Adsorption of Oligomeric Peroxides on Aerosil and Magnesium Oxide and Their Behavior on the Water-Air Phases Interface
dc.citation.epage | 52 | |
dc.citation.issue | 1 | |
dc.citation.spage | 47 | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Dutka, Volodymyr | |
dc.contributor.author | Oshchapovska, Nataliya | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T09:33:03Z | |
dc.date.available | 2024-01-09T09:33:03Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Вивчено адсорбцію олігомерного пероксиду себацинової кислоти на аеросилах та дисперсному оксиді магнію. Знайдено параметри адсорбційного процесу. Показано, що адсорбція здійснюється внаслідок утворення водневих зв’язків поверхневих ОН– груп адсорбентів та пероксидними групами. Процес адсорбції подібний до поведінки пероксидних сполук на межі поділу фаз вода – повітря. Вивчено особливості формування мономолекулярних плівок олігомерних пероксидів на водній поверхні. Встановлено, що числові значення площ, екстрапольовані на нульовий тиск (S0), залежать від природи розчинника, який застосовували для нанесення пероксиду на межу розділу фаз. Моношари досліджуваних олігомерних пероксидів належать до конденсованого типу. Вивчено термічний розклад олігомерного пероксиду та його дипероксидного та монопероксидного аналогів. Показано, що сумарні константи швидкості термодеструкції k для олігомерного пероксиду вищі, у порівнянні з ди- та монопероксидними аналогами. Між числовими значеннями S0 та константами термічного розкладу k олігопероксиду існує кореляційна залежність. Чим менше значення S0, тим вище значення k. При перенесенні розчину олігомерного пероксиду в органічному розчиннику на межу розділу фаз конформаційний стан макромолекули зберігається, що впливає на чисельні значення величин k. | |
dc.description.abstract | Oligomeric peroxide adsorption of sebacic acid on aerosil and magnesium oxide was studied. Adsorption process parameters were found. It is shown that the adsorption takes place through the hydrogen bonds formation between OH–groups of adsorbents surface and peroxide groups. The adsorption process suggests the behavior of peroxide compounds on the water-air phase’s interface. Monomolecular film formations on water surface for oligomeric peroxides were studied. It was found that calculated values of the area extrapolated to zero pressure (S0) depend on the solvent which was used to apply the peroxide in the phases interface. Oligomeric peroxide monolayers considered as condensation-type monolayers. Thermal decomposition of oligomeric peroxide and its di- and monoperoxide analogues was studied. It was shown that total constants of thermal degradation rate k for oligomeric peroxide are higher than those for di- and monoperoxide analogues. There is a correlation between S0 calculated values and the constants of thermal degradation rate for oligoperoxide. The less is S0 value the higher is k value. The conformational state of the macromolecule was preserved during transferring the oligomeric peroxide solution in an organic solvent to the phases interface that affects k values. | |
dc.format.extent | 47-52 | |
dc.format.pages | 6 | |
dc.identifier.citation | Dutka V. Adsorption of Oligomeric Peroxides on Aerosil and Magnesium Oxide and Their Behavior on the Water-Air Phases Interface / Volodymyr Dutka, Nataliya Oshchapovska // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 47–52. | |
dc.identifier.citationen | Dutka V. Adsorption of Oligomeric Peroxides on Aerosil and Magnesium Oxide and Their Behavior on the Water-Air Phases Interface / Volodymyr Dutka, Nataliya Oshchapovska // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 47–52. | |
dc.identifier.doi | doi.org/10.23939/chcht15.01.047 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60705 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (15), 2021 | |
dc.relation.references | [1] Voronov S., Varvarenko S.: Peroxidovmisni Makromolekuly na Mezhi Rozdilu Phaz. Lviv Polytech. Publ. House, Lviv 2011. | |
dc.relation.references | [2] Yaremenko I., Vil V., Demchuk D. et al.: Beilstein J. Org. Chem., 2016, 12, 1647. https://doi.org/10.3762/bjoc.12.162 | |
dc.relation.references | [3] Antonovskii V., Khursan S.: Russ. Chem. Rev., 2003, 72, 939. https://doi.org/10.1070/RC2003v072n11ABEH000749 | |
dc.relation.references | [4] Jiang O., Li J., Zhang D. et al.: Polym. Chem., 2017, 8, 4428. https://doi.org/10.1039/C7PY00844A | |
dc.relation.references | [5] Dutka V., Aksimentyeva O., Oshshapovska N. et al.: Colloid. Interface., 2019, 3, 13. https://doi.org/10.3390/colloids3010013 | |
dc.relation.references | [6] Nedilko S.: Acta Phys. Pol. A, 2018, 133, 829. https://doi.org/10.12693/APhysPolA.133.829 | |
dc.relation.references | [7] Berlin A.: Polymernye Kompozitnye Materialy: Stryktura, Tehnologia. St. Petersburg 2011. | |
dc.relation.references | [8] Katz H., Milewski V.: Handbook of Fillers and Reinforcements for Plastics. Utility Reserch Co, Montclair Nrw Jersey, London, Toronto, Melbourne 1979. | |
dc.relation.references | [9] Sun W.: RSC. Adv., 2016, 6, 42084. https://doi.org/10.1039/C6RA02607A | |
dc.relation.references | [10] Dutka V., Kovalskiy Ya., Dutka Yu.: Ukr. Khim. Zh., 2016, 82,122. | |
dc.relation.references | [11] Dutka V.: Polymernyi Zh., 2013, 35, 134. | |
dc.relation.references | [12] Dutka V., Kovalskiy Ya., Dutka Yu.: Polymernyi Zh., 2014, 36, 207. | |
dc.relation.references | [13] Dutka V.: Polymernyi Zh., 2011, 33, 276. | |
dc.relation.references | [14] Dutka V.: Polymernyi Zh., 2010, 32, 166. | |
dc.relation.references | [15] Dutka V., Aksimentyeva O., Kovalskyi Ya., Halechko H.: XIV Ukr. Conf. on Macromolecules. Ukraine, Kyiv 2018, 103. | |
dc.relation.references | [16] Ostapovich B., Hertsik O., Kovalychyn Ya.: Laboratorni Roboty z Khimii Vysokomolekularnych Spolyk. Vyd-vo Lviv. Univ., Lviv 2019. | |
dc.relation.references | [17] Dutka V., Midyna G., Dutka Yu., Palchikova E.: Russ. J. Gen. Chem., 2015. 85, 2703. https://doi.org/10.1134/S1070363215120063 | |
dc.relation.references | [18] Dutka V., Midyana G., Pal’chikova E., Dutka Yu.: Russ. J. Gen. Chem., 2018, 88, 632. https://doi.org/10.1134/S1070363218040047 | |
dc.relation.references | [19] Antonovskii V., Buzulanova M.: Analitichskaya Khimia Organicheskikh Peroksidnykh Soedinenii: Khimia, Moskva 1978. | |
dc.relation.references | [20] Weissberger A., Proscauer E., Riddick J., Toops E.: Technics of Organic Chemistry, vol. 7. Organic Solvents: Physical Properties and Methods of Purification. Wiley, New York 1955. | |
dc.relation.references | [21] Gordon A., Ford R.: A Handbook of Practical Data, Techniques, and Reference. Wiley, New York 1972. | |
dc.relation.references | [22] Mottola M., Caruso B., Perilo M.: Sci. Rep., 2019, 9, 2259. https://doi.org/10.1038/s41598-019-38674-9 | |
dc.relation.references | [23] Wales D., Kitchen J.: Chem. Central J., 2016, 10, 72. https://doi.org/10.1186/s13065-016-0224-6 | |
dc.relation.references | [24] Scholl F., Coseli L.: Colloid Surface B, 2014, 126, 232. https://doi.org/10.1016/j.colsurfb.2014.12.033 | |
dc.relation.references | [25] Bezkrovnaya O., Mchedlov-Petrosyan N., Vodolazkaya N. et al.: Russ. J. Appl. Chem., 2008, 81, 696. https://doi.org/10.1134/S1070427208040253 | |
dc.relation.references | [26] Roberts G. (Ed.): Langmuir Blodgett Films. Springer 2013. https://doi.org/10.1007/978-1-4899-3716-2 | |
dc.relation.references | [27] Antonovskii V., Khursan S.: Phyzicheskaia Khimia Organicheskykh Peroxidov. Аkademkniga, Moskva 2003. | |
dc.relation.referencesen | [1] Voronov S., Varvarenko S., Peroxidovmisni Makromolekuly na Mezhi Rozdilu Phaz. Lviv Polytech. Publ. House, Lviv 2011. | |
dc.relation.referencesen | [2] Yaremenko I., Vil V., Demchuk D. et al., Beilstein J. Org. Chem., 2016, 12, 1647. https://doi.org/10.3762/bjoc.12.162 | |
dc.relation.referencesen | [3] Antonovskii V., Khursan S., Russ. Chem. Rev., 2003, 72, 939. https://doi.org/10.1070/RC2003v072n11ABEH000749 | |
dc.relation.referencesen | [4] Jiang O., Li J., Zhang D. et al., Polym. Chem., 2017, 8, 4428. https://doi.org/10.1039/P.7PY00844A | |
dc.relation.referencesen | [5] Dutka V., Aksimentyeva O., Oshshapovska N. et al., Colloid. Interface., 2019, 3, 13. https://doi.org/10.3390/colloids3010013 | |
dc.relation.referencesen | [6] Nedilko S., Acta Phys. Pol. A, 2018, 133, 829. https://doi.org/10.12693/APhysPolA.133.829 | |
dc.relation.referencesen | [7] Berlin A., Polymernye Kompozitnye Materialy: Stryktura, Tehnologia. St. Petersburg 2011. | |
dc.relation.referencesen | [8] Katz H., Milewski V., Handbook of Fillers and Reinforcements for Plastics. Utility Reserch Co, Montclair Nrw Jersey, London, Toronto, Melbourne 1979. | |
dc.relation.referencesen | [9] Sun W., RSC. Adv., 2016, 6, 42084. https://doi.org/10.1039/P.6RA02607A | |
dc.relation.referencesen | [10] Dutka V., Kovalskiy Ya., Dutka Yu., Ukr. Khim. Zh., 2016, 82,122. | |
dc.relation.referencesen | [11] Dutka V., Polymernyi Zh., 2013, 35, 134. | |
dc.relation.referencesen | [12] Dutka V., Kovalskiy Ya., Dutka Yu., Polymernyi Zh., 2014, 36, 207. | |
dc.relation.referencesen | [13] Dutka V., Polymernyi Zh., 2011, 33, 276. | |
dc.relation.referencesen | [14] Dutka V., Polymernyi Zh., 2010, 32, 166. | |
dc.relation.referencesen | [15] Dutka V., Aksimentyeva O., Kovalskyi Ya., Halechko H., XIV Ukr. Conf. on Macromolecules. Ukraine, Kyiv 2018, 103. | |
dc.relation.referencesen | [16] Ostapovich B., Hertsik O., Kovalychyn Ya., Laboratorni Roboty z Khimii Vysokomolekularnych Spolyk. Vyd-vo Lviv. Univ., Lviv 2019. | |
dc.relation.referencesen | [17] Dutka V., Midyna G., Dutka Yu., Palchikova E., Russ. J. Gen. Chem., 2015. 85, 2703. https://doi.org/10.1134/S1070363215120063 | |
dc.relation.referencesen | [18] Dutka V., Midyana G., Pal’chikova E., Dutka Yu., Russ. J. Gen. Chem., 2018, 88, 632. https://doi.org/10.1134/S1070363218040047 | |
dc.relation.referencesen | [19] Antonovskii V., Buzulanova M., Analitichskaya Khimia Organicheskikh Peroksidnykh Soedinenii: Khimia, Moskva 1978. | |
dc.relation.referencesen | [20] Weissberger A., Proscauer E., Riddick J., Toops E., Technics of Organic Chemistry, vol. 7. Organic Solvents: Physical Properties and Methods of Purification. Wiley, New York 1955. | |
dc.relation.referencesen | [21] Gordon A., Ford R., A Handbook of Practical Data, Techniques, and Reference. Wiley, New York 1972. | |
dc.relation.referencesen | [22] Mottola M., Caruso B., Perilo M., Sci. Rep., 2019, 9, 2259. https://doi.org/10.1038/s41598-019-38674-9 | |
dc.relation.referencesen | [23] Wales D., Kitchen J., Chem. Central J., 2016, 10, 72. https://doi.org/10.1186/s13065-016-0224-6 | |
dc.relation.referencesen | [24] Scholl F., Coseli L., Colloid Surface B, 2014, 126, 232. https://doi.org/10.1016/j.colsurfb.2014.12.033 | |
dc.relation.referencesen | [25] Bezkrovnaya O., Mchedlov-Petrosyan N., Vodolazkaya N. et al., Russ. J. Appl. Chem., 2008, 81, 696. https://doi.org/10.1134/S1070427208040253 | |
dc.relation.referencesen | [26] Roberts G. (Ed.): Langmuir Blodgett Films. Springer 2013. https://doi.org/10.1007/978-1-4899-3716-2 | |
dc.relation.referencesen | [27] Antonovskii V., Khursan S., Phyzicheskaia Khimia Organicheskykh Peroxidov. Akademkniga, Moskva 2003. | |
dc.relation.uri | https://doi.org/10.3762/bjoc.12.162 | |
dc.relation.uri | https://doi.org/10.1070/RC2003v072n11ABEH000749 | |
dc.relation.uri | https://doi.org/10.1039/C7PY00844A | |
dc.relation.uri | https://doi.org/10.3390/colloids3010013 | |
dc.relation.uri | https://doi.org/10.12693/APhysPolA.133.829 | |
dc.relation.uri | https://doi.org/10.1039/C6RA02607A | |
dc.relation.uri | https://doi.org/10.1134/S1070363215120063 | |
dc.relation.uri | https://doi.org/10.1134/S1070363218040047 | |
dc.relation.uri | https://doi.org/10.1038/s41598-019-38674-9 | |
dc.relation.uri | https://doi.org/10.1186/s13065-016-0224-6 | |
dc.relation.uri | https://doi.org/10.1016/j.colsurfb.2014.12.033 | |
dc.relation.uri | https://doi.org/10.1134/S1070427208040253 | |
dc.relation.uri | https://doi.org/10.1007/978-1-4899-3716-2 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Dutka V., Oshchapovska N., 2021 | |
dc.subject | олігомерні пероксиди | |
dc.subject | адсорбція | |
dc.subject | моношар | |
dc.subject | реакційна здатність | |
dc.subject | oligomeric peroxides | |
dc.subject | adsorption | |
dc.subject | monolayer | |
dc.subject | reactivity | |
dc.title | Adsorption of Oligomeric Peroxides on Aerosil and Magnesium Oxide and Their Behavior on the Water-Air Phases Interface | |
dc.title.alternative | Адсорбція олігомерних пероксидів на аеросилі і оксиді магнію та їхня поведінка на межі розділу фаз вода – повітря | |
dc.type | Article |
Files
License bundle
1 - 1 of 1