | |
dc.relation.references | [13] Chen, Y., Wang, C., Li, H., Yap, J. B. H., Tang, R., & Xu, B. (2020). Cellular automaton model for social forces interaction in building evacuation for sustainable society. Sustainable Cities and Society, 53, 101913. https://doi.org/10.1016/j.scs.2019.101913 | |
dc.relation.references | [14] Elmenreich, W. & Fehervari, I. (2011). Evolving self-organizing cellular automata based on neural network genotypes. In Proc. of the 5th International Conference on Self-organizing Systems. Springer, 16–25. https://doi.org/10.1007/978-3-642-19167-1_2 | |
dc.relation.references | [15] Ershov, N. & Kravchuk, A. (2014). Discrete modeling using stochastic cellular automata. Bulletin of the Peoples Friendship University of Russia. Series: Mathematics, Computer Science, Physics, 2, 359–362. | |
dc.relation.references | [16] Gardner, M. (1970). The fantastic combinations of John Conways new solitaire game “Life”. Scientific American, 4, 120–123. https://doi.org/10.1038/scientificamerican1070-120 | |
dc.relation.references | [17] Mauri, Giancarlo, El Yacoubi, Samira, Dennunzio, Alberto, Nishinari, Katsuhiro, & Manzoni, Luca (Eds.). (2018). Lecture Notes in Computer Science. 13th International Conference on Cellular Automata for Research and Industry, ACRI 2018, Como, Italy. (September 17–21, 2018), Proceedings, 11115, Springer. https://doi.org/10.1007/978-3-319-99813-8 | |
dc.relation.references | [18] Michal Bidlo, Zdenek Vasicek. (2021). Evolution of Cellular Automata Using Instruction-Based Approach. WCCI 2012 IEEE World Congress on Computational Intelligence. Australia, 1–8. https://doi.org/10.1109/CEC.2012.6256475 | |
dc.relation.references | [19] Mohammad, Ali Javaheri Javid. (2021). Aesthetic evaluation of cellular automata cjnfigurations using spatial complexity and Kolmogorov complexity. Romero et al. (Eds.). EvoMUSART, Springer, 147–160. https://doi.org/10.1007/978-3-030-72914-1_10 | |
dc.relation.references | [20] Motornyuk, R. L., & Bilan, S. (2019). The Moving Object Detection and Research Effects of Noise on Images Based on Cellular Automata With a Hexagonal Coating Form and Radon Transform. Handbook of Research on Intelligent Data Processing and Information Security Systems. Edited by Bilan, S. M., & Al-Zoubi, S. I. Hershey, USA: IGI Global, 330–359. https://doi.org/10.4018/978-1-7998-1290-6.ch013 | |
dc.relation.references | [21] Rocha, L. M. & Hordijk, W. (2005). Material representations: from the genetic code to the evolution of cellular automata. Artif Life. 2005 Winter-Spring, 11(1-2), 189–214. https://doi.org/10.1162/1064546053278964 | |
dc.relation.references | [22] Verykokou, S., Ioannidis, C., Athanasiou, G., Doulamis, N., & Amditis, A. (2018). 3D reconstruction of disaster scenes for urban search and rescue. Multimedia Tools and Applications, 77(8), 9691–9717. https://doi.org/10.1007/s11042-017-5450-y | |
dc.relation.references | [23] Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3). https://doi.org/10.1103/RevModPhys.55.601 | |
dc.relation.references | [24] Wolfram, S. (2002). A new kind of science. Wolfram Media | |
dc.relation.references | [25] Yuta, Kariyado, Camilo, Arevalo, & Julian, Villegas. (2021). Auralization of three-dimensional cellular automata. Romero et al. (Eds.). EvoMUSART, Springer, 161–170. https://doi.org/10.1007/978-3-030-72914-1_11 | |
dc.relation.referencesen | [1] ACRI. (2016). Effects of Agents Fear, Desire and Knowledge on Their Success When Crossing a CA Based Highway, at ABSim-CA Second International Workshop on Agent-Based Simulation & Cellular Automata, at the 12th International Conference on Cellular Automata for Research and Industry. ACRI 2016, Proceedings (September 05-08, 2016), Fez (Morocco), Sept. 05-08, 2016, Talk given on September 8. Retrieved from: http://acri2016.complexworld.net | |
dc.relation.referencesen | [2] Adamatzky, A. (2010). Game of life Cellular automata. Springer-Verlag London, 579. https://doi.org/10.1007/978-1-84996-217-9 | |
dc.relation.referencesen | [3] Adamatzky, A. (2018). Cellular automata. A volume in the Enciclopedia of cjmplexity and systems science. Second edition. Springer Science + business media LLC, part of springer Nature. https://doi.org/10.1007/978-1-4939-8700-9 | |
dc.relation.referencesen | [4] Bidlo, M. & Vasicek, Z. (2013). Evolution of cellular automata with conditionally matching rules. 2013 IEEE Congress on Evolutionary Computation, 1178–1185. https://doi.org/10.1109/CEC.2013.6557699 | |
dc.relation.referencesen | [5] Bidlo, M. (2016). On Routine Evolution of Complex Cellular Automata IEEE Transactions on Evolutionary Computation, 20, 742–754. https://doi.org/10.1109/TEVC.2016.2516242 | |
dc.relation.referencesen | [6] Bidlo, M. (2019). Comparison of Evolutionary Development of Cellular Automata Using Various Representations inproceedings, MENDEL, Soft Computing Journal, 25(1), 95–102. https://doi.org/10.13164/mendel.2019.1.095 | |
dc.relation.referencesen | [7] Bilan, S. M. (2018). Formation Methods, Models, and Hardware Implementation of Pseudorandom Number Generators: Emerging Research and Opportunities. IGI Global. https://doi.org/10.4018/978-1-5225-2773-2 | |
dc.relation.referencesen | [8] Bilan, S. M., & Al-Zoubi, S. I. (2019). Handbook of Research on Intelligent Data Processing and Information Security Systems. Edited by Hershey, USA: IGI Global. https://doi.org/10.4018/978-1-7998-1290-6 | |
dc.relation.referencesen | [9] Bilan, S. M., Bilan, M. M., & Motornyuk, R. L. (2021). New Methods and Paradigms for Modeling Dynamic Processes Based on Cellular Automata. IGI Global. https://doi.org/10.4018/978-1-7998-2649-1 | |
dc.relation.referencesen | [10] Bilan, Stepan, Elhoseny, Mohamed, & Hemanth, D. Jude (Eds.). (2020). Biometric Identification Technologies Based on Modern Data Mining Methods. Springer. https://doi.org/10.1007/978-3-030-48378-4 | |
dc.relation.referencesen | [11] Breukelaar, R. & B¨ack, T. (2005). Using a genetic algorithm to evolve behavior in multi dimensional cellular automata. In Proceedings of the 2005 Genetic and Evolutionary Computation Conference, GECCO 2005. ACM, 107–114. https://doi.org/10.1145/1068009.1068024 | |
dc.relation.referencesen | [12] Chavoya, A. & Duthen, Y. (2007). Use of a genetic algorithm to evolve an extended artificial regulatory network for cell pattern generation. In GECCO 07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, 1062–1062, New York, NY, USA. ACM. https://doi.org/10.1145/1276958.1277167 | |
dc.relation.referencesen | [13] Chen, Y., Wang, C., Li, H., Yap, J. B. H., Tang, R., & Xu, B. (2020). Cellular automaton model for social forces interaction in building evacuation for sustainable society. Sustainable Cities and Society, 53, 101913. https://doi.org/10.1016/j.scs.2019.101913 | |
dc.relation.referencesen | [14] Elmenreich, W. & Fehervari, I. (2011). Evolving self-organizing cellular automata based on neural network genotypes. In Proc. of the 5th International Conference on Self-organizing Systems. Springer, 16–25. https://doi.org/10.1007/978-3-642-19167-1_2 | |
dc.relation.referencesen | [15] Ershov, N. & Kravchuk, A. (2014). Discrete modeling using stochastic cellular automata. Bulletin of the Peoples Friendship University of Russia. Series: Mathematics, Computer Science, Physics, 2, 359–362. | |
dc.relation.referencesen | [16] Gardner, M. (1970). The fantastic combinations of John Conways new solitaire game "Life". Scientific American, 4, 120–123. https://doi.org/10.1038/scientificamerican1070-120 | |
dc.relation.referencesen | [17] Mauri, Giancarlo, El Yacoubi, Samira, Dennunzio, Alberto, Nishinari, Katsuhiro, & Manzoni, Luca (Eds.). (2018). Lecture Notes in Computer Science. 13th International Conference on Cellular Automata for Research and Industry, ACRI 2018, Como, Italy. (September 17–21, 2018), Proceedings, 11115, Springer. https://doi.org/10.1007/978-3-319-99813-8 | |
dc.relation.referencesen | [18] Michal Bidlo, Zdenek Vasicek. (2021). Evolution of Cellular Automata Using Instruction-Based Approach. WCCI 2012 IEEE World Congress on Computational Intelligence. Australia, 1–8. https://doi.org/10.1109/CEC.2012.6256475 | |
dc.relation.referencesen | [19] Mohammad, Ali Javaheri Javid. (2021). Aesthetic evaluation of cellular automata cjnfigurations using spatial complexity and Kolmogorov complexity. Romero et al. (Eds.). EvoMUSART, Springer, 147–160. https://doi.org/10.1007/978-3-030-72914-1_10 | |
dc.relation.referencesen | [20] Motornyuk, R. L., & Bilan, S. (2019). The Moving Object Detection and Research Effects of Noise on Images Based on Cellular Automata With a Hexagonal Coating Form and Radon Transform. Handbook of Research on Intelligent Data Processing and Information Security Systems. Edited by Bilan, S. M., & Al-Zoubi, S. I. Hershey, USA: IGI Global, 330–359. https://doi.org/10.4018/978-1-7998-1290-6.ch013 | |
dc.relation.referencesen | [21] Rocha, L. M. & Hordijk, W. (2005). Material representations: from the genetic code to the evolution of cellular automata. Artif Life. 2005 Winter-Spring, 11(1-2), 189–214. https://doi.org/10.1162/1064546053278964 | |
dc.relation.referencesen | [22] Verykokou, S., Ioannidis, C., Athanasiou, G., Doulamis, N., & Amditis, A. (2018). 3D reconstruction of disaster scenes for urban search and rescue. Multimedia Tools and Applications, 77(8), 9691–9717. https://doi.org/10.1007/s11042-017-5450-y | |
dc.relation.referencesen | [23] Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3). https://doi.org/10.1103/RevModPhys.55.601 | |
dc.relation.referencesen | [24] Wolfram, S. (2002). A new kind of science. Wolfram Media | |
dc.relation.referencesen | [25] Yuta, Kariyado, Camilo, Arevalo, & Julian, Villegas. (2021). Auralization of three-dimensional cellular automata. Romero et al. (Eds.). EvoMUSART, Springer, 161–170. https://doi.org/10.1007/978-3-030-72914-1_11 | |
dc.relation.uri | http://acri2016.complexworld.net | |
dc.relation.uri | https://doi.org/10.1007/978-1-84996-217-9 | |
dc.relation.uri | https://doi.org/10.1007/978-1-4939-8700-9 | |
dc.relation.uri | https://doi.org/10.1109/CEC.2013.6557699 | |
dc.relation.uri | https://doi.org/10.1109/TEVC.2016.2516242 | |
dc.relation.uri | https://doi.org/10.13164/mendel.2019.1.095 | |
dc.relation.uri | https://doi.org/10.4018/978-1-5225-2773-2 | |
dc.relation.uri | https://doi.org/10.4018/978-1-7998-1290-6 | |
dc.relation.uri | https://doi.org/10.4018/978-1-7998-2649-1 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-48378-4 | |
dc.relation.uri | https://doi.org/10.1145/1068009.1068024 | |
dc.relation.uri | https://doi.org/10.1145/1276958.1277167 | |
dc.relation.uri | https://doi.org/10.1016/j.scs.2019.101913 | |
dc.relation.uri | https://doi.org/10.1007/978-3-642-19167-1_2 | |
dc.relation.uri | https://doi.org/10.1038/scientificamerican1070-120 | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-99813-8 | |
dc.relation.uri | https://doi.org/10.1109/CEC.2012.6256475 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-72914-1_10 | |
dc.relation.uri | https://doi.org/10.4018/978-1-7998-1290-6.ch013 | |
dc.relation.uri | https://doi.org/10.1162/1064546053278964 | |
dc.relation.uri | https://doi.org/10.1007/s11042-017-5450-y | |
dc.relation.uri | https://doi.org/10.1103/RevModPhys.55.601 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-72914-1_11 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.subject | клітинний автомат | |
dc.subject | зображення | |
dc.subject | околиця клітин | |
dc.subject | еволюція | |
dc.subject | Cellular automata | |
dc.subject | image | |
dc.subject | cell neighborhood | |
dc.subject | evolution | |
dc.subject.udc | 004.932 | |
dc.title | Evolution of two-dimensional cellular automata. New forms of presentation | |
dc.title.alternative | Еволюція двовимірних клітинних автоматів. Нові форми подання | |
dc.type | Article |