Властивості гідрогелевих мембран, одержаних модифікуванням в об’ємі

dc.citation.epage165
dc.citation.issue1
dc.citation.spage158
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБаран, Н. М.
dc.contributor.authorСуберляк, О. В.
dc.contributor.authorГриценко, О. М.
dc.contributor.authorМоравський, В. С.
dc.contributor.authorBaran, N. M.
dc.contributor.authorSuberlyak, O. V.
dc.contributor.authorGrytsenko, O. M.
dc.contributor.authorMoravskyi, V. S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:14:47Z
dc.date.available2024-01-22T08:14:47Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractОписано метод синтезу композиційних гідрогелевих мембран на основі кополімерів 2-гідроксіетилметакрилату (ГЕМА) з полівінілпіролідоном (ПВП), з одночасним модифікуванням в об’ємі розчином суміші поліаміду-6 (ПА-6) з ПВП, за різної концентрації реакційної маси у воді. Досліджено вплив кількості води, яка міститься у складі реакційної композиції, на фізико-механічні властивості та водопоглинання одержаних мембран.
dc.description.abstractThe method of the composite hydrogel membranes synthesis based on the 2-hydroxyethyl methacrylate (HEMA) and polyvinylpyrrolidone (PVP) with simultaneous modification in the volume by the mixture of polyamide-6 (PA-6) and PVP solution with varying the concentration of the reaction mixture in the water has been described in this study. The influence of the water content in the reaction composition on the physical mechanical properties and water absorption of the obtained membranes has been investigated. oplastic porous composies.
dc.format.extent158-165
dc.format.pages8
dc.identifier.citationВластивості гідрогелевих мембран, одержаних модифікуванням в об’ємі / Н. М. Баран, О. В. Суберляк, О. М. Гриценко, В. С. Моравський // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2021. — Том 4. — № 1. — С. 158–165.
dc.identifier.citationenThe properties of hydrogel membranes obtained by modification in the volyme / N. M. Baran, O. V. Suberlyak, O. M. Grytsenko, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 158–165.
dc.identifier.doidoi.org/10.23939/ctas2021.01.158
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60853
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (4), 2021
dc.relation.references1. Konovalova, V. V., Samchenko, Yu. M., Chyketa, O. O., Androniuk, Yu. O., Pobihai, H. A., Komarskyi, S. A., Burban, A. F. (2012). Kompozytsiini membrany na osnovi polimernykh hidroheliv ta ultrafiltratsiinykh membran iz funktsiieiu rN – i termochutlyvosti. Naukovi zapysky NaUKMA, 131, 12–18.
dc.relation.references2. Langer, R., Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. AICHE J., 49(12), 2990–3006. https://doi.org/10.1002/aic.690491202
dc.relation.references3. Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc. Chem. Res., 33(2), 94–101. doi: 10.1021/ar9800993
dc.relation.references4. Peppas, N. A., Hilt, J. Z., Khademhosseini, A., Langer, R. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced Materials, 1(11), 1345–1360. doi: 10.1002/adma.200501612
dc.relation.references5. Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21 (2–33), 3307–3329. doi: 10.1002/adma.200802106
dc.relation.references6. Lu, S., Anseth, K. S. (1999). Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J. Controlled Release, 57, 291–300. https://doi.org/10.1016/S0168-3659(98)00125-4
dc.relation.references7. Tang, Q., Yu, J.-R., Chen, L., Zhu, J., Hu, Z.-M. (2010). Preparation and properties of morphology controlled poly(2-hydroxyethyl methacrylate)/poly(Nvinyl pyrrolidone) double networks for biomedical use. Curr. Appl. Phys., 10, 766–770. doi:10.1016/j.cap.2009.09.012.
dc.relation.references8. Yanez, F., Concheiro, A., Alvarez-Lorenzo, C. (2008). Macromolecule release and smoothness of semiinterpenetrating PVP–pHEMA networks for comfortable soft contact lenses. Eur. J. Pharm. Biopharm., 69, 1094–1103. doi:10.1016/j.ejpb.2008.01.023.
dc.relation.references9. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., Berezhnyy, B. (2020). Formation features of tubular products on the basis of composite hydrogels. Chem. Chem. Technol., 14, 312–317.
dc.relation.references10. Jovašević, J., Dimitrijević, S., Filipović, J., Tomić, S., Mićić, M., Suljovrujić E. (2011). Swelling, mechanical and antimicrobialstudies of Ag/P(HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Phys. Pol., 120, 279–283. doi: 10.12693/APhysPolA.120.279.
dc.relation.references11. Ciardelli, G., Cristallini, C., Barbani, N., Benedetti, G., Crociani, A., Travison, L., Giusti, P. (2002). Bioartificial polymeric materials: -amylase, poly(2-hydroxyethyl methacrylate), poly(N-vinylpyrrolidone) system. Macromol. Chem. Phys., 203 (1666–1673).тdoi:10.1002/1521-3935(200207)203:10/11<1666::aidmacp1666>3.0.co;2-d.
dc.relation.references12. Frutos, P., Diez-Peña, E., Frutos, G., BarralesRienda, J. (2002). Release of gentamicin sulphate from a modified commercial bone cement. Effect of (2-hydroxyethyl methacrylate) comonomer and poly(N-vinyl2-pyrrolidone) additive on release mechanism and kinetics. Biomaterials., 23, 3787–3797. doi:10.1016/s0142-9612(02)00028-5.
dc.relation.references13. Domingues, J., Bonelli, N., Giorgi, R., Baglioni, P. (2013). Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Appl. Phys. A., 114, 705–710. doi:10.1007/s00339-013-8150-0.
dc.relation.references14. Bashtyk, Y., Fechan, A., Grytsenko, O., Hotra, Z., Kremer, I., Suberlyak, O., Aksimentyeva, O., Horbenko, Y., Kotsarenko M. (2019). Electrical elements of the optical systems based on hydrogel-electrochromic polymer composites. Mol. Cryst. Liq. Cryst., 672, 150–158. doi: 10.1080/15421406.2018.1550546.
dc.relation.references15. Lavrov, N. A. (2018). Himicheskaya modifikatsiya i svoystva polimerov 2-gidroksietilmet-akrilata. Plast. massyi, (7–8), 3–10. https://doi.org/10.35164/0554-2901-2018-7-8-3-10.
dc.relation.references16. Malyugin, B. E.,Borzenok, S. A., Mushkova,I. A., Ostrovskiy, D. S., Popov, I. A., Shkandina, Yu. V. (2017). Issledovanie biosovmestimosti materialov dlya vnutrirogovichnyih linz na modeli kulturyi kletok stromyi rogovitsyi cheloveka. Vestnik transplantologii i iskusstvennyih organov, 19(1), 74–81. https://doi.org/10.15825/1995-1191-2017-1-74-81.
dc.relation.references17. Semeniuk, N. B., Kohut, O. O., Chernyhevych, I. D., Neboha, H. B., Skorokhoda, V. Y. (2015). Osoblyvosti oderzhannia sferychnykh hidroheliv dlia system kontrolovanoho vyvilnennia likiv. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, (812), 404–408. http://nbuv.gov.ua/UJRN/VNULPX_2015_812_71.
dc.relation.references18. Suberliak, O. V., Hrytsenko, O. M., Koval, Yu. B., Voloshkevych, P. P. (2014). Metalonapovneni hidrohelevi plivky. Zakonomirnosti tekhnolohii oderzhannia vidtsentrovym formuvanniam. Khimichna promyslovist Ukrainy, 5(124), 33–39. https://sci.ldubgd.edu.ua/bitstream/123456789/2097/1/4.pdf
dc.relation.references19. Habiboallah, G., Nasroallah, S. & Mahdi, Z. (2008). Histological evaluation of Curcuma ongaghee formulation and hyaluronic acid on gingival healing in dog. Journal of Ethnopharmacology, 120(3), 335–341. doi: 10.1016/j.jep.2008.09.011
dc.relation.references20. Kim, G. H, Kang, Y. M. & Kang, K. N. (2011). Wound Dressings for Wound Healing and Drug Deliver. Tissue Engineering and Regenerative Medicine, 8(1), 1–7.
dc.relation.references21. Teodorescu, M., Bercea, M. Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications. Polym. Plast. Technol. Eng. 2015, 54, 923–943. https://doi.org/10.1080/03602559.2014.979506.
dc.relation.references22. Suberlyak, O.; Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK; 136–214. doi:10.5772/intechopen.72082.
dc.relation.references23. Roy, N.; Saha, N. (2012). PVP-based hydrogels: synthesis, properties and applications. In Hydrogels: Synthesis, Characterization and Applications; Câmara, F., Ferreira, L., Eds.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 227–252.
dc.relation.references24. Avramenko, V. L., Pidhorna, L. P., Cherkashchyna, H. M., Blyzniuk, O. V. (2018). Tekhnolohiia vyrobnytstva ta pererobky polimeriv medyko-biolohichnoho pryznachennia: navch. posib. Kharkiv. Tekhnolohichnyi Tsentr, 356.
dc.relation.references25. Baran, N. M., Melnyk, Yu. Ya., Suberliak, S. A., Yatsulchak, H. V., Zemke, V. M. (2018). Formuvannia kompozytsiinykh plivkovykh hidrohelevykh membran. Chemistry, technology and application of substances, 1(2), 132–135. http://nbuv.gov.ua/UJRN/chtaps_2018_1_2_23
dc.relation.references26. Suberlyak, O. V., Baran, N. M., Melnyk, Y. Y., Grytsenko, O. M., Yatsulchak, H. V. (2020). Influence of the molecular weight of polyvinylpyrrolidone on the physicomechanical properties of composite polyamide hydrogel membranes. Materials Science, Vol. 55, iss. 5, 758–764. doi: 10.1007/s11003-020-00368-3
dc.relation.references27. Suberlyak, O. V., Baran, N .M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121–126. http://nbuv.gov.ua/UJRN/Vchem_2018_3_19
dc.relation.references28. Hrytsenko, O. M., Skorokhoda, V. Y., Yadushynskyi, R. Ya. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. (488), 300–303.
dc.relation.references29. Hrytsenko, O. M., Skorokhoda, V. I., Shapoval, P. I., Bukhvak,I.V.(2000). Doslidzhennia pryshcheplenoi polimeryzatsii na PVP, initsiiovanoi soliamy metaliv zminnoi valentnosti. Visnyk DU “Lvivska politekhnika”. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia.(414), 82–85.
dc.relation.references30. Suberlyak, O. V., Mel’nyk, Yu. Ya., Skorokhoda, V. I. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50, 889–896.
dc.relation.referencesen1. Konovalova, V. V., Samchenko, Yu. M., Chyketa, O. O., Androniuk, Yu. O., Pobihai, H. A., Komarskyi, S. A., Burban, A. F. (2012). Kompozytsiini membrany na osnovi polimernykh hidroheliv ta ultrafiltratsiinykh membran iz funktsiieiu rN – i termochutlyvosti. Naukovi zapysky NaUKMA, 131, 12–18.
dc.relation.referencesen2. Langer, R., Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. AICHE J., 49(12), 2990–3006. https://doi.org/10.1002/aic.690491202
dc.relation.referencesen3. Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc. Chem. Res., 33(2), 94–101. doi: 10.1021/ar9800993
dc.relation.referencesen4. Peppas, N. A., Hilt, J. Z., Khademhosseini, A., Langer, R. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced Materials, 1(11), 1345–1360. doi: 10.1002/adma.200501612
dc.relation.referencesen5. Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21 (2–33), 3307–3329. doi: 10.1002/adma.200802106
dc.relation.referencesen6. Lu, S., Anseth, K. S. (1999). Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J. Controlled Release, 57, 291–300. https://doi.org/10.1016/S0168-3659(98)00125-4
dc.relation.referencesen7. Tang, Q., Yu, J.-R., Chen, L., Zhu, J., Hu, Z.-M. (2010). Preparation and properties of morphology controlled poly(2-hydroxyethyl methacrylate)/poly(Nvinyl pyrrolidone) double networks for biomedical use. Curr. Appl. Phys., 10, 766–770. doi:10.1016/j.cap.2009.09.012.
dc.relation.referencesen8. Yanez, F., Concheiro, A., Alvarez-Lorenzo, C. (2008). Macromolecule release and smoothness of semiinterpenetrating PVP–pHEMA networks for comfortable soft contact lenses. Eur. J. Pharm. Biopharm., 69, 1094–1103. doi:10.1016/j.ejpb.2008.01.023.
dc.relation.referencesen9. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., Berezhnyy, B. (2020). Formation features of tubular products on the basis of composite hydrogels. Chem. Chem. Technol., 14, 312–317.
dc.relation.referencesen10. Jovašević, J., Dimitrijević, S., Filipović, J., Tomić, S., Mićić, M., Suljovrujić E. (2011). Swelling, mechanical and antimicrobialstudies of Ag/P(HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Phys. Pol., 120, 279–283. doi: 10.12693/APhysPolA.120.279.
dc.relation.referencesen11. Ciardelli, G., Cristallini, C., Barbani, N., Benedetti, G., Crociani, A., Travison, L., Giusti, P. (2002). Bioartificial polymeric materials: -amylase, poly(2-hydroxyethyl methacrylate), poly(N-vinylpyrrolidone) system. Macromol. Chem. Phys., 203 (1666–1673).tdoi:10.1002/1521-3935(200207)203:10/11<1666::aidmacp1666>3.0.co;2-d.
dc.relation.referencesen12. Frutos, P., Diez-Peña, E., Frutos, G., BarralesRienda, J. (2002). Release of gentamicin sulphate from a modified commercial bone cement. Effect of (2-hydroxyethyl methacrylate) comonomer and poly(N-vinyl2-pyrrolidone) additive on release mechanism and kinetics. Biomaterials., 23, 3787–3797. doi:10.1016/s0142-9612(02)00028-5.
dc.relation.referencesen13. Domingues, J., Bonelli, N., Giorgi, R., Baglioni, P. (2013). Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Appl. Phys. A., 114, 705–710. doi:10.1007/s00339-013-8150-0.
dc.relation.referencesen14. Bashtyk, Y., Fechan, A., Grytsenko, O., Hotra, Z., Kremer, I., Suberlyak, O., Aksimentyeva, O., Horbenko, Y., Kotsarenko M. (2019). Electrical elements of the optical systems based on hydrogel-electrochromic polymer composites. Mol. Cryst. Liq. Cryst., 672, 150–158. doi: 10.1080/15421406.2018.1550546.
dc.relation.referencesen15. Lavrov, N. A. (2018). Himicheskaya modifikatsiya i svoystva polimerov 2-gidroksietilmet-akrilata. Plast. massyi, (7–8), 3–10. https://doi.org/10.35164/0554-2901-2018-7-8-3-10.
dc.relation.referencesen16. Malyugin, B. E.,Borzenok, S. A., Mushkova,I. A., Ostrovskiy, D. S., Popov, I. A., Shkandina, Yu. V. (2017). Issledovanie biosovmestimosti materialov dlya vnutrirogovichnyih linz na modeli kulturyi kletok stromyi rogovitsyi cheloveka. Vestnik transplantologii i iskusstvennyih organov, 19(1), 74–81. https://doi.org/10.15825/1995-1191-2017-1-74-81.
dc.relation.referencesen17. Semeniuk, N. B., Kohut, O. O., Chernyhevych, I. D., Neboha, H. B., Skorokhoda, V. Y. (2015). Osoblyvosti oderzhannia sferychnykh hidroheliv dlia system kontrolovanoho vyvilnennia likiv. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, (812), 404–408. http://nbuv.gov.ua/UJRN/VNULPX_2015_812_71.
dc.relation.referencesen18. Suberliak, O. V., Hrytsenko, O. M., Koval, Yu. B., Voloshkevych, P. P. (2014). Metalonapovneni hidrohelevi plivky. Zakonomirnosti tekhnolohii oderzhannia vidtsentrovym formuvanniam. Khimichna promyslovist Ukrainy, 5(124), 33–39. https://sci.ldubgd.edu.ua/bitstream/123456789/2097/1/4.pdf
dc.relation.referencesen19. Habiboallah, G., Nasroallah, S. & Mahdi, Z. (2008). Histological evaluation of Curcuma ongaghee formulation and hyaluronic acid on gingival healing in dog. Journal of Ethnopharmacology, 120(3), 335–341. doi: 10.1016/j.jep.2008.09.011
dc.relation.referencesen20. Kim, G. H, Kang, Y. M. & Kang, K. N. (2011). Wound Dressings for Wound Healing and Drug Deliver. Tissue Engineering and Regenerative Medicine, 8(1), 1–7.
dc.relation.referencesen21. Teodorescu, M., Bercea, M. Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications. Polym. Plast. Technol. Eng. 2015, 54, 923–943. https://doi.org/10.1080/03602559.2014.979506.
dc.relation.referencesen22. Suberlyak, O.; Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK; 136–214. doi:10.5772/intechopen.72082.
dc.relation.referencesen23. Roy, N.; Saha, N. (2012). PVP-based hydrogels: synthesis, properties and applications. In Hydrogels: Synthesis, Characterization and Applications; Câmara, F., Ferreira, L., Eds.; Nova Science Publishers Inc., Hauppauge, NY, USA, 227–252.
dc.relation.referencesen24. Avramenko, V. L., Pidhorna, L. P., Cherkashchyna, H. M., Blyzniuk, O. V. (2018). Tekhnolohiia vyrobnytstva ta pererobky polimeriv medyko-biolohichnoho pryznachennia: navch. posib. Kharkiv. Tekhnolohichnyi Tsentr, 356.
dc.relation.referencesen25. Baran, N. M., Melnyk, Yu. Ya., Suberliak, S. A., Yatsulchak, H. V., Zemke, V. M. (2018). Formuvannia kompozytsiinykh plivkovykh hidrohelevykh membran. Chemistry, technology and application of substances, 1(2), 132–135. http://nbuv.gov.ua/UJRN/chtaps_2018_1_2_23
dc.relation.referencesen26. Suberlyak, O. V., Baran, N. M., Melnyk, Y. Y., Grytsenko, O. M., Yatsulchak, H. V. (2020). Influence of the molecular weight of polyvinylpyrrolidone on the physicomechanical properties of composite polyamide hydrogel membranes. Materials Science, Vol. 55, iss. 5, 758–764. doi: 10.1007/s11003-020-00368-3
dc.relation.referencesen27. Suberlyak, O. V., Baran, N .M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121–126. http://nbuv.gov.ua/UJRN/Vchem_2018_3_19
dc.relation.referencesen28. Hrytsenko, O. M., Skorokhoda, V. Y., Yadushynskyi, R. Ya. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". (488), 300–303.
dc.relation.referencesen29. Hrytsenko, O. M., Skorokhoda, V. I., Shapoval, P. I., Bukhvak,I.V.(2000). Doslidzhennia pryshcheplenoi polimeryzatsii na PVP, initsiiovanoi soliamy metaliv zminnoi valentnosti. Visnyk DU "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia.(414), 82–85.
dc.relation.referencesen30. Suberlyak, O. V., Mel’nyk, Yu. Ya., Skorokhoda, V. I. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50, 889–896.
dc.relation.urihttps://doi.org/10.1002/aic.690491202
dc.relation.urihttps://doi.org/10.1016/S0168-3659(98)00125-4
dc.relation.urihttps://doi.org/10.35164/0554-2901-2018-7-8-3-10
dc.relation.urihttps://doi.org/10.15825/1995-1191-2017-1-74-81
dc.relation.urihttp://nbuv.gov.ua/UJRN/VNULPX_2015_812_71
dc.relation.urihttps://sci.ldubgd.edu.ua/bitstream/123456789/2097/1/4.pdf
dc.relation.urihttps://doi.org/10.1080/03602559.2014.979506
dc.relation.urihttp://nbuv.gov.ua/UJRN/chtaps_2018_1_2_23
dc.relation.urihttp://nbuv.gov.ua/UJRN/Vchem_2018_3_19
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectгідрогель
dc.subjectмодифікування в об’ємі
dc.subject2-гідроксіетилметакрилат
dc.subjectполівінілпіролідон
dc.subjectполіамід
dc.subjecthydrogel
dc.subjecthybrid
dc.subjectmodification in the volume
dc.subject2-hydroxyethyl methacrylate
dc.subjectpolyvinylpyrrolidone
dc.subjectpolycaproamide
dc.titleВластивості гідрогелевих мембран, одержаних модифікуванням в об’ємі
dc.title.alternativeThe properties of hydrogel membranes obtained by modification in the volyme
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n1_Baran_N_M-The_properties_of_hydrogel_158-165.pdf
Size:
968.2 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n1_Baran_N_M-The_properties_of_hydrogel_158-165__COVER.png
Size:
456.06 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Plain Text
Description: