Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method
dc.citation.epage | 509 | |
dc.citation.issue | 3 | |
dc.citation.spage | 503 | |
dc.contributor.affiliation | University of Thi-Qar | |
dc.contributor.author | Affat, Sajda. S. | |
dc.contributor.author | Mohammed, Saad Shahad | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:52:07Z | |
dc.date.available | 2024-02-12T08:52:07Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У цій роботі було синтезовано наночастинки MgAl2O4 з різним часом прожарювання для фотокаталітичних застосувань. Для дослідження структурних, хімічних, оптичних і морфологічних властивостей синтезованих наночастинок було використано різні методи аналізу, такі як XRD, SEM, EDX, УФ-видима та FTIR спектроскопія. XRD аналіз показав утворення структури шпінелі MgAl2O4. Вимірювання в УФ-видимому діапазоні вказують, що наночастинки MgAl2O4-2 мають вужчу енергетичну щілину порівняно з MgAl2O4-1 і MgAl2O4-3. Результати SEM-аналізу показали, що синтезовані наночастинки MgAl2O4 складаються з дрібних агрегованих частинок розміром 40-60 нм. EDX вимірювання підтвердили утворення наночастинок MgAl2O4 без будь-яких домішок. Фотокаталітичну ефективність оцінювали через фотодеградацію поліетиленових пластиків за допомогою наночастинок MgAl2O4 під УФ-опроміненням. FTIR вимірювання до та після деградації поліетиленових пластмас підтверджують утворення нових функціональних груп у результаті процесів фотодеградації. | |
dc.description.abstract | In this study, MgAl2O4 nanoparticles with different calcination times were synthesized for photocatalytic applications. Different analyses techniques such as XRD, SEM, EDX, UV-visible, and FTIR were performed to investigate the structural, chemical, optical, and mor-phological properties of the synthesized nanoparticles. XRD analysis revealed the formation MgAl2O4 spinel structure. UV-Visible measurements indicate that MgAl2O4-2 nanoparticles had a narrower energy gap compared to MgAl2O4-1 and MgAl2O4-3. Results of SEM analysis revealed that the synthesized MgAl2O4 nanoparticles consist of small aggregated particles with (40-60 nm) particles size. EDX measurements con-firmed the formation of MgAl2O4 nanoparticles without any impurities. The photocatalytic performance was evaluated by the photodegradation of polyethylene plastics using MgAl2O4 nanoparticles under UV irradiation. The FT-IR measurements before and after the degradation of polyethylene plastics confirm the formation of new functional groups as a result of photodegradation processes. | |
dc.format.extent | 503-509 | |
dc.format.pages | 7 | |
dc.identifier.citation | Affat Sajda. S. Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method / Sajda. S. Affat, Saad Shahad Mohammed // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 503–509. | |
dc.identifier.citationen | Affat Sajda. S. Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method / Sajda. S. Affat, Saad Shahad Mohammed // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 503–509. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.503 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61281 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Plastics Europe, 2020. Plastics – the Facts 2020: An Analysis of European Plastics Production, Demand and Waste Data Brussels, Belgium. | |
dc.relation.references | [2] Thompson, R.C.; Swan, S.H.; Moore, C.J.; vom Saal, F.S. Our Plastic Age. Phil. Trans. R. Soc. B 2009, 364, 1973-1976. https://doi.org/10.1098/rstb.2009.0054 | |
dc.relation.references | [3] Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The Behaviors of Microplastics in the Marine Environment. Mar. Environ. Res. 2016, 113, 7-17. https://doi.org/10.1016/j.marenvres.2015.10.014 | |
dc.relation.references | [4] Singh, B.; Sharma, N. Mechanistic Implications of Plastic De-gradation. Polym. Degrad. Stab. 2008, 93, 561-584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008 | |
dc.relation.references | [5] Mueller, R.-J. Biological Degradation of Synthetic Polyesters—Enzymes as Potential Catalysts for Polyester Recycling. Process Biochem. 2006, 41, 2124-2128. https://doi.org/10.1016/j.procbio.2006.05.018 | |
dc.relation.references | [6] Shimao, M. Biodegradation of Plastics. Curr. Opin. Biotechnol. 2001, 12, 242-247. https://doi.org/10.1016/S0958-1669(00)00206-8 | |
dc.relation.references | [7] Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, M.; Malato, S.; Maldonado, I. Photocatalytic Degradation of Emerging Contaminants in Municipal Wastewater Treatment Plant Effluents Using Immobilized TiO2 in a Solar Pilot Plant. Appl. Catal. B 2011, 103, 294-301. https://doi.org/10.1016/j.apcatb.2011.01.030 | |
dc.relation.references | [8] Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined Effects of UV Exposure Duration and Me-chanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol. 2017, 51, 4368-4376. https://doi.org/10.1021/acs.est.6b06155 | |
dc.relation.references | [9] Hämer, J.; Gutow, L.; Köhler, A.; Saborowski, R. Fate of Mi-croplastics in the Marine Isopod Idotea emarginata. Environ. Sci. Technol. 2014, 48, 13451-13458. https://doi.org/10.1021/es501385y | |
dc.relation.references | [10] Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. Formation of Environmentally Persistent Free Radicals on Micro-plastics under Light Irradiation. Environ. Sci. Technol. 2019, 53, 8177-8186. https://doi.org/10.1021/acs.est.9b01474 | |
dc.relation.references | [11] Gigault, J.; Pedrono, B.; Maxit, B.; Ter Halle, A. Marine Plastic Litter: The Unanalyzed Nano-Fraction. Environ. Sci. Nano 2016, 3, 346-350. https://doi.org/10.1039/C6EN00008H | |
dc.relation.references | [12] AL-Zamili, F.; Abass, A.; Najim, A. Effect of Some Organic Fillers on the Mechanical Properties of High Density Polyethylene. J.Thi-Qar Sci. 2009, 1, 27-34. | |
dc.relation.references | [13] Hammed, M.; Hamad, T. Study Of TiO2 Nanoparticles Induc-tion for Biological System. Thi-Qar Medical Journal 2019, 17, 110-117. | |
dc.relation.references | [14] Paço, A.; Duarte, K.; da Costa, J.P.; Santos, P.S.M.; Pereira, R.; Pereira,M.E.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Biodegradation of Polyethylene Microplastics by the Marine Fungus Zalerion Maritimum. Sci. Total Environ. 2017, 586, 10-15. https://doi.org/10.1016/j.scitotenv.2017.02.017 | |
dc.relation.references | [15] Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Hernández-López, J.M.; de la Rosa, J.R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. Microplastic Pollution Reduction by a Carbon and Nitrogen-Doped TiO2: Effect of pH and Temperature in the Photocatalytic Degradation Process. J. Hazard. Mater. 2020, 395, 122632. https://doi.org/10.1016/j.jhazmat.2020.122632 | |
dc.relation.references | [16] Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. New Strategy for Microplastic Degradation: Green Photocatalysis Using a Protein-Based Porous N-TiO2 Semiconductor. Ceram. Int. 2019, 45, 9618-9624. https://doi.org/10.1016/j.ceramint.2018.10.208 | |
dc.relation.references | [17] Kulkarni, M.; Thakur, P. The Effect of UV/TiO2/H2O2 Process and Influence of Operational Parameters on Photocatalytic Degrada-tion of Azo Dye in Aqueous TiO2 Suspension. Chem. Chem. Tech-nol. 2010, 4, 265-270. https://doi.org/10.23939/chcht04.04.265 | |
dc.relation.references | [18] Nikolenko, A.; Melnykov, B. Photocatalytic Oxidation of Formaldehyde Vapour Using Amorphous Titanium Dioxide. Chem. Chem. Technol. 2010, 4, 311-315. https://doi.org/10.23939/chcht04.04.311 | |
dc.relation.references | [19] Coronel, S.; Pauker, Ch.S.; Jentzsch, P.V.; de la Torre, E.; Endara, D.; Muñoz-Bisesti, F. Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol. Chem. Chem. Technol. 2020, 14, 161-168. https://doi.org/10.23939/chcht14.02.161 | |
dc.relation.references | [20] Ali, S.S.; Qazi, I.A.; Arshad, M.; Khan, Z.; Voice, T.C.; Meh-mood, Ch.T. Photocatalytic Degradation of Low Density Polyethy-lene (LDPE) Films Using Titania Nanotubes. Environ. Nanotechnol. Monit. Manag. 2016, 5, 44-53. https://doi.org/10.1016/j.enmm.2016.01.001 | |
dc.relation.references | [21] Tofa, T.S.; Ye, F.; Kunjali, K.L.; Dutta, J. Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts. Catalysts 2019, 9, 819. https://doi.org/10.3390/catal9100819 | |
dc.relation.references | [22] Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible Light Photocatalytic Degradation of Microplastic Residues with Zinc Oxide Nanorods. Environ Chem Lett 2019, 17, 1341-1346. https://doi.org/10.1007/s10311-019-00859-z | |
dc.relation.references | [23] Gardette, M.; Perthue, A.; Gardette, J.-L.; Janecska, T.; Földes, E.; Pukánszky, B.; Therias, S. Photo- and Thermal-Oxidation of Polyethylene: Comparison of Mechanisms and Influence of Unsaturation Content. Polym. Degrad. Stab. 2013, 98, 2383-2390. https://doi.org/10.1016/j.polymdegradstab.2013.07.017 | |
dc.relation.references | [24] Dinda, B. Essentials of pericyclic and photochemical reactions. Vol. 93; Springer: Switzerland, 2017. | |
dc.relation.references | [25] Shang, J.; Chai, M.; Zhu, Y. Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light. Environ. Sci. Technol. 2003, 37, 4494-4499. https://doi.org/10.1021/es0209464 | |
dc.relation.referencesen | [1] Plastics Europe, 2020. Plastics – the Facts 2020: An Analysis of European Plastics Production, Demand and Waste Data Brussels, Belgium. | |
dc.relation.referencesen | [2] Thompson, R.C.; Swan, S.H.; Moore, C.J.; vom Saal, F.S. Our Plastic Age. Phil. Trans. R. Soc. B 2009, 364, 1973-1976. https://doi.org/10.1098/rstb.2009.0054 | |
dc.relation.referencesen | [3] Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The Behaviors of Microplastics in the Marine Environment. Mar. Environ. Res. 2016, 113, 7-17. https://doi.org/10.1016/j.marenvres.2015.10.014 | |
dc.relation.referencesen | [4] Singh, B.; Sharma, N. Mechanistic Implications of Plastic De-gradation. Polym. Degrad. Stab. 2008, 93, 561-584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008 | |
dc.relation.referencesen | [5] Mueller, R.-J. Biological Degradation of Synthetic Polyesters-Enzymes as Potential Catalysts for Polyester Recycling. Process Biochem. 2006, 41, 2124-2128. https://doi.org/10.1016/j.procbio.2006.05.018 | |
dc.relation.referencesen | [6] Shimao, M. Biodegradation of Plastics. Curr. Opin. Biotechnol. 2001, 12, 242-247. https://doi.org/10.1016/S0958-1669(00)00206-8 | |
dc.relation.referencesen | [7] Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, M.; Malato, S.; Maldonado, I. Photocatalytic Degradation of Emerging Contaminants in Municipal Wastewater Treatment Plant Effluents Using Immobilized TiO2 in a Solar Pilot Plant. Appl. Catal. B 2011, 103, 294-301. https://doi.org/10.1016/j.apcatb.2011.01.030 | |
dc.relation.referencesen | [8] Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined Effects of UV Exposure Duration and Me-chanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol. 2017, 51, 4368-4376. https://doi.org/10.1021/acs.est.6b06155 | |
dc.relation.referencesen | [9] Hämer, J.; Gutow, L.; Köhler, A.; Saborowski, R. Fate of Mi-croplastics in the Marine Isopod Idotea emarginata. Environ. Sci. Technol. 2014, 48, 13451-13458. https://doi.org/10.1021/es501385y | |
dc.relation.referencesen | [10] Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. Formation of Environmentally Persistent Free Radicals on Micro-plastics under Light Irradiation. Environ. Sci. Technol. 2019, 53, 8177-8186. https://doi.org/10.1021/acs.est.9b01474 | |
dc.relation.referencesen | [11] Gigault, J.; Pedrono, B.; Maxit, B.; Ter Halle, A. Marine Plastic Litter: The Unanalyzed Nano-Fraction. Environ. Sci. Nano 2016, 3, 346-350. https://doi.org/10.1039/P.6EN00008H | |
dc.relation.referencesen | [12] AL-Zamili, F.; Abass, A.; Najim, A. Effect of Some Organic Fillers on the Mechanical Properties of High Density Polyethylene. J.Thi-Qar Sci. 2009, 1, 27-34. | |
dc.relation.referencesen | [13] Hammed, M.; Hamad, T. Study Of TiO2 Nanoparticles Induc-tion for Biological System. Thi-Qar Medical Journal 2019, 17, 110-117. | |
dc.relation.referencesen | [14] Paço, A.; Duarte, K.; da Costa, J.P.; Santos, P.S.M.; Pereira, R.; Pereira,M.E.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Biodegradation of Polyethylene Microplastics by the Marine Fungus Zalerion Maritimum. Sci. Total Environ. 2017, 586, 10-15. https://doi.org/10.1016/j.scitotenv.2017.02.017 | |
dc.relation.referencesen | [15] Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Hernández-López, J.M.; de la Rosa, J.R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. Microplastic Pollution Reduction by a Carbon and Nitrogen-Doped TiO2: Effect of pH and Temperature in the Photocatalytic Degradation Process. J. Hazard. Mater. 2020, 395, 122632. https://doi.org/10.1016/j.jhazmat.2020.122632 | |
dc.relation.referencesen | [16] Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. New Strategy for Microplastic Degradation: Green Photocatalysis Using a Protein-Based Porous N-TiO2 Semiconductor. Ceram. Int. 2019, 45, 9618-9624. https://doi.org/10.1016/j.ceramint.2018.10.208 | |
dc.relation.referencesen | [17] Kulkarni, M.; Thakur, P. The Effect of UV/TiO2/H2O2 Process and Influence of Operational Parameters on Photocatalytic Degrada-tion of Azo Dye in Aqueous TiO2 Suspension. Chem. Chem. Tech-nol. 2010, 4, 265-270. https://doi.org/10.23939/chcht04.04.265 | |
dc.relation.referencesen | [18] Nikolenko, A.; Melnykov, B. Photocatalytic Oxidation of Formaldehyde Vapour Using Amorphous Titanium Dioxide. Chem. Chem. Technol. 2010, 4, 311-315. https://doi.org/10.23939/chcht04.04.311 | |
dc.relation.referencesen | [19] Coronel, S.; Pauker, Ch.S.; Jentzsch, P.V.; de la Torre, E.; Endara, D.; Muñoz-Bisesti, F. Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol. Chem. Chem. Technol. 2020, 14, 161-168. https://doi.org/10.23939/chcht14.02.161 | |
dc.relation.referencesen | [20] Ali, S.S.; Qazi, I.A.; Arshad, M.; Khan, Z.; Voice, T.C.; Meh-mood, Ch.T. Photocatalytic Degradation of Low Density Polyethy-lene (LDPE) Films Using Titania Nanotubes. Environ. Nanotechnol. Monit. Manag. 2016, 5, 44-53. https://doi.org/10.1016/j.enmm.2016.01.001 | |
dc.relation.referencesen | [21] Tofa, T.S.; Ye, F.; Kunjali, K.L.; Dutta, J. Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts. Catalysts 2019, 9, 819. https://doi.org/10.3390/catal9100819 | |
dc.relation.referencesen | [22] Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible Light Photocatalytic Degradation of Microplastic Residues with Zinc Oxide Nanorods. Environ Chem Lett 2019, 17, 1341-1346. https://doi.org/10.1007/s10311-019-00859-z | |
dc.relation.referencesen | [23] Gardette, M.; Perthue, A.; Gardette, J.-L.; Janecska, T.; Földes, E.; Pukánszky, B.; Therias, S. Photo- and Thermal-Oxidation of Polyethylene: Comparison of Mechanisms and Influence of Unsaturation Content. Polym. Degrad. Stab. 2013, 98, 2383-2390. https://doi.org/10.1016/j.polymdegradstab.2013.07.017 | |
dc.relation.referencesen | [24] Dinda, B. Essentials of pericyclic and photochemical reactions. Vol. 93; Springer: Switzerland, 2017. | |
dc.relation.referencesen | [25] Shang, J.; Chai, M.; Zhu, Y. Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light. Environ. Sci. Technol. 2003, 37, 4494-4499. https://doi.org/10.1021/es0209464 | |
dc.relation.uri | https://doi.org/10.1098/rstb.2009.0054 | |
dc.relation.uri | https://doi.org/10.1016/j.marenvres.2015.10.014 | |
dc.relation.uri | https://doi.org/10.1016/j.polymdegradstab.2007.11.008 | |
dc.relation.uri | https://doi.org/10.1016/j.procbio.2006.05.018 | |
dc.relation.uri | https://doi.org/10.1016/S0958-1669(00)00206-8 | |
dc.relation.uri | https://doi.org/10.1016/j.apcatb.2011.01.030 | |
dc.relation.uri | https://doi.org/10.1021/acs.est.6b06155 | |
dc.relation.uri | https://doi.org/10.1021/es501385y | |
dc.relation.uri | https://doi.org/10.1021/acs.est.9b01474 | |
dc.relation.uri | https://doi.org/10.1039/C6EN00008H | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2017.02.017 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2020.122632 | |
dc.relation.uri | https://doi.org/10.1016/j.ceramint.2018.10.208 | |
dc.relation.uri | https://doi.org/10.23939/chcht04.04.265 | |
dc.relation.uri | https://doi.org/10.23939/chcht04.04.311 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.161 | |
dc.relation.uri | https://doi.org/10.1016/j.enmm.2016.01.001 | |
dc.relation.uri | https://doi.org/10.3390/catal9100819 | |
dc.relation.uri | https://doi.org/10.1007/s10311-019-00859-z | |
dc.relation.uri | https://doi.org/10.1016/j.polymdegradstab.2013.07.017 | |
dc.relation.uri | https://doi.org/10.1021/es0209464 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Affat S. S., Mohammed S.S., 2023 | |
dc.subject | наночастинки | |
dc.subject | поліетилен | |
dc.subject | XRD | |
dc.subject | MgAl2O4 | |
dc.subject | деградація | |
dc.subject | nanoparticles | |
dc.subject | polyethylene | |
dc.subject | XRD | |
dc.subject | MgAl2O4 | |
dc.subject | degradation | |
dc.title | Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method | |
dc.title.alternative | Фотокаталітична деградація поліетиленових пластиків за допомогою наночастинок MgAl2O4, синтезованих твердофазним методом | |
dc.type | Article |
Files
License bundle
1 - 1 of 1