Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method

dc.citation.epage509
dc.citation.issue3
dc.citation.spage503
dc.contributor.affiliationUniversity of Thi-Qar
dc.contributor.authorAffat, Sajda. S.
dc.contributor.authorMohammed, Saad Shahad
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:52:07Z
dc.date.available2024-02-12T08:52:07Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цій роботі було синтезовано наночастинки MgAl2O4 з різним часом прожарювання для фотокаталітичних застосувань. Для дослідження структурних, хімічних, оптичних і морфологічних властивостей синтезованих наночастинок було використано різні методи аналізу, такі як XRD, SEM, EDX, УФ-видима та FTIR спектроскопія. XRD аналіз показав утворення структури шпінелі MgAl2O4. Вимірювання в УФ-видимому діапазоні вказують, що наночастинки MgAl2O4-2 мають вужчу енергетичну щілину порівняно з MgAl2O4-1 і MgAl2O4-3. Результати SEM-аналізу показали, що синтезовані наночастинки MgAl2O4 складаються з дрібних агрегованих частинок розміром 40-60 нм. EDX вимірювання підтвердили утворення наночастинок MgAl2O4 без будь-яких домішок. Фотокаталітичну ефективність оцінювали через фотодеградацію поліетиленових пластиків за допомогою наночастинок MgAl2O4 під УФ-опроміненням. FTIR вимірювання до та після деградації поліетиленових пластмас підтверджують утворення нових функціональних груп у результаті процесів фотодеградації.
dc.description.abstractIn this study, MgAl2O4 nanoparticles with different calcination times were synthesized for photocatalytic applications. Different analyses techniques such as XRD, SEM, EDX, UV-visible, and FTIR were performed to investigate the structural, chemical, optical, and mor-phological properties of the synthesized nanoparticles. XRD analysis revealed the formation MgAl2O4 spinel structure. UV-Visible measurements indicate that MgAl2O4-2 nanoparticles had a narrower energy gap compared to MgAl2O4-1 and MgAl2O4-3. Results of SEM analysis revealed that the synthesized MgAl2O4 nanoparticles consist of small aggregated particles with (40-60 nm) particles size. EDX measurements con-firmed the formation of MgAl2O4 nanoparticles without any impurities. The photocatalytic performance was evaluated by the photodegradation of polyethylene plastics using MgAl2O4 nanoparticles under UV irradiation. The FT-IR measurements before and after the degradation of polyethylene plastics confirm the formation of new functional groups as a result of photodegradation processes.
dc.format.extent503-509
dc.format.pages7
dc.identifier.citationAffat Sajda. S. Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method / Sajda. S. Affat, Saad Shahad Mohammed // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 503–509.
dc.identifier.citationenAffat Sajda. S. Photocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method / Sajda. S. Affat, Saad Shahad Mohammed // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 503–509.
dc.identifier.doidoi.org/10.23939/chcht17.03.503
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61281
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Plastics Europe, 2020. Plastics – the Facts 2020: An Analysis of European Plastics Production, Demand and Waste Data Brussels, Belgium.
dc.relation.references[2] Thompson, R.C.; Swan, S.H.; Moore, C.J.; vom Saal, F.S. Our Plastic Age. Phil. Trans. R. Soc. B 2009, 364, 1973-1976. https://doi.org/10.1098/rstb.2009.0054
dc.relation.references[3] Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The Behaviors of Microplastics in the Marine Environment. Mar. Environ. Res. 2016, 113, 7-17.‏ https://doi.org/10.1016/j.marenvres.2015.10.014
dc.relation.references[4] Singh, B.; Sharma, N. Mechanistic Implications of Plastic De-gradation. Polym. Degrad. Stab. 2008, 93, 561-584.‏ https://doi.org/10.1016/j.polymdegradstab.2007.11.008
dc.relation.references[5] Mueller, R.-J. Biological Degradation of Synthetic Polyesters—Enzymes as Potential Catalysts for Polyester Recycling. Process Biochem. 2006, 41, 2124-2128.‏ https://doi.org/10.1016/j.procbio.2006.05.018
dc.relation.references[6] Shimao, M. Biodegradation of Plastics. Curr. Opin. Biotechnol. 2001, 12, 242-247.‏ https://doi.org/10.1016/S0958-1669(00)00206-8
dc.relation.references[7] Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, M.; Malato, S.; Maldonado, I. Photocatalytic Degradation of Emerging Contaminants in Municipal Wastewater Treatment Plant Effluents Using Immobilized TiO2 in a Solar Pilot Plant. Appl. Catal. B 2011, 103, 294-301.‏ https://doi.org/10.1016/j.apcatb.2011.01.030
dc.relation.references[8] Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined Effects of UV Exposure Duration and Me-chanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol. 2017, 51, 4368-4376.‏ https://doi.org/10.1021/acs.est.6b06155
dc.relation.references[9] Hämer, J.; Gutow, L.; Köhler, A.; Saborowski, R. Fate of Mi-croplastics in the Marine Isopod Idotea emarginata. Environ. Sci. Technol. 2014, 48, 13451-13458.‏ https://doi.org/10.1021/es501385y
dc.relation.references[10] Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. Formation of Environmentally Persistent Free Radicals on Micro-plastics under Light Irradiation. Environ. Sci. Technol. 2019, 53, 8177-8186.‏ https://doi.org/10.1021/acs.est.9b01474
dc.relation.references[11] Gigault, J.; Pedrono, B.; Maxit, B.; Ter Halle, A. Marine Plastic Litter: The Unanalyzed Nano-Fraction. Environ. Sci. Nano 2016, 3, 346-350. https://doi.org/10.1039/C6EN00008H
dc.relation.references[12] AL-Zamili, F.; Abass, A.; Najim, A. Effect of Some Organic Fillers on the Mechanical Properties of High Density Polyethylene. J.Thi-Qar Sci. 2009, 1, 27-34.‏
dc.relation.references[13] Hammed, M.; Hamad, T. Study Of TiO2 Nanoparticles Induc-tion for Biological System. Thi-Qar Medical Journal 2019, 17, 110-117.‏
dc.relation.references[14] Paço, A.; Duarte, K.; da Costa, J.P.; Santos, P.S.M.; Pereira, R.; Pereira,M.E.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Biodegradation of Polyethylene Microplastics by the Marine Fungus Zalerion Maritimum. Sci. Total Environ. 2017, 586, 10-15.‏ https://doi.org/10.1016/j.scitotenv.2017.02.017
dc.relation.references[15] Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Hernández-López, J.M.; de la Rosa, J.R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. Microplastic Pollution Reduction by a Carbon and Nitrogen-Doped TiO2: Effect of pH and Temperature in the Photocatalytic Degradation Process. J. Hazard. Mater. 2020, 395, 122632.‏ https://doi.org/10.1016/j.jhazmat.2020.122632
dc.relation.references[16] Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. New Strategy for Microplastic Degradation: Green Photocatalysis Using a Protein-Based Porous N-TiO2 Semiconductor. Ceram. Int. 2019, 45, 9618-9624.‏ https://doi.org/10.1016/j.ceramint.2018.10.208
dc.relation.references[17] Kulkarni, M.; Thakur, P. The Effect of UV/TiO2/H2O2 Process and Influence of Operational Parameters on Photocatalytic Degrada-tion of Azo Dye in Aqueous TiO2 Suspension. Chem. Chem. Tech-nol. 2010, 4, 265-270. https://doi.org/10.23939/chcht04.04.265
dc.relation.references[18] Nikolenko, A.; Melnykov, B. Photocatalytic Oxidation of Formaldehyde Vapour Using Amorphous Titanium Dioxide. Chem. Chem. Technol. 2010, 4, 311-315. https://doi.org/10.23939/chcht04.04.311
dc.relation.references[19] Coronel, S.; Pauker, Ch.S.; Jentzsch, P.V.; de la Torre, E.; Endara, D.; Muñoz-Bisesti, F. Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol. Chem. Chem. Technol. 2020, 14, 161-168. https://doi.org/10.23939/chcht14.02.161
dc.relation.references[20] Ali, S.S.; Qazi, I.A.; Arshad, M.; Khan, Z.; Voice, T.C.; Meh-mood, Ch.T. Photocatalytic Degradation of Low Density Polyethy-lene (LDPE) Films Using Titania Nanotubes. Environ. Nanotechnol. Monit. Manag. 2016, 5, 44-53.‏ https://doi.org/10.1016/j.enmm.2016.01.001
dc.relation.references[21] Tofa, T.S.; Ye, F.; Kunjali, K.L.; Dutta, J. Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts. Catalysts 2019, 9, 819.‏ https://doi.org/10.3390/catal9100819
dc.relation.references[22] Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible Light Photocatalytic Degradation of Microplastic Residues with Zinc Oxide Nanorods. Environ Chem Lett 2019, 17, 1341-1346.‏ https://doi.org/10.1007/s10311-019-00859-z
dc.relation.references[23] Gardette, M.; Perthue, A.; Gardette, J.-L.; Janecska, T.; Földes, E.; Pukánszky, B.; Therias, S. Photo- and Thermal-Oxidation of Polyethylene: Comparison of Mechanisms and Influence of Unsaturation Content. Polym. Degrad. Stab. 2013, 98, 2383-2390. https://doi.org/10.1016/j.polymdegradstab.2013.07.017
dc.relation.references[24] Dinda, B. Essentials of pericyclic and photochemical reactions. Vol. 93; Springer: Switzerland, 2017.
dc.relation.references[25] Shang, J.; Chai, M.; Zhu, Y. Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light. Environ. Sci. Technol. 2003, 37, 4494-4499.‏ https://doi.org/10.1021/es0209464
dc.relation.referencesen[1] Plastics Europe, 2020. Plastics – the Facts 2020: An Analysis of European Plastics Production, Demand and Waste Data Brussels, Belgium.
dc.relation.referencesen[2] Thompson, R.C.; Swan, S.H.; Moore, C.J.; vom Saal, F.S. Our Plastic Age. Phil. Trans. R. Soc. B 2009, 364, 1973-1976. https://doi.org/10.1098/rstb.2009.0054
dc.relation.referencesen[3] Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The Behaviors of Microplastics in the Marine Environment. Mar. Environ. Res. 2016, 113, 7-17.‏ https://doi.org/10.1016/j.marenvres.2015.10.014
dc.relation.referencesen[4] Singh, B.; Sharma, N. Mechanistic Implications of Plastic De-gradation. Polym. Degrad. Stab. 2008, 93, 561-584.‏ https://doi.org/10.1016/j.polymdegradstab.2007.11.008
dc.relation.referencesen[5] Mueller, R.-J. Biological Degradation of Synthetic Polyesters-Enzymes as Potential Catalysts for Polyester Recycling. Process Biochem. 2006, 41, 2124-2128.‏ https://doi.org/10.1016/j.procbio.2006.05.018
dc.relation.referencesen[6] Shimao, M. Biodegradation of Plastics. Curr. Opin. Biotechnol. 2001, 12, 242-247.‏ https://doi.org/10.1016/S0958-1669(00)00206-8
dc.relation.referencesen[7] Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, M.; Malato, S.; Maldonado, I. Photocatalytic Degradation of Emerging Contaminants in Municipal Wastewater Treatment Plant Effluents Using Immobilized TiO2 in a Solar Pilot Plant. Appl. Catal. B 2011, 103, 294-301.‏ https://doi.org/10.1016/j.apcatb.2011.01.030
dc.relation.referencesen[8] Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined Effects of UV Exposure Duration and Me-chanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol. 2017, 51, 4368-4376.‏ https://doi.org/10.1021/acs.est.6b06155
dc.relation.referencesen[9] Hämer, J.; Gutow, L.; Köhler, A.; Saborowski, R. Fate of Mi-croplastics in the Marine Isopod Idotea emarginata. Environ. Sci. Technol. 2014, 48, 13451-13458.‏ https://doi.org/10.1021/es501385y
dc.relation.referencesen[10] Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. Formation of Environmentally Persistent Free Radicals on Micro-plastics under Light Irradiation. Environ. Sci. Technol. 2019, 53, 8177-8186.‏ https://doi.org/10.1021/acs.est.9b01474
dc.relation.referencesen[11] Gigault, J.; Pedrono, B.; Maxit, B.; Ter Halle, A. Marine Plastic Litter: The Unanalyzed Nano-Fraction. Environ. Sci. Nano 2016, 3, 346-350. https://doi.org/10.1039/P.6EN00008H
dc.relation.referencesen[12] AL-Zamili, F.; Abass, A.; Najim, A. Effect of Some Organic Fillers on the Mechanical Properties of High Density Polyethylene. J.Thi-Qar Sci. 2009, 1, 27-34.‏
dc.relation.referencesen[13] Hammed, M.; Hamad, T. Study Of TiO2 Nanoparticles Induc-tion for Biological System. Thi-Qar Medical Journal 2019, 17, 110-117.‏
dc.relation.referencesen[14] Paço, A.; Duarte, K.; da Costa, J.P.; Santos, P.S.M.; Pereira, R.; Pereira,M.E.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Biodegradation of Polyethylene Microplastics by the Marine Fungus Zalerion Maritimum. Sci. Total Environ. 2017, 586, 10-15.‏ https://doi.org/10.1016/j.scitotenv.2017.02.017
dc.relation.referencesen[15] Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Hernández-López, J.M.; de la Rosa, J.R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. Microplastic Pollution Reduction by a Carbon and Nitrogen-Doped TiO2: Effect of pH and Temperature in the Photocatalytic Degradation Process. J. Hazard. Mater. 2020, 395, 122632.‏ https://doi.org/10.1016/j.jhazmat.2020.122632
dc.relation.referencesen[16] Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. New Strategy for Microplastic Degradation: Green Photocatalysis Using a Protein-Based Porous N-TiO2 Semiconductor. Ceram. Int. 2019, 45, 9618-9624.‏ https://doi.org/10.1016/j.ceramint.2018.10.208
dc.relation.referencesen[17] Kulkarni, M.; Thakur, P. The Effect of UV/TiO2/H2O2 Process and Influence of Operational Parameters on Photocatalytic Degrada-tion of Azo Dye in Aqueous TiO2 Suspension. Chem. Chem. Tech-nol. 2010, 4, 265-270. https://doi.org/10.23939/chcht04.04.265
dc.relation.referencesen[18] Nikolenko, A.; Melnykov, B. Photocatalytic Oxidation of Formaldehyde Vapour Using Amorphous Titanium Dioxide. Chem. Chem. Technol. 2010, 4, 311-315. https://doi.org/10.23939/chcht04.04.311
dc.relation.referencesen[19] Coronel, S.; Pauker, Ch.S.; Jentzsch, P.V.; de la Torre, E.; Endara, D.; Muñoz-Bisesti, F. Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol. Chem. Chem. Technol. 2020, 14, 161-168. https://doi.org/10.23939/chcht14.02.161
dc.relation.referencesen[20] Ali, S.S.; Qazi, I.A.; Arshad, M.; Khan, Z.; Voice, T.C.; Meh-mood, Ch.T. Photocatalytic Degradation of Low Density Polyethy-lene (LDPE) Films Using Titania Nanotubes. Environ. Nanotechnol. Monit. Manag. 2016, 5, 44-53.‏ https://doi.org/10.1016/j.enmm.2016.01.001
dc.relation.referencesen[21] Tofa, T.S.; Ye, F.; Kunjali, K.L.; Dutta, J. Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts. Catalysts 2019, 9, 819.‏ https://doi.org/10.3390/catal9100819
dc.relation.referencesen[22] Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible Light Photocatalytic Degradation of Microplastic Residues with Zinc Oxide Nanorods. Environ Chem Lett 2019, 17, 1341-1346.‏ https://doi.org/10.1007/s10311-019-00859-z
dc.relation.referencesen[23] Gardette, M.; Perthue, A.; Gardette, J.-L.; Janecska, T.; Földes, E.; Pukánszky, B.; Therias, S. Photo- and Thermal-Oxidation of Polyethylene: Comparison of Mechanisms and Influence of Unsaturation Content. Polym. Degrad. Stab. 2013, 98, 2383-2390. https://doi.org/10.1016/j.polymdegradstab.2013.07.017
dc.relation.referencesen[24] Dinda, B. Essentials of pericyclic and photochemical reactions. Vol. 93; Springer: Switzerland, 2017.
dc.relation.referencesen[25] Shang, J.; Chai, M.; Zhu, Y. Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light. Environ. Sci. Technol. 2003, 37, 4494-4499.‏ https://doi.org/10.1021/es0209464
dc.relation.urihttps://doi.org/10.1098/rstb.2009.0054
dc.relation.urihttps://doi.org/10.1016/j.marenvres.2015.10.014
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2007.11.008
dc.relation.urihttps://doi.org/10.1016/j.procbio.2006.05.018
dc.relation.urihttps://doi.org/10.1016/S0958-1669(00)00206-8
dc.relation.urihttps://doi.org/10.1016/j.apcatb.2011.01.030
dc.relation.urihttps://doi.org/10.1021/acs.est.6b06155
dc.relation.urihttps://doi.org/10.1021/es501385y
dc.relation.urihttps://doi.org/10.1021/acs.est.9b01474
dc.relation.urihttps://doi.org/10.1039/C6EN00008H
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2017.02.017
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2020.122632
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2018.10.208
dc.relation.urihttps://doi.org/10.23939/chcht04.04.265
dc.relation.urihttps://doi.org/10.23939/chcht04.04.311
dc.relation.urihttps://doi.org/10.23939/chcht14.02.161
dc.relation.urihttps://doi.org/10.1016/j.enmm.2016.01.001
dc.relation.urihttps://doi.org/10.3390/catal9100819
dc.relation.urihttps://doi.org/10.1007/s10311-019-00859-z
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2013.07.017
dc.relation.urihttps://doi.org/10.1021/es0209464
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Affat S. S., Mohammed S.S., 2023
dc.subjectнаночастинки
dc.subjectполіетилен
dc.subjectXRD
dc.subjectMgAl2O4
dc.subjectдеградація
dc.subjectnanoparticles
dc.subjectpolyethylene
dc.subjectXRD
dc.subjectMgAl2O4
dc.subjectdegradation
dc.titlePhotocatalytic Degradation of Polyethylene Plastics Using MgAl2O4 Nanoparticles Prepared by Solid State Method
dc.title.alternativeФотокаталітична деградація поліетиленових пластиків за допомогою наночастинок MgAl2O4, синтезованих твердофазним методом
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2023v17n3_Affat_Sajda_S-Photocatalytic_Degradation_503-509.pdf
Size:
506.79 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2023v17n3_Affat_Sajda_S-Photocatalytic_Degradation_503-509__COVER.png
Size:
532.31 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: