Characteristics and Applications of Waste Tire Pyrolysis Products. A Review

dc.citation.epage257
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage244
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationDanylo Halytsky Lviv National Medical University
dc.contributor.affiliationNational University of Food Technologies
dc.contributor.authorPyshyev, Serhiy
dc.contributor.authorLypko, Yurii
dc.contributor.authorDemchuk, Yuriy
dc.contributor.authorKukhar, Oleh
dc.contributor.authorKorchak, Bohdan
dc.contributor.authorPochapska, Iryna
dc.contributor.authorZhytnetskyi, Ihor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:46Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractРозглянуто екологічну проблему утворення, накопичення й утилізації відпрацьованих автомобільних шин(ВАШ) в Україні та світі. Встановлено, що ВАШ можуть слугувати цінною сировиною для одержання компонентів палив і технічних/індивідуальних хімічних речовин для подальших промислових процесів переробки. Одним із перспективних методів раціональної утилізації ВАШ може бути процес їхнього піролізу. У результаті процесу піролізу ВАШ одержуються наступні продукти: газоподібні, рідкі та твердий карбонізований залишок. Водночас, не існує ідеальної універсальної технології застосування продуктів піролізу ВАШ без попередніх методів обробки/очищення. Коротко розглянуто основні характеристики, методи переробки та сфери застосування продуктів, одержаних у результаті процесу піролізу ВАШ.
dc.description.abstractThe review considers the environmental problem of generation, accumulation and utilization of waste tires in Ukraine and the world. It is established that waste tires can serve as a valuable raw material for obtaining fuel components and technical/individual chemicals for further industrial processing. One of the promising methods for the rational utilization of waste tires may be their pyrolysis. The pyrolysis process of waste tires produces gaseous, liquid and solid carbonized residue. At the same time, there is no ideal universal technology for the use of waste tire pyrolysis products without preliminary treatment/purification methods. The main characteristics, processing methods and applications of products obtained from the pyrolysis of waste tires are briefly considered.
dc.format.extent244-257
dc.format.pages14
dc.identifier.citationCharacteristics and Applications of Waste Tire Pyrolysis Products. A Review / Serhiy Pyshyev, Yurii Lypko, Yuriy Demchuk, Oleh Kukhar, Bohdan Korchak, Iryna Pochapska, Ihor Zhytnetskyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 244–257.
dc.identifier.citationenCharacteristics and Applications of Waste Tire Pyrolysis Products. A Review / Serhiy Pyshyev, Yurii Lypko, Yuriy Demchuk, Oleh Kukhar, Bohdan Korchak, Iryna Pochapska, Ihor Zhytnetskyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 244–257.
dc.identifier.doidoi.org/10.23939/chcht18.02.244
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111787
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Hita, I.; Arabiourrutia, M.; Olazar, M.; Bilbao, J.; Arandes, J.M.; Castaño, P. Opportunities and Barriers for Producing High Quality Fuels from the Pyrolysis of Scrap Tires. Renew. Sust. Energ. Rev. 2016, 56, 745–759. https://doi.org/10.1016/j.rser.2015.11.081
dc.relation.references[2] Song, W.; Zhou, J.; Li, Y.; Li, Sh.; Yang, J. Utilization of Waste Tire Powder for Gaseous Fuel Generation via CO2 Gasification Using Waste Heat in Converter Vaporization Cooling Flue. Renew. Energ. 2021, 173, 283–296. https://doi.org/10.1016/j.renene.2021.03.090
dc.relation.references[3] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Fedevych, O.; Kułażyński, M.; Pstrowska, K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342–347. https://doi.org/10.1016/j.sajce.2022.12.003
dc.relation.references[4] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15, 239–246. https://doi.org/10.23939/chcht15.02.239
dc.relation.references[5] Korchak, B.; Hrynyshyn, O.; Chervinskyy, T.; Polyuzhin, I. Application of Vacuum Distillation for the Used Mineral Oils Recycling. Chem. Chem. Technol. 2018, 12, 365–371. https://doi.org/10.23939/chcht12.03.365
dc.relation.references[6] Grigorov, A.; Tulskii, H.; Chyrkina, M.; Bondarenko, S.; Vavreniuk, S. Complex Approach to the Processing of Polymer Waste into Fuel, Lubricant Materials and Construction Materials for the Oil Refining Industry. Pet. Coal 2023, 65, 1016–1022. http://repositsc.nuczu.edu.ua/handle/123456789/18918
dc.relation.references[7] Grigorov, A.; Ponomarenko, V.; Slepuzhnikov, E.; Artemev, S.; Bondarenko, O.; Ilinskyi, O.; Bryhada, O. Сompatibility of Recycling Plastic Lubricants. Pet. Coal 2023, 65, 481–486. http://repositsc.nuczu.edu.ua/handle/123456789/18175
dc.relation.references[8] Grigorov, A.; Sinkevich, I.; Ponomarenko, N.; Bondarenko, O.; Usachov, D.; Matukhno, V.; Shevchuk, O. Recycling of Polymer Waste into Plastic Lubricants. Pet. Coal 2022, 64, 709–713. http://repositsc.nuczu.edu.ua/handle/123456789/16152
dc.relation.references[9] Hrynyshyn, K.; Chervinskyy, T.; Helzhynskyy, I.; Skorokhoda, V. Study on Regularities of Polyethylene Waste Low-Temperature Pyrolysis. Chem. Chem. Technol. 2023, 17, 923–928. https://doi.org/10.23939/chcht17.04.923
dc.relation.references[10] Hrynyshyn, K.; Skorokhoda, V.; Chervinskyy, T. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159–163. https://doi.org/10.23939/chcht16.01.159
dc.relation.references[11] Recycling of tires. https://ecological.investments/shini/ (accessed 2021-01-10)
dc.relation.references[12] Karagöz, M.; Ağbulut, Ü.; Sarıdemir, S. Waste to Energy: Production of Waste Tire Pyrolysis Oil and Comprehensive Analysis of its Usability in Diesel Engines. Fuel 2020, 275, 117844. https://doi.org/10.1016/j.fuel.2020.117844
dc.relation.references[13] Formela, K. Sustainable Development of Waste Tires Recycling Technologies – Recent Advances, Challenges and Future Trends. Adv. Ind. Eng. Polym. Res. 2021, 4, 209–222. https://doi.org/10.1016/j.aiepr.2021.06.004
dc.relation.references[14] The number of cars in the EU increased to 560 per 1,000 people. https://www.fixygen.ua/news/20240125/kilkist-avtomobiliv.html (accessed 2024-01-25)
dc.relation.references[15] Will it be legal to transfer used car tires to the contractor, if his main activity is the production of other rubber products? https://ukraine-oss.com/chy-zakonnoyu-bude-peredacha-pidpryyemstvu-vykonavczyu-vidpraczovanyh-avtomobilnyh-shyn-yakshho-osnovnym-vydom-diyalnosti-u-nogo-ye-vyrobnycztvo-inshyh-gumovyh-vyrobiv/ (accessed 2023-06-30)
dc.relation.references[16] Zhang, X.; Tang, J.; Chen, J. Behavior of Sulfur During Pyrolysis of Waste Tires: A Critical Review. J. Energy Inst. 2022, 102, 302–314. https://doi.org/10.1016/j.joei.2022.04.006
dc.relation.references[17] Valentini, F.; Pegoretti, A. End-of-Life Options Of Tires. A Review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. https://doi.org/10.1016/j.aiepr.2022.08.006
dc.relation.references[18] Where to hand over old tires for recycling: disposal of used tires. https://ascania-shina.com/ua/articles/kuda-sdat-starye-shiny-na-pererabotku (accessed 2022-07-24)
dc.relation.references[19] Palos, R.; Gutiérrez, A.; Vela, F.J.; Olazar, M.; Arandes, J.M.; Bilbao, J. Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review. Energy & Fuels 2021, 35, 3529–3557. https://doi.org/10.1021/acs.energyfuels.0c03918
dc.relation.references[20] Lin, Y.R.; Teng, H. Mesoporous Carbons from Waste Tire Char and their Application in Wastewater Discoloration. Micropor. Mesopor. Mat. 2002, 54, 167–174. https://doi.org/10.1016/S1387-1811(02)00380-3
dc.relation.references[21] Xu, J.; Yu, J.; Xu, J.; Sun, C.; He, W.; Huang, J.; Li, G. High-Value Utilization of Waste Tires: A Review with Focus on Modified Carbon Black from Pyrolysis. Sci. Total Environ. 2020, 742, 140235. https://doi.org/10.1016/j.scitotenv.2020.140235
dc.relation.references[22] Bockstal, L; Berchem, T; Schmetz, Q; Richel, A. Devulcanisation and Reclaiming of Tires and Rubber by Physical and Chemical Processes: A Review. J. Cleaner. Prod. 2019, 236, 117574 https://doi.org/10.1016/j.jclepro.2019.07.049
dc.relation.references[23] Nakanishi, Y; Mita, K; Yamamoto, K; Ichino, K.; Takenaka, M. Effects of Mixing Process on Spatial Distribution and Coexistence of Sulfur and Zinc in Vulcanized EPDM Rubber. Polymer 2021, 218, 123486 https://doi.org/10.1016/j.polymer.2021.123486
dc.relation.references[24] Singh, R.K; Ruj, B; Jana, A; Mondal, S.; Jana, B.; Sadhukhan, A.K.; Gupta, P. Pyrolysis of Three Different Categories of Automotive Tyre Wastes: Product Yield Analysis and Characterization. J. Anal. Appl. Pyrolysis 2018, 135, 379–389 https://doi.org/10.1016/j.jaap.2018.08.011
dc.relation.references[25] Han, J.; Li, W.; Liu, D.; Qin, L.; Chen, W.; Xing, F. Pyrolysis Characteristic and Mechanism of Waste Tyre: A Thermogravimetry-Mass Spectrometry Analysis. J. Anal. Appl. Pyrolysis 2018, 129, 1–5. https://doi.org/10.1016/j.jaap.2017.12.016
dc.relation.references[26] Nagurskyy, A.; Grynyshyn, O.; Khlibyshyn, Y.; Korchak, B. Use of Rubber Crumb Obtained from Waste Car Tires for the Production of Road Bitumen and Roofing Materials from Residues of Ukrainian Oil Processing. Chem. Chem. Technol. 2023, 17, 674–680. https://doi.org/10.23939/chcht17.03.674
dc.relation.references[27] Feng, Z.; Rao, W.; Chen, Ch.; Tian, B.; Li, X.; Li, P.; Guo, Q. Performance Evaluation of Bitumen Modified with Pyrolysis Carbon Black Made from Waste Tires. Constr. Build. Mater. 2016, 111, 495–501. https://doi.org/10.1016/j.conbuildmat.2016.02.143
dc.relation.references[28] Williams, P.T. Pyrolysis of Waste Tires: A Review. Waste. Manag. 2013, 33, 1714–1728. https://doi.org/10.1016/j.wasman.2013.05.003
dc.relation.references[29] Martinez, J.D.; Puy, N.; Murillo, R.; Garcia, T.; Navarro, M.V.; Mastral, A.M. Waste Tyre Pyrolysis – A Review. Renew. Sustain. Energy Rev. 2013, 23, 179–213. https://doi.org/10.1016/j.rser.2013.02.038
dc.relation.references[30] Oboirien, B.O.; North B.C. A Review of Waste Tyre Gasification. J. Environ. Chem. Eng. 2017, 5, 5169–5178. https://doi.org/10.1016/j.jece.2017.09.057
dc.relation.references[31] Xi-Shan, T.; Wei-Hua, Z.; Dong-Qing, L.I. Combustion Characteristics of the Waste Tire by Thermo-Gravimetric Analysis. J. Nanjing Univ. Technol. 2006, 28, 85–88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020
dc.relation.references[32] Kim, J.K.; Lee, S.H. New Technology of Crumb Rubber Compounding for Recycling of Waste Tires. J. Appl. Polym. Sci. 2000, 78, 1573–1577. https://doi.org/10.1002/1097-4628(20001121)78:8%3C1573::AID-APP150%3E3.0.CO;2-P
dc.relation.references[33] Llompart, M.; Sanchez-Prado, L.; Lamas, J.P.; Garcia-Jares, C.; Roca, E.; Dagnac, T. Hazardous Organic Chemicals in Rubber Recycled Tire Playgrounds and Pavers. Chemosphere 2013, 90, 423–431. https://doi.org/10.1016/j.chemosphere.2012.07.053
dc.relation.references[34] Kardnkeyan, S.; Sathiskumar, C.; Moorthy, R.S. Effect of Process Parameters on Tire Pyrolysis: A Review. J. Sci. Ind. Res. 2012, 71, 309–315. http://nopr.niscpr.res.in/handle/123456789/13986
dc.relation.references[35] Simic, V; Dabic-Ostojic, S. Interval-Parameter Chance-Constrained Programming Model for Uncertainty-Based Decision Making in Tire Retreading Industry. J. Cleaner. Prod. 2017, 167, 1490–1498. https://doi.org/10.1016/j.jclepro.2016.10.122
dc.relation.references[36] Wang, F; Gao, N; Quan, C. Progress on Pyrolysis Technology of Waste Tire and Upgrade and Recycle Utilization of Carbon Black Product. J. Chem. Eng. 2019, 70, 2864–2875. https://doi.org/10.11949/0438-1157.20190198
dc.relation.references[37] Uyumaz, A.; Aydogan, B.; Solmaz, H.; Yılmaz, E.; Hopa, D.Y.; Bahtli, T.A.; Solmaz, Ö.; Aksoy, F. Production of waste tyre oil and experimental investigation on combustion, engine performance and exhaust emissions. J. Energy. Inst. 2019, 92, 1406–1418. https://doi.org/10.1016/j.joei.2018.09.001
dc.relation.references[38] Narani, S.S.; Abbaspour, M.; Mir Mohammad Hosseini, S.M.; Aflaki, E.; Moghadas Nejad, F. Sustainable Reuse of Waste Tire Textile Fibers (WTTFs) as Reinforcement Materials for Expansive Soils: With a Special Focus on Landfill Liners/Covers. J. Cleaner. Prod. 2020, 247, 119151. https://doi.org/10.1016/j.jclepro.2019.119151
dc.relation.references[39] Li, W.; Huang, C.F.; Li, D.P.; Huo, P.; Wang, M.; Han, L.; Chen, G.; Li, H.; Li, X.; Wang, Y.; et al. Derived oil production by catalytic pyrolysis of scrap tires. Chin. J. Catal. 2016, 37, 526–532. https://doi.org/10.1016/S1872-2067(15)60998-6
dc.relation.references[40] Yaqoob, H.; Teoh, Y.H.; Sher, F.; Jamil, M.A.; Murtaza, D.; Al Qubeissi, M.; UI Hassan, M.; Mujtaba, M.A. Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries. Sustainability 2021, 13, 3214. https://doi.org/10.3390/su13063214
dc.relation.references[41] Wang, Y.P.; Dai, L.L.; Fan, L.L.; Duan, D.; Liu, Y.; Ruan, R.; Yu, Z.; Liu, Y.; Jiang, L. Microwave-Assisted Catalytic Fast co-Pyrolysis of Bamboo Sawdust and Waste Tire for Bio-Oil Production. J. Anal. Appl. Pyrolysis 2017, 123, 224–248. https://doi.org/10.1016/j.jaap.2016.11.025
dc.relation.references[42] Arabiourrutia, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Waste Tyre Valorization by Catalytic Pyrolysis – A Review. Renew. Sustain. Energy Rev. 2020, 129, 109932. https://doi.org/10.1016/j.rser.2020.109932
dc.relation.references[43] Luo, S.Y.; Feng, Y. The Production of Fuel Oil and Combustible Gas by Catalytic Pyrolysis of Waste Tire Using Waste Heat of Blast-Furnace Slag. Energy. Convers. Manage. 2017, 136, 27–35. https://doi.org/10.1016/j.enconman.2016.12.076
dc.relation.references[44] Lewandowski, W.M.; Januszewicz, K.; Kosakowski, W. Efficiency and Proportions of Waste Tyre Pyrolysis Products Depending on the Reactor Type - A Review. J. Anal. Appl. Pyrolysis 2019, 140, 25–53. https://doi.org/10.1016/j.jaap.2019.03.018
dc.relation.references[45] Quek, A.; Balasubramanian, R. Liquefaction of Waste Tires by Pyrolysis for Oil and Chemicals - A Review. J. Anal. Appl. Pyrolysis 2013, 101, 1–16. https://doi.org/10.1016/j.jaap.2013.02.016
dc.relation.references[46] Sathiskumar, C.; Karthikeyan, S. Recycling of Waste Tires and its Energy Storage Application of by-Products: A Review. Sustain. Mater. Technol. 2019, 22, e00125. https://doi.org/10.1016/j.susmat.2019.e00125
dc.relation.references[47] Al-Salem, S.M.; Karam, H.J.; Al-Qassimi, M.M. Pyro-gas Analysis of Fixed Bed Reactor End of Life Tires (ELTs) Pyrolysis: A Comparative Study. J. Environ. Manage. 2022, 320, 115852. https://doi.org/10.1016/j.jenvman.2022.115852
dc.relation.references[48] Czajczyńska, D.; Krzyżyńska, R.; Ghazal, H.; Jouhara, H. Experimental Investigation of Waste Tires Pyrolysis Gas Desulfurization through Absorption in Alkanolamines Solutions. Int. J. Hydrogen. Energ. 2022, 52, 1006–1014. https://doi.org/10.1016/j.ijhydene.2022.09.275
dc.relation.references[49] Abdallah, R.; Juaidi, A.; Assad, M.; Salameh, T.; Manzano-Agugliaro, F. Energy Recovery from Waste Tires Using Pyrolysis: Palestine as Case of Study. Energies 2020, 13, 1817. https://doi.org/10.3390/en13071817
dc.relation.references[50] Aylón, E.; Murillo, R.; Fernández-Colino, A.; Aranda, A.; García, T.; Callén, M. S.; Mastral, A.M. Emissions from the Combustion of Gas-Phase Products at Tyre Pyrolysis. J. Anal. Appl. Pyrol. 2007, 79, 210–214. https://doi.org/10.3390/en13071817
dc.relation.references[51] Mandal, B.; Bandyopadhyay, S.S. Simultaneous Absorption of CO2 and H2S into Aqueous Blends of N-methyldiethanolamine and Diethanolamine. Environ. Sci. Technol. 2006, 40, 6076–6084. https://doi.org/10.1021/es0606475
dc.relation.references[52] European Council DIRECTIVE 2010/75/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union. L334. 2016. 10.3000/17252555.L_2010.334.eng (accessed 2010-12-17)
dc.relation.references[53] Arabiourrutia, M.; Lopez, G.; Elordi, G.; Olazar, M.; Aguado, R.; Bilbao, J. Characterization of the Liquid Obtained in Tyre Pyrolysis in a Conical Spouted Bed Reactor. Int. J. Chem. React. Eng. 2007, 2007, 5. https://doi.org/10.2202/1542-6580.1570
dc.relation.references[54] Ding, K.; Zhong, Z.; Zhang, B.; Wang, J.; Min, A.; Ruan, R. Catalytic Pyrolysis of Waste Tire to Produce Valuable Aromatic Hydrocarbons: an Analytical Py-GC/MS Study. J. Anal. Appl. Pyrol. 2016, 122, 55–63. https://doi.org/10.1016/j.jaap.2016.10.023
dc.relation.references[55] Ahoor, A.H.; Zandi-Atashbar, N. Fuel Production Based on Catalytic Pyrolysis of Waste Tires as an Optimized Model. Energ. Convers. Manage. 2014, 87, 653–669. https://doi.org/10.1016/j.enconman.2014.07.033
dc.relation.references[56] Jantaraksa, N.; Prasassarakich, P.; Reubroycharoen, P.; Hinchiranan, N. Cleaner Alternative Liquid Fuels Derived from the Hydrodesulfurization of Waste Tire Pyrolysis Oil. Energ. Convers. Manage. 2015, 95, 424–434. https://doi.org/10.1016/j.enconman.2015.02.003
dc.relation.references[57] Laresgoiti, M.F.; Caballero, B.M.; de Marco, I.; Torres, A.; Cabrero, M.A.; Chomón, M. J. Characterization of the Liquid Products Obtained in Tyre Pyrolysis. J. Anal. Appl. Pyrol. 2004, 71, 917–934. https://doi.org/10.1016/j.jaap.2003.12.003
dc.relation.references[58] Pakdel, H.; Pantea, D.M.; Roy, C. Production of dl-limonene by Vacuum Pyrolysis of Used Tires. J. Anal. Appl. Pyrol. 2001, 57, 91–107. https://doi.org/10.1016/S0165-2370(00)00136-4
dc.relation.references[59] Conesa, J.A.; Font, R.; Marcilla, A. Gas from the Pyrolysis of Scrap Tires in a Fluidized Bed Reactor. Energy Fuels 1996, 10, 134–140. https://doi.org/10.1021/ef950152t
dc.relation.references[60] Januszewicz, K.; Kazimierski, P.; Kosakowski, W.; Lewandowski, W.M. Waste Tires Pyrolysis for Obtaining Limonene. Materials 2020, 13, 1359. https://doi.org/10.3390/ma13061359
dc.relation.references[61] Williams, P.T.; Brindle, A.J. Temperature Selective Condensation of Tyre Pyrolysis Oils to Maximise the Recovery of Single Ring Aromatic Compounds. Fuel 2003, 82, 1023–1031. https://doi.org/10.1016/S0016-2361(03)00016-4
dc.relation.references[62] Martín, M.T.; Aguirre, J.L.; Baena-González, J.; González, S.; Pérez-Aparicio, R.; Saiz-Rodríguez, L. Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires. Energies 2022, 15, 2128. https://doi.org/10.3390/en15062128
dc.relation.references[63] Campuzano, F.; Gani, A.; Jameel, A.; Zhang, W.; Emwas, A.; Agudelo, F.; Daniel, J.; Sarathy, S.M. On the Distillation of Waste Tire Pyrolysis Oil: A Structural Characterization of the Derived Fractions. Fuel 2021, 290, 120041. https://doi.org/10.1016/j.fuel.2020.120041
dc.relation.references[64] Karagöz, M. Investigation of Performance and Emission Characteristics of an CI Engine Fuelled with Diesel—Waste Tire Oil—Butanol Blends. Fuel 2020, 282, 118872. https://doi.org/10.1016/j.fuel.2020.118872
dc.relation.references[65] Umeki, E.R.; de Oliveira, C.F.; Torres, R.B.; dos Santos, R.G. Physico-Chemistry Properties of Fuel Blends Composed of Diesel and Tire Pyrolysis Oil. Fuel 2016, 185, 236–242. https://doi.org/10.1016/j.fuel.2016.07.092
dc.relation.references[66] Suchocki, T.; Witanowski, Ł.; Lampart, P.; Kazimierski, P.; Januszewicz, K.; Gawron, B. Experimental Investigation of Performance and Emission Characteristics of a Miniature Gas Turbine Supplied by Blends of Kerosene and Waste Tyre Pyrolysis Oil. Energy 2021, 215, 119125. https://doi.org/10.1016/j.energy.2020.119125
dc.relation.references[67] Yaqoob, H.; Heng, Y.; Ahmad, M.; Gulzar, M. Potential of Tire Pyrolysis Oil as an Alternate Fuel for Diesel Engines: A Review. J. Energy Inst. 2021, 96, 205–221. https://doi.org/10.1016/j.joei.2021.03.002
dc.relation.references[68] Arya, S.; Sharma, A.; Rawat, M.; Agrawal, A. Materials Today: Proceedings Tyre Pyrolysis Oil as an Alternative Fuel: A Review. Mater. Today Proc. 2020, 28, 2481–2484. https://doi.org/10.1016/j.matpr.2020.04.797
dc.relation.references[69] Rodriguez, I.; Laresgoiti, M.F.; Cabrero, M.A.; Torres, A.; Chomon, M.J.; Caballero, B. Pyrolysis of Scrap Tires. Fuel. Process. Technol. 2001, 72, 9–22. https://doi.org/10.1016/S0378-3820(01)00174-6
dc.relation.references[70] Williams, P.T.; Besler, S.; Taylor, D.T.; Bottrill, R.P. Pyrolysis of Automotive Tyre Waste. Journal of the Institute of Energy 1995, 68, 11–21.
dc.relation.references[71] Williams, P.T.; Besler, S. Pyrolysis-Thermogravimetric Analysis of Tires and Tyre Components. Fuel 1995, 74, 1277–1283. https://doi.org/10.1016/0016-2361(95)00083-H
dc.relation.references[72] González, J.F.; Encinar, J.M.; Canito, J.L.; Rodrı́guez, J.J. Pyrolysis of Automobile Tyre Waste. Influence of Operating Variables and Kinetics Study. J. Anal. Appl. Pyrol. 2001, 58, 667–683. https://doi.org/10.1016/S0165-2370(00)00201-1
dc.relation.references[73] López, G.; Olazar, M.; Aguado, R.; Bilbao, J. Continuous Pyrolysis of Waste Tires in a Conical Spouted Bed Reactor. Fuel 2010, 89, 1946–1952. https://doi.org/10.1016/j.fuel.2010.03.029
dc.relation.references[74] Chaala, A.; Roy, C. Production of Coke from Scrap Tire Vacuum Pyrolysis Oil. Fuel. Process. Technol. 1996, 46, 227–239. https://doi.org/10.1016/0378-3820(95)00065-8
dc.relation.references[75] Cunliffe, A.M.; Williams, P.T. Composition of Oils Derived from the Batch Pyrolysis of Tires. J. Anal. Appl. Pyrol. 1998, 44, 131–152. https://doi.org/10.1016/S0165-2370(97)00085-5
dc.relation.references[76] Roy, C.; Chaala, A.; Darmstadt, H. The Vacuum Pyrolysis of Used Tires. End-Uses for Oil and Carbon Black Products. J. Anal. Appl. Pyrol. 1999, 51, 201–221. https://doi.org/10.1016/S0165-2370(99)00017-0
dc.relation.references[77] Li, S.Q.; Yao, Q.; Chi, Y.; Yan, J.H.; Cen, K.F. Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor. Ind. Eng. Chem. Res. 2004, 43, 5133–5145. https://doi.org/10.1021/ie030115m
dc.relation.references[78] Dıez, C.; Martınez, O.; Calvo, L. F.; Cara, J.; Morán, A. Pyrolysis of Tires. Influence of the Final Temperature of the Process on Emissions and the Calorific Value of the Products Recovered. Waste Manage. 2004, 24, 463–469. https://doi.org/10.1016/j.wasman.2003.11.006
dc.relation.references[79] Ucar, S.; Karagoz, S.; Ozkan, A.R.; Yanik, J. Evaluation of Two Different Scrap Tires as Hydrocarbon Source by Pyrolysis. Fuel 2005, 84, 1884–1892. https://doi.org/10.1016/j.fuel.2005.04.002
dc.relation.references[80] Aylón, E.; Fernández-Colino, A.; Navarro, M.V.; Murillo, R.; García, T.; Mastral, A.M. Waste Tire Pyrolysis: Comparison between Fixed Bed Reactor and Moving Bed Reactor. Ind. Eng. Chem. Res. 2008, 47, 4029–4033. https://doi.org/10.1021/ie071573o
dc.relation.references[81] López, F.A.; Centeno, T.A.; Alguacil, F.J.; Lobato, B. Distillation of Granulated Scrap Tires in a Pilot Plant. J. Hazard. Mater. 2011, 190, 285–292. https://doi.org/10.1016/j.jhazmat.2011.03.039
dc.relation.references[82] Benallal, B.; Roy, C.; Pakdel, H.; Chabot, S.; Poirie, M.A. Characterization of Pyrolytic Light Naphtha from Vacuum Pyrolysis of Used Tires Comparison with Petroleum Naphtha. Fuel 1995, 74, 1589–1594. https://doi.org/10.1016/0016-2361(95)00165-2
dc.relation.references[83] Fernández, A.M.; Barriocanal, C.; Alvarez, R. Pyrolysis of a Waste from the Grinding of Scrap Tires. J. Hazard. Mater. 2012, 203, 236–243. https://doi.org/10.1016/j.jhazmat.2011.12.014
dc.relation.references[84] Roy, C.; Darmstadt, H.; Benallal, B.; Amen-Chen, C. Characterization of Naphtha and Carbon Black Obtained by Vacuum Pyrolysis of Polyisoprene Rubber. Fuel process. Technol. 1997, 50, 87–103. https://doi.org/10.1016/S0378-3820(96)01044-2
dc.relation.references[85] Zhang, X.; Wang, T.; Ma, L.; Chang, J. Vacuum Pyrolysis of Waste Tires with Basic Additives. Waste Manage. 2008, 28, 2301–2310. https://doi.org/10.1016/j.wasman.2007.10.009
dc.relation.references[86] Williams, P.T.; Besler, S.; Taylor, D.T. Pyrolysis of Scrap Automotive Tires: The Influence of Temperature and Heating Rate on Product Composition. Fuel 1990, 69, 1474–1482. https://doi.org/10.1016/0016-2361(90)90193-T
dc.relation.references[87] Williams, P.T.; Taylor, D.T. Aromatization of Tyre Pyrolysis Oil to Yield Polycyclic Aromatic Hydrocarbons. Fuel 1993, 72, 1469–1474. https://doi.org/10.1016/0016-2361(93)90002-J
dc.relation.references[88] Pyshyev, S.; Lypko, Y.; Korchak, B.; Poliuzhyn, I.; Hubrii, Z.; Pochapska, I.; Rudnieva, K. Study on the Composition of Gasoline Fractions Obtained as a Result of Waste Tires Pyrolysis and Production Bitumen Modifiers from it. J. Energy Inst. 2024, 114, 101598. https://doi.org/10.1016/j.joei.2024.101598
dc.relation.references[89] Cypres, R.; Bettens, B. Production of benzoles and active carbon from waste rubber and plastic materials by means of pyrolysis with simultaneous post-cracking. In Pyrolysis and gasification; Elsevier Applied Science London, UK, 1989; pp. 209-229.
dc.relation.references[90] Kwon, E.; Castaldi, M.J. Investigation of Mechanisms of Polycyclic Aromatic Hydrocarbons (PAHs) Initiated from the Thermal Degradation of Styrene Butadiene Rubber (SBR) in N2 Atmosphere. Environ. Sci. Technol. 2008, 42, 2175–2180. https://doi.org/10.1021/es7026532
dc.relation.references[91] Doğan, O.; Celik, M.B.; Özdalyan, B. The Effect of Tire Derived Fuel/Diesel Fuel Blends Utilization on Diesel Engine Performance and Emissions. Fuel 2012, 95, 340–346. https://doi.org/10.1016/j.fuel.2011.12.033
dc.relation.references[92] Ilkilic, C.; Aydin, H. Fuel Production from Waste Vehicle Tires by Catalytic Pyrolysis and its Application in a Diesel Engine. Fuel Process. Technol. 2011, 92, 1129–1135. https://doi.org/10.1016/j.fuproc.2011.01.009
dc.relation.references[93] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. Performance, Emission and Combustion Studies of a DI Diesel Engine Using Distilled Tires Pyrolysis Oil-Diesel Blends. Fuel Process. Technol. 2008, 89, 152–159. https://doi.org/10.1016/j.fuproc.2007.08.005
dc.relation.references[94] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. The Use of Tires Pyrolysis Oil in Diesel Engines. Waste Manage. 2008, 28, 2743–2749. https://doi.org/10.1016/j.wasman.2008.03.007
dc.relation.references[95] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. Assessment of Pyrolysis Oil as an Energy Source for Diesel Engines. Fuel Process. Technol. 2009, 90, 67–74. https://doi.org/10.1016/j.fuproc.2008.07.017
dc.relation.references[96] Islam, M.R.; Hiroyuki, H.; Beg, A.R.; Kazunori, T. Preliminary Investigation for Engine Performance by Using Tire-Derived Pyrolysis Oil-Diesel Blended Fuels. Journal of Power and Energy Systems. 2008, 2, 1359–1372. https://doi.org/10.1299/jpes.2.1359
dc.relation.references[97] Williams, P.T.; Bottrill, R.P.; Cunliffe, A.M. Combustion of Tyre Pyrolysis Oil. Process. Saf. Environ. 1998, 76, 291–301. https://doi.org/10.1205/095758298529650
dc.relation.references[98] Islam, M.R.; Haniu, H.; Beg, M.R.A. Liquid Fuels and Chemicals from Pyrolysis of Motorcycle Tire Waste: Product Yields, Compositions and Related Properties. Fuel 2008, 87, 3112–3122. https://doi.org/10.1016/j.fuel.2008.04.036
dc.relation.references[99] Pyshyev, S.V.; Lypko, Yu.V.; Korchak, B.O.; Niavkevych, M.V.; Rudnieva, K.Ye. Investigation of the Extraction Separation of Gasoline Fractions Obtained as a Result of Pyrolysis of Waste Tires. Journal of Coal Chemistry 2023, 6, 28–37. https://doi.org/10.31081/1681-309X-2023-0-6-28-37
dc.relation.references[100] Heywood, J.B. Internal combustion engine fundamentals; Mc Graw Hill, 1998.
dc.relation.references[101] Pulkrabek, W.W. Engineering fundamentals of the internal combustion engine; Prentice Hall: New Jersey, 1997.
dc.relation.references[102] Zabaniotou, A.A.; Stavropoulos, G. Pyrolysis of Used Automobile Tires and Residual Char Utilization. J. Anal. Appl. Pyrol. 2003, 70, 711–722. https://doi.org/10.1016/S0165-2370(03)00042-1
dc.relation.references[103] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Vytrykush, N. Influence of Water on Noncatalytic Oxidative Desulfurization of High-Sulfur Straight-Run Oil Fractions. ACS omega 2022, 7, 26495–26503. https://doi.org/10.1021/acsomega.2c02527
dc.relation.references[104] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Nyakuma, B. B. Study on Chemistry of Oxidative Desulfurization Process of High Sulfur Straight-Run Oil Fraction. Chem. Chem. Technol. 2021, 15, 414–422. https://doi.org/10.23939/chcht15.03.414
dc.relation.references[105] ISO 8217:2017 https://www.iso.org/standard/64247.html (accessed 2017-03-01)
dc.relation.references[106] DSTU 4058-2001 https://online.budstandart.com/ua/catalog/doc-page?id_doc=54025 (accessed 2002-07-01)
dc.relation.references[107] Roy, C.; Chaala, A.; Darmstadt, H.; Caumia, B.; Pakdel, H.; Yang, J. Conversion of used tires to carbon black and oil by pyrolysis. In Rubber recycling; CRC Press Taylor & Francis Group Florida, 2005; pp. 458-499.
dc.relation.references[108] Miguel, G.S.; Fowler, G.D.; Sollars, C.J. Pyrolysis of Tire Rubber: Porosity and Adsorption Characteristics of the Pyrolytic Chars. Ind. Eng. Chem. Res. 1998, 37, 2430–2435. https://doi.org/10.1021/ie970728x
dc.relation.references[109] Berrueco, C.; Esperanza, E.; Mastral, F.J.; Ceamanos, J.; García-Bacaicoa, P. Pyrolysis of Waste Tires in an Atmospheric Static-Bed Batch Reactor: Analysis of the Gases Obtained. J. Anal. Appl. Pyrol. 2005, 74, 245–253. https://doi.org/10.1016/j.jaap.2004.10.007
dc.relation.references[110] Helleur, R.; Popovic, N.; Ikura, M.; Stanciulescu, M.; Liu, D. Characterization and Potential Applications of Pyrolytic Char from Ablative Pyrolysis of Used Tires. J. Anal. Appl. Pyrol. 2001, 58, 813–824. https://doi.org/10.1016/S0165-2370(00)00207-2
dc.relation.references[111] Senneca, O.; Salatino, P.; Chirone, R. A Fast Heating-Rate Thermogravimetric Study of the Pyrolysis of Scrap Tires. Fuel 1999, 78, 1575–1581. https://doi.org/10.1016/S0016-2361(99)00087-3
dc.relation.references[112] Cunliffe, A.M.; Williams, P.T. Influence of Process Conditions on the Rate of Activation of Chars Derived from Pyrolysis of Used Tires. Energ. Fuel 1999, 13, 166–175. https://doi.org/10.1021/ef9801524
dc.relation.references[113] Murillo, R.; Navarro, M.V.; López, J.M.; Garcıa, T.; Callén, M.S.; Aylón, E.; Mastral, A.M. Activation of Pyrolytic Tire Char with CO2: Kinetic Study. J. Anal. Appl. Pyrol. 2004, 71, 945–957. https://doi.org/10.1016/j.jaap.2003.12.005
dc.relation.references[114] Murillo, R.; Navarro, M.V.; López, J.M.; Aylón, E.; Callén, M.S.; García, T.; Mastral, A.M. Kinetic Model Comparison for Waste Tire Char Reaction with CO2. Ind. Eng. Chem. Res. 2004, 43, 7768–7773. https://doi.org/10.1021/ie040026p
dc.relation.references[115] Mastral, A.M.; Alvarez, R.; Callén, M.S.; Clemente, C.; Murillo, R. Characterization of Chars from Coal−Tire Copyrolysis. Ind. Eng. Chem. Res. 1999, 38, 2856–2860. https://doi.org/10.1021/ie9805032
dc.relation.references[116] Chaala, A.; Darmstadt, H.; Roy, C. Acid-Base Method for the Demineralization of Pyrolytic Carbon Black. Fuel. Process. Technol. 1996, 46, 1–15. https://doi.org/10.1016/0378-3820(95)00044-5
dc.relation.references[117] Sebok, E.B.; Taylor, R.L. Carbon blacks. In Encyclopedia of Materials: Science and Technology; Elsevier Ltd., 2001; pp 902–906. https://doi.org/10.1016/B0-08-043152-6/00173-X
dc.relation.references[118] Sahu, A. K.; Sudhakar, K. Effect of UV Exposure on Bimodal HDPE Floats for Floating Solar Application. J. Mater. Res. Technol. 2019, 8, 147–156. https://doi.org/10.1016/j.jmrt.2017.10.002
dc.relation.references[119] Mui, E.L.K.; Cheung, W.H.; McKay, G. Tyre Char Preparation from Waste Tyre Rubber for Dye Removal from Effluents. J. Hazard. Mater. 2010, 175, 151–158. https://doi.org/10.1016/j.jhazmat.2009.09.142
dc.relation.references[120] Tanthapanichakoon, W.; Ariyadejwanich, P.; Japthong, P.; Nakagawa, K.; Mukai, S.R.; Tamon, H. Adsorption-Desorption Characteristics of Phenol and Reactive Dyes from Aqueous Solution on Mesoporous Activated Carbon Prepared from Waste Tires. Water. Res. 2005, 39, 1347–1353. https://doi.org/10.1016/j.watres.2004.12.044
dc.relation.references[121] Lopez, G.; Olazar, M.; Artetxe, M.; Amutio, M.; Elordi, G.; Bilbao, J. Steam Activation of Pyrolytic Tyre Char at Different Temperatures. J. Anal. Appl. Pyrolysis. 2009, 85, 539–543. https://doi.org/10.1016/j.jaap.2008.11.002
dc.relation.references[122] Ogasawara, S.; Kuroda, M.; Wakao, N. Preparation of Activated Carbon by Thermaldecomposition of Used Automotive Tires. Ind. Eng. Chem. Res. 1987, 26, 2552–2556. https://doi.org/10.1021/ie00072a030
dc.relation.references[123] Suuberg, E.M.; Aarna, I. Kinetics of tire derived fuel (TDF) Char Oxidation and Accompanying Changes in Surface Area. Fuel 2009, 88, 179–186. https://doi.org/10.1016/j.fuel.2008.07.018
dc.relation.references[124] Antoniou, N.; Stavropoulos, G.; Zabaniotou, A. Activation of End of Life Tires Pyrolytic Char for Enhancing Viability of Pyrolysis - Critical Review, Analysis and Recommendations for a Hybrid Dual System. Renew. Sustain. Energy. Rev. 2014, 39, 1053–1073. https://doi.org/10.1016/j.rser.2014.07.143
dc.relation.references[125] Murillo, R.; Aylón, E.; Navarro, M.V.; Callén, M.S.; Aranda, A.; Mastral, A.M. The Application of Thermal Processes to Valorise Waste Tyre. Fuel. Process. Technol. 2006, 87, 143–147. https://doi.org/10.1016/j.fuproc.2005.07.005
dc.relation.references[126] Galvagno, S.; Casu, S.; Casabianca, T.; Calabrese, A.; Cornacchia, G. Pyrolysis Process for the Treatment of Scrap Tires: Preliminary Experimental Results. Waste. manage. 2002, 22, 917–923. https://doi.org/10.1016/S0956-053X(02)00083-1
dc.relation.references[127] Napoli, A.; Soudais, Y.; Lecomte, D.; Castillo, S. Scrap Tyre Pyrolysis: Are the Effluents Valuable Products? J. Anal. Appl. Pyrol. 1997, 40, 373–382. https://doi.org/10.1016/S0165-2370(97)00011-9
dc.relation.referencesen[1] Hita, I.; Arabiourrutia, M.; Olazar, M.; Bilbao, J.; Arandes, J.M.; Castaño, P. Opportunities and Barriers for Producing High Quality Fuels from the Pyrolysis of Scrap Tires. Renew. Sust. Energ. Rev. 2016, 56, 745–759. https://doi.org/10.1016/j.rser.2015.11.081
dc.relation.referencesen[2] Song, W.; Zhou, J.; Li, Y.; Li, Sh.; Yang, J. Utilization of Waste Tire Powder for Gaseous Fuel Generation via CO2 Gasification Using Waste Heat in Converter Vaporization Cooling Flue. Renew. Energ. 2021, 173, 283–296. https://doi.org/10.1016/j.renene.2021.03.090
dc.relation.referencesen[3] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Fedevych, O.; Kułażyński, M.; Pstrowska, K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342–347. https://doi.org/10.1016/j.sajce.2022.12.003
dc.relation.referencesen[4] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15, 239–246. https://doi.org/10.23939/chcht15.02.239
dc.relation.referencesen[5] Korchak, B.; Hrynyshyn, O.; Chervinskyy, T.; Polyuzhin, I. Application of Vacuum Distillation for the Used Mineral Oils Recycling. Chem. Chem. Technol. 2018, 12, 365–371. https://doi.org/10.23939/chcht12.03.365
dc.relation.referencesen[6] Grigorov, A.; Tulskii, H.; Chyrkina, M.; Bondarenko, S.; Vavreniuk, S. Complex Approach to the Processing of Polymer Waste into Fuel, Lubricant Materials and Construction Materials for the Oil Refining Industry. Pet. Coal 2023, 65, 1016–1022. http://repositsc.nuczu.edu.ua/handle/123456789/18918
dc.relation.referencesen[7] Grigorov, A.; Ponomarenko, V.; Slepuzhnikov, E.; Artemev, S.; Bondarenko, O.; Ilinskyi, O.; Bryhada, O. Sompatibility of Recycling Plastic Lubricants. Pet. Coal 2023, 65, 481–486. http://repositsc.nuczu.edu.ua/handle/123456789/18175
dc.relation.referencesen[8] Grigorov, A.; Sinkevich, I.; Ponomarenko, N.; Bondarenko, O.; Usachov, D.; Matukhno, V.; Shevchuk, O. Recycling of Polymer Waste into Plastic Lubricants. Pet. Coal 2022, 64, 709–713. http://repositsc.nuczu.edu.ua/handle/123456789/16152
dc.relation.referencesen[9] Hrynyshyn, K.; Chervinskyy, T.; Helzhynskyy, I.; Skorokhoda, V. Study on Regularities of Polyethylene Waste Low-Temperature Pyrolysis. Chem. Chem. Technol. 2023, 17, 923–928. https://doi.org/10.23939/chcht17.04.923
dc.relation.referencesen[10] Hrynyshyn, K.; Skorokhoda, V.; Chervinskyy, T. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159–163. https://doi.org/10.23939/chcht16.01.159
dc.relation.referencesen[11] Recycling of tires. https://ecological.investments/shini/ (accessed 2021-01-10)
dc.relation.referencesen[12] Karagöz, M.; Ağbulut, Ü.; Sarıdemir, S. Waste to Energy: Production of Waste Tire Pyrolysis Oil and Comprehensive Analysis of its Usability in Diesel Engines. Fuel 2020, 275, 117844. https://doi.org/10.1016/j.fuel.2020.117844
dc.relation.referencesen[13] Formela, K. Sustainable Development of Waste Tires Recycling Technologies – Recent Advances, Challenges and Future Trends. Adv. Ind. Eng. Polym. Res. 2021, 4, 209–222. https://doi.org/10.1016/j.aiepr.2021.06.004
dc.relation.referencesen[14] The number of cars in the EU increased to 560 per 1,000 people. https://www.fixygen.ua/news/20240125/kilkist-avtomobiliv.html (accessed 2024-01-25)
dc.relation.referencesen[15] Will it be legal to transfer used car tires to the contractor, if his main activity is the production of other rubber products? https://ukraine-oss.com/chy-zakonnoyu-bude-peredacha-pidpryyemstvu-vykonavczyu-vidpraczovanyh-avtomobilnyh-shyn-yakshho-osnovnym-vydom-diyalnosti-u-nogo-ye-vyrobnycztvo-inshyh-gumovyh-vyrobiv/ (accessed 2023-06-30)
dc.relation.referencesen[16] Zhang, X.; Tang, J.; Chen, J. Behavior of Sulfur During Pyrolysis of Waste Tires: A Critical Review. J. Energy Inst. 2022, 102, 302–314. https://doi.org/10.1016/j.joei.2022.04.006
dc.relation.referencesen[17] Valentini, F.; Pegoretti, A. End-of-Life Options Of Tires. A Review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. https://doi.org/10.1016/j.aiepr.2022.08.006
dc.relation.referencesen[18] Where to hand over old tires for recycling: disposal of used tires. https://ascania-shina.com/ua/articles/kuda-sdat-starye-shiny-na-pererabotku (accessed 2022-07-24)
dc.relation.referencesen[19] Palos, R.; Gutiérrez, A.; Vela, F.J.; Olazar, M.; Arandes, J.M.; Bilbao, J. Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review. Energy & Fuels 2021, 35, 3529–3557. https://doi.org/10.1021/acs.energyfuels.0c03918
dc.relation.referencesen[20] Lin, Y.R.; Teng, H. Mesoporous Carbons from Waste Tire Char and their Application in Wastewater Discoloration. Micropor. Mesopor. Mat. 2002, 54, 167–174. https://doi.org/10.1016/S1387-1811(02)00380-3
dc.relation.referencesen[21] Xu, J.; Yu, J.; Xu, J.; Sun, C.; He, W.; Huang, J.; Li, G. High-Value Utilization of Waste Tires: A Review with Focus on Modified Carbon Black from Pyrolysis. Sci. Total Environ. 2020, 742, 140235. https://doi.org/10.1016/j.scitotenv.2020.140235
dc.relation.referencesen[22] Bockstal, L; Berchem, T; Schmetz, Q; Richel, A. Devulcanisation and Reclaiming of Tires and Rubber by Physical and Chemical Processes: A Review. J. Cleaner. Prod. 2019, 236, 117574 https://doi.org/10.1016/j.jclepro.2019.07.049
dc.relation.referencesen[23] Nakanishi, Y; Mita, K; Yamamoto, K; Ichino, K.; Takenaka, M. Effects of Mixing Process on Spatial Distribution and Coexistence of Sulfur and Zinc in Vulcanized EPDM Rubber. Polymer 2021, 218, 123486 https://doi.org/10.1016/j.polymer.2021.123486
dc.relation.referencesen[24] Singh, R.K; Ruj, B; Jana, A; Mondal, S.; Jana, B.; Sadhukhan, A.K.; Gupta, P. Pyrolysis of Three Different Categories of Automotive Tyre Wastes: Product Yield Analysis and Characterization. J. Anal. Appl. Pyrolysis 2018, 135, 379–389 https://doi.org/10.1016/j.jaap.2018.08.011
dc.relation.referencesen[25] Han, J.; Li, W.; Liu, D.; Qin, L.; Chen, W.; Xing, F. Pyrolysis Characteristic and Mechanism of Waste Tyre: A Thermogravimetry-Mass Spectrometry Analysis. J. Anal. Appl. Pyrolysis 2018, 129, 1–5. https://doi.org/10.1016/j.jaap.2017.12.016
dc.relation.referencesen[26] Nagurskyy, A.; Grynyshyn, O.; Khlibyshyn, Y.; Korchak, B. Use of Rubber Crumb Obtained from Waste Car Tires for the Production of Road Bitumen and Roofing Materials from Residues of Ukrainian Oil Processing. Chem. Chem. Technol. 2023, 17, 674–680. https://doi.org/10.23939/chcht17.03.674
dc.relation.referencesen[27] Feng, Z.; Rao, W.; Chen, Ch.; Tian, B.; Li, X.; Li, P.; Guo, Q. Performance Evaluation of Bitumen Modified with Pyrolysis Carbon Black Made from Waste Tires. Constr. Build. Mater. 2016, 111, 495–501. https://doi.org/10.1016/j.conbuildmat.2016.02.143
dc.relation.referencesen[28] Williams, P.T. Pyrolysis of Waste Tires: A Review. Waste. Manag. 2013, 33, 1714–1728. https://doi.org/10.1016/j.wasman.2013.05.003
dc.relation.referencesen[29] Martinez, J.D.; Puy, N.; Murillo, R.; Garcia, T.; Navarro, M.V.; Mastral, A.M. Waste Tyre Pyrolysis – A Review. Renew. Sustain. Energy Rev. 2013, 23, 179–213. https://doi.org/10.1016/j.rser.2013.02.038
dc.relation.referencesen[30] Oboirien, B.O.; North B.C. A Review of Waste Tyre Gasification. J. Environ. Chem. Eng. 2017, 5, 5169–5178. https://doi.org/10.1016/j.jece.2017.09.057
dc.relation.referencesen[31] Xi-Shan, T.; Wei-Hua, Z.; Dong-Qing, L.I. Combustion Characteristics of the Waste Tire by Thermo-Gravimetric Analysis. J. Nanjing Univ. Technol. 2006, 28, 85–88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020
dc.relation.referencesen[32] Kim, J.K.; Lee, S.H. New Technology of Crumb Rubber Compounding for Recycling of Waste Tires. J. Appl. Polym. Sci. 2000, 78, 1573–1577. https://doi.org/10.1002/1097-4628(20001121)78:8%3C1573::AID-APP150%3E3.0.CO;2-P
dc.relation.referencesen[33] Llompart, M.; Sanchez-Prado, L.; Lamas, J.P.; Garcia-Jares, C.; Roca, E.; Dagnac, T. Hazardous Organic Chemicals in Rubber Recycled Tire Playgrounds and Pavers. Chemosphere 2013, 90, 423–431. https://doi.org/10.1016/j.chemosphere.2012.07.053
dc.relation.referencesen[34] Kardnkeyan, S.; Sathiskumar, C.; Moorthy, R.S. Effect of Process Parameters on Tire Pyrolysis: A Review. J. Sci. Ind. Res. 2012, 71, 309–315. http://nopr.niscpr.res.in/handle/123456789/13986
dc.relation.referencesen[35] Simic, V; Dabic-Ostojic, S. Interval-Parameter Chance-Constrained Programming Model for Uncertainty-Based Decision Making in Tire Retreading Industry. J. Cleaner. Prod. 2017, 167, 1490–1498. https://doi.org/10.1016/j.jclepro.2016.10.122
dc.relation.referencesen[36] Wang, F; Gao, N; Quan, C. Progress on Pyrolysis Technology of Waste Tire and Upgrade and Recycle Utilization of Carbon Black Product. J. Chem. Eng. 2019, 70, 2864–2875. https://doi.org/10.11949/0438-1157.20190198
dc.relation.referencesen[37] Uyumaz, A.; Aydogan, B.; Solmaz, H.; Yılmaz, E.; Hopa, D.Y.; Bahtli, T.A.; Solmaz, Ö.; Aksoy, F. Production of waste tyre oil and experimental investigation on combustion, engine performance and exhaust emissions. J. Energy. Inst. 2019, 92, 1406–1418. https://doi.org/10.1016/j.joei.2018.09.001
dc.relation.referencesen[38] Narani, S.S.; Abbaspour, M.; Mir Mohammad Hosseini, S.M.; Aflaki, E.; Moghadas Nejad, F. Sustainable Reuse of Waste Tire Textile Fibers (WTTFs) as Reinforcement Materials for Expansive Soils: With a Special Focus on Landfill Liners/Covers. J. Cleaner. Prod. 2020, 247, 119151. https://doi.org/10.1016/j.jclepro.2019.119151
dc.relation.referencesen[39] Li, W.; Huang, C.F.; Li, D.P.; Huo, P.; Wang, M.; Han, L.; Chen, G.; Li, H.; Li, X.; Wang, Y.; et al. Derived oil production by catalytic pyrolysis of scrap tires. Chin. J. Catal. 2016, 37, 526–532. https://doi.org/10.1016/S1872-2067(15)60998-6
dc.relation.referencesen[40] Yaqoob, H.; Teoh, Y.H.; Sher, F.; Jamil, M.A.; Murtaza, D.; Al Qubeissi, M.; UI Hassan, M.; Mujtaba, M.A. Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries. Sustainability 2021, 13, 3214. https://doi.org/10.3390/su13063214
dc.relation.referencesen[41] Wang, Y.P.; Dai, L.L.; Fan, L.L.; Duan, D.; Liu, Y.; Ruan, R.; Yu, Z.; Liu, Y.; Jiang, L. Microwave-Assisted Catalytic Fast co-Pyrolysis of Bamboo Sawdust and Waste Tire for Bio-Oil Production. J. Anal. Appl. Pyrolysis 2017, 123, 224–248. https://doi.org/10.1016/j.jaap.2016.11.025
dc.relation.referencesen[42] Arabiourrutia, M.; Lopez, G.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Waste Tyre Valorization by Catalytic Pyrolysis – A Review. Renew. Sustain. Energy Rev. 2020, 129, 109932. https://doi.org/10.1016/j.rser.2020.109932
dc.relation.referencesen[43] Luo, S.Y.; Feng, Y. The Production of Fuel Oil and Combustible Gas by Catalytic Pyrolysis of Waste Tire Using Waste Heat of Blast-Furnace Slag. Energy. Convers. Manage. 2017, 136, 27–35. https://doi.org/10.1016/j.enconman.2016.12.076
dc.relation.referencesen[44] Lewandowski, W.M.; Januszewicz, K.; Kosakowski, W. Efficiency and Proportions of Waste Tyre Pyrolysis Products Depending on the Reactor Type - A Review. J. Anal. Appl. Pyrolysis 2019, 140, 25–53. https://doi.org/10.1016/j.jaap.2019.03.018
dc.relation.referencesen[45] Quek, A.; Balasubramanian, R. Liquefaction of Waste Tires by Pyrolysis for Oil and Chemicals - A Review. J. Anal. Appl. Pyrolysis 2013, 101, 1–16. https://doi.org/10.1016/j.jaap.2013.02.016
dc.relation.referencesen[46] Sathiskumar, C.; Karthikeyan, S. Recycling of Waste Tires and its Energy Storage Application of by-Products: A Review. Sustain. Mater. Technol. 2019, 22, e00125. https://doi.org/10.1016/j.susmat.2019.e00125
dc.relation.referencesen[47] Al-Salem, S.M.; Karam, H.J.; Al-Qassimi, M.M. Pyro-gas Analysis of Fixed Bed Reactor End of Life Tires (ELTs) Pyrolysis: A Comparative Study. J. Environ. Manage. 2022, 320, 115852. https://doi.org/10.1016/j.jenvman.2022.115852
dc.relation.referencesen[48] Czajczyńska, D.; Krzyżyńska, R.; Ghazal, H.; Jouhara, H. Experimental Investigation of Waste Tires Pyrolysis Gas Desulfurization through Absorption in Alkanolamines Solutions. Int. J. Hydrogen. Energ. 2022, 52, 1006–1014. https://doi.org/10.1016/j.ijhydene.2022.09.275
dc.relation.referencesen[49] Abdallah, R.; Juaidi, A.; Assad, M.; Salameh, T.; Manzano-Agugliaro, F. Energy Recovery from Waste Tires Using Pyrolysis: Palestine as Case of Study. Energies 2020, 13, 1817. https://doi.org/10.3390/en13071817
dc.relation.referencesen[50] Aylón, E.; Murillo, R.; Fernández-Colino, A.; Aranda, A.; García, T.; Callén, M. S.; Mastral, A.M. Emissions from the Combustion of Gas-Phase Products at Tyre Pyrolysis. J. Anal. Appl. Pyrol. 2007, 79, 210–214. https://doi.org/10.3390/en13071817
dc.relation.referencesen[51] Mandal, B.; Bandyopadhyay, S.S. Simultaneous Absorption of CO2 and H2S into Aqueous Blends of N-methyldiethanolamine and Diethanolamine. Environ. Sci. Technol. 2006, 40, 6076–6084. https://doi.org/10.1021/es0606475
dc.relation.referencesen[52] European Council DIRECTIVE 2010/75/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union. L334. 2016. 10.3000/17252555.L_2010.334.eng (accessed 2010-12-17)
dc.relation.referencesen[53] Arabiourrutia, M.; Lopez, G.; Elordi, G.; Olazar, M.; Aguado, R.; Bilbao, J. Characterization of the Liquid Obtained in Tyre Pyrolysis in a Conical Spouted Bed Reactor. Int. J. Chem. React. Eng. 2007, 2007, 5. https://doi.org/10.2202/1542-6580.1570
dc.relation.referencesen[54] Ding, K.; Zhong, Z.; Zhang, B.; Wang, J.; Min, A.; Ruan, R. Catalytic Pyrolysis of Waste Tire to Produce Valuable Aromatic Hydrocarbons: an Analytical Py-GC/MS Study. J. Anal. Appl. Pyrol. 2016, 122, 55–63. https://doi.org/10.1016/j.jaap.2016.10.023
dc.relation.referencesen[55] Ahoor, A.H.; Zandi-Atashbar, N. Fuel Production Based on Catalytic Pyrolysis of Waste Tires as an Optimized Model. Energ. Convers. Manage. 2014, 87, 653–669. https://doi.org/10.1016/j.enconman.2014.07.033
dc.relation.referencesen[56] Jantaraksa, N.; Prasassarakich, P.; Reubroycharoen, P.; Hinchiranan, N. Cleaner Alternative Liquid Fuels Derived from the Hydrodesulfurization of Waste Tire Pyrolysis Oil. Energ. Convers. Manage. 2015, 95, 424–434. https://doi.org/10.1016/j.enconman.2015.02.003
dc.relation.referencesen[57] Laresgoiti, M.F.; Caballero, B.M.; de Marco, I.; Torres, A.; Cabrero, M.A.; Chomón, M. J. Characterization of the Liquid Products Obtained in Tyre Pyrolysis. J. Anal. Appl. Pyrol. 2004, 71, 917–934. https://doi.org/10.1016/j.jaap.2003.12.003
dc.relation.referencesen[58] Pakdel, H.; Pantea, D.M.; Roy, C. Production of dl-limonene by Vacuum Pyrolysis of Used Tires. J. Anal. Appl. Pyrol. 2001, 57, 91–107. https://doi.org/10.1016/S0165-2370(00)00136-4
dc.relation.referencesen[59] Conesa, J.A.; Font, R.; Marcilla, A. Gas from the Pyrolysis of Scrap Tires in a Fluidized Bed Reactor. Energy Fuels 1996, 10, 134–140. https://doi.org/10.1021/ef950152t
dc.relation.referencesen[60] Januszewicz, K.; Kazimierski, P.; Kosakowski, W.; Lewandowski, W.M. Waste Tires Pyrolysis for Obtaining Limonene. Materials 2020, 13, 1359. https://doi.org/10.3390/ma13061359
dc.relation.referencesen[61] Williams, P.T.; Brindle, A.J. Temperature Selective Condensation of Tyre Pyrolysis Oils to Maximise the Recovery of Single Ring Aromatic Compounds. Fuel 2003, 82, 1023–1031. https://doi.org/10.1016/S0016-2361(03)00016-4
dc.relation.referencesen[62] Martín, M.T.; Aguirre, J.L.; Baena-González, J.; González, S.; Pérez-Aparicio, R.; Saiz-Rodríguez, L. Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires. Energies 2022, 15, 2128. https://doi.org/10.3390/en15062128
dc.relation.referencesen[63] Campuzano, F.; Gani, A.; Jameel, A.; Zhang, W.; Emwas, A.; Agudelo, F.; Daniel, J.; Sarathy, S.M. On the Distillation of Waste Tire Pyrolysis Oil: A Structural Characterization of the Derived Fractions. Fuel 2021, 290, 120041. https://doi.org/10.1016/j.fuel.2020.120041
dc.relation.referencesen[64] Karagöz, M. Investigation of Performance and Emission Characteristics of an CI Engine Fuelled with Diesel-Waste Tire Oil-Butanol Blends. Fuel 2020, 282, 118872. https://doi.org/10.1016/j.fuel.2020.118872
dc.relation.referencesen[65] Umeki, E.R.; de Oliveira, C.F.; Torres, R.B.; dos Santos, R.G. Physico-Chemistry Properties of Fuel Blends Composed of Diesel and Tire Pyrolysis Oil. Fuel 2016, 185, 236–242. https://doi.org/10.1016/j.fuel.2016.07.092
dc.relation.referencesen[66] Suchocki, T.; Witanowski, Ł.; Lampart, P.; Kazimierski, P.; Januszewicz, K.; Gawron, B. Experimental Investigation of Performance and Emission Characteristics of a Miniature Gas Turbine Supplied by Blends of Kerosene and Waste Tyre Pyrolysis Oil. Energy 2021, 215, 119125. https://doi.org/10.1016/j.energy.2020.119125
dc.relation.referencesen[67] Yaqoob, H.; Heng, Y.; Ahmad, M.; Gulzar, M. Potential of Tire Pyrolysis Oil as an Alternate Fuel for Diesel Engines: A Review. J. Energy Inst. 2021, 96, 205–221. https://doi.org/10.1016/j.joei.2021.03.002
dc.relation.referencesen[68] Arya, S.; Sharma, A.; Rawat, M.; Agrawal, A. Materials Today: Proceedings Tyre Pyrolysis Oil as an Alternative Fuel: A Review. Mater. Today Proc. 2020, 28, 2481–2484. https://doi.org/10.1016/j.matpr.2020.04.797
dc.relation.referencesen[69] Rodriguez, I.; Laresgoiti, M.F.; Cabrero, M.A.; Torres, A.; Chomon, M.J.; Caballero, B. Pyrolysis of Scrap Tires. Fuel. Process. Technol. 2001, 72, 9–22. https://doi.org/10.1016/S0378-3820(01)00174-6
dc.relation.referencesen[70] Williams, P.T.; Besler, S.; Taylor, D.T.; Bottrill, R.P. Pyrolysis of Automotive Tyre Waste. Journal of the Institute of Energy 1995, 68, 11–21.
dc.relation.referencesen[71] Williams, P.T.; Besler, S. Pyrolysis-Thermogravimetric Analysis of Tires and Tyre Components. Fuel 1995, 74, 1277–1283. https://doi.org/10.1016/0016-2361(95)00083-H
dc.relation.referencesen[72] González, J.F.; Encinar, J.M.; Canito, J.L.; Rodrı́guez, J.J. Pyrolysis of Automobile Tyre Waste. Influence of Operating Variables and Kinetics Study. J. Anal. Appl. Pyrol. 2001, 58, 667–683. https://doi.org/10.1016/S0165-2370(00)00201-1
dc.relation.referencesen[73] López, G.; Olazar, M.; Aguado, R.; Bilbao, J. Continuous Pyrolysis of Waste Tires in a Conical Spouted Bed Reactor. Fuel 2010, 89, 1946–1952. https://doi.org/10.1016/j.fuel.2010.03.029
dc.relation.referencesen[74] Chaala, A.; Roy, C. Production of Coke from Scrap Tire Vacuum Pyrolysis Oil. Fuel. Process. Technol. 1996, 46, 227–239. https://doi.org/10.1016/0378-3820(95)00065-8
dc.relation.referencesen[75] Cunliffe, A.M.; Williams, P.T. Composition of Oils Derived from the Batch Pyrolysis of Tires. J. Anal. Appl. Pyrol. 1998, 44, 131–152. https://doi.org/10.1016/S0165-2370(97)00085-5
dc.relation.referencesen[76] Roy, C.; Chaala, A.; Darmstadt, H. The Vacuum Pyrolysis of Used Tires. End-Uses for Oil and Carbon Black Products. J. Anal. Appl. Pyrol. 1999, 51, 201–221. https://doi.org/10.1016/S0165-2370(99)00017-0
dc.relation.referencesen[77] Li, S.Q.; Yao, Q.; Chi, Y.; Yan, J.H.; Cen, K.F. Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor. Ind. Eng. Chem. Res. 2004, 43, 5133–5145. https://doi.org/10.1021/ie030115m
dc.relation.referencesen[78] Dıez, C.; Martınez, O.; Calvo, L. F.; Cara, J.; Morán, A. Pyrolysis of Tires. Influence of the Final Temperature of the Process on Emissions and the Calorific Value of the Products Recovered. Waste Manage. 2004, 24, 463–469. https://doi.org/10.1016/j.wasman.2003.11.006
dc.relation.referencesen[79] Ucar, S.; Karagoz, S.; Ozkan, A.R.; Yanik, J. Evaluation of Two Different Scrap Tires as Hydrocarbon Source by Pyrolysis. Fuel 2005, 84, 1884–1892. https://doi.org/10.1016/j.fuel.2005.04.002
dc.relation.referencesen[80] Aylón, E.; Fernández-Colino, A.; Navarro, M.V.; Murillo, R.; García, T.; Mastral, A.M. Waste Tire Pyrolysis: Comparison between Fixed Bed Reactor and Moving Bed Reactor. Ind. Eng. Chem. Res. 2008, 47, 4029–4033. https://doi.org/10.1021/ie071573o
dc.relation.referencesen[81] López, F.A.; Centeno, T.A.; Alguacil, F.J.; Lobato, B. Distillation of Granulated Scrap Tires in a Pilot Plant. J. Hazard. Mater. 2011, 190, 285–292. https://doi.org/10.1016/j.jhazmat.2011.03.039
dc.relation.referencesen[82] Benallal, B.; Roy, C.; Pakdel, H.; Chabot, S.; Poirie, M.A. Characterization of Pyrolytic Light Naphtha from Vacuum Pyrolysis of Used Tires Comparison with Petroleum Naphtha. Fuel 1995, 74, 1589–1594. https://doi.org/10.1016/0016-2361(95)00165-2
dc.relation.referencesen[83] Fernández, A.M.; Barriocanal, C.; Alvarez, R. Pyrolysis of a Waste from the Grinding of Scrap Tires. J. Hazard. Mater. 2012, 203, 236–243. https://doi.org/10.1016/j.jhazmat.2011.12.014
dc.relation.referencesen[84] Roy, C.; Darmstadt, H.; Benallal, B.; Amen-Chen, C. Characterization of Naphtha and Carbon Black Obtained by Vacuum Pyrolysis of Polyisoprene Rubber. Fuel process. Technol. 1997, 50, 87–103. https://doi.org/10.1016/S0378-3820(96)01044-2
dc.relation.referencesen[85] Zhang, X.; Wang, T.; Ma, L.; Chang, J. Vacuum Pyrolysis of Waste Tires with Basic Additives. Waste Manage. 2008, 28, 2301–2310. https://doi.org/10.1016/j.wasman.2007.10.009
dc.relation.referencesen[86] Williams, P.T.; Besler, S.; Taylor, D.T. Pyrolysis of Scrap Automotive Tires: The Influence of Temperature and Heating Rate on Product Composition. Fuel 1990, 69, 1474–1482. https://doi.org/10.1016/0016-2361(90)90193-T
dc.relation.referencesen[87] Williams, P.T.; Taylor, D.T. Aromatization of Tyre Pyrolysis Oil to Yield Polycyclic Aromatic Hydrocarbons. Fuel 1993, 72, 1469–1474. https://doi.org/10.1016/0016-2361(93)90002-J
dc.relation.referencesen[88] Pyshyev, S.; Lypko, Y.; Korchak, B.; Poliuzhyn, I.; Hubrii, Z.; Pochapska, I.; Rudnieva, K. Study on the Composition of Gasoline Fractions Obtained as a Result of Waste Tires Pyrolysis and Production Bitumen Modifiers from it. J. Energy Inst. 2024, 114, 101598. https://doi.org/10.1016/j.joei.2024.101598
dc.relation.referencesen[89] Cypres, R.; Bettens, B. Production of benzoles and active carbon from waste rubber and plastic materials by means of pyrolysis with simultaneous post-cracking. In Pyrolysis and gasification; Elsevier Applied Science London, UK, 1989; pp. 209-229.
dc.relation.referencesen[90] Kwon, E.; Castaldi, M.J. Investigation of Mechanisms of Polycyclic Aromatic Hydrocarbons (PAHs) Initiated from the Thermal Degradation of Styrene Butadiene Rubber (SBR) in N2 Atmosphere. Environ. Sci. Technol. 2008, 42, 2175–2180. https://doi.org/10.1021/es7026532
dc.relation.referencesen[91] Doğan, O.; Celik, M.B.; Özdalyan, B. The Effect of Tire Derived Fuel/Diesel Fuel Blends Utilization on Diesel Engine Performance and Emissions. Fuel 2012, 95, 340–346. https://doi.org/10.1016/j.fuel.2011.12.033
dc.relation.referencesen[92] Ilkilic, C.; Aydin, H. Fuel Production from Waste Vehicle Tires by Catalytic Pyrolysis and its Application in a Diesel Engine. Fuel Process. Technol. 2011, 92, 1129–1135. https://doi.org/10.1016/j.fuproc.2011.01.009
dc.relation.referencesen[93] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. Performance, Emission and Combustion Studies of a DI Diesel Engine Using Distilled Tires Pyrolysis Oil-Diesel Blends. Fuel Process. Technol. 2008, 89, 152–159. https://doi.org/10.1016/j.fuproc.2007.08.005
dc.relation.referencesen[94] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. The Use of Tires Pyrolysis Oil in Diesel Engines. Waste Manage. 2008, 28, 2743–2749. https://doi.org/10.1016/j.wasman.2008.03.007
dc.relation.referencesen[95] Murugan, S.; Ramaswamy, M.C.; Nagarajan, G. Assessment of Pyrolysis Oil as an Energy Source for Diesel Engines. Fuel Process. Technol. 2009, 90, 67–74. https://doi.org/10.1016/j.fuproc.2008.07.017
dc.relation.referencesen[96] Islam, M.R.; Hiroyuki, H.; Beg, A.R.; Kazunori, T. Preliminary Investigation for Engine Performance by Using Tire-Derived Pyrolysis Oil-Diesel Blended Fuels. Journal of Power and Energy Systems. 2008, 2, 1359–1372. https://doi.org/10.1299/jpes.2.1359
dc.relation.referencesen[97] Williams, P.T.; Bottrill, R.P.; Cunliffe, A.M. Combustion of Tyre Pyrolysis Oil. Process. Saf. Environ. 1998, 76, 291–301. https://doi.org/10.1205/095758298529650
dc.relation.referencesen[98] Islam, M.R.; Haniu, H.; Beg, M.R.A. Liquid Fuels and Chemicals from Pyrolysis of Motorcycle Tire Waste: Product Yields, Compositions and Related Properties. Fuel 2008, 87, 3112–3122. https://doi.org/10.1016/j.fuel.2008.04.036
dc.relation.referencesen[99] Pyshyev, S.V.; Lypko, Yu.V.; Korchak, B.O.; Niavkevych, M.V.; Rudnieva, K.Ye. Investigation of the Extraction Separation of Gasoline Fractions Obtained as a Result of Pyrolysis of Waste Tires. Journal of Coal Chemistry 2023, 6, 28–37. https://doi.org/10.31081/1681-309X-2023-0-6-28-37
dc.relation.referencesen[100] Heywood, J.B. Internal combustion engine fundamentals; Mc Graw Hill, 1998.
dc.relation.referencesen[101] Pulkrabek, W.W. Engineering fundamentals of the internal combustion engine; Prentice Hall: New Jersey, 1997.
dc.relation.referencesen[102] Zabaniotou, A.A.; Stavropoulos, G. Pyrolysis of Used Automobile Tires and Residual Char Utilization. J. Anal. Appl. Pyrol. 2003, 70, 711–722. https://doi.org/10.1016/S0165-2370(03)00042-1
dc.relation.referencesen[103] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Vytrykush, N. Influence of Water on Noncatalytic Oxidative Desulfurization of High-Sulfur Straight-Run Oil Fractions. ACS omega 2022, 7, 26495–26503. https://doi.org/10.1021/acsomega.2c02527
dc.relation.referencesen[104] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Nyakuma, B. B. Study on Chemistry of Oxidative Desulfurization Process of High Sulfur Straight-Run Oil Fraction. Chem. Chem. Technol. 2021, 15, 414–422. https://doi.org/10.23939/chcht15.03.414
dc.relation.referencesen[105] ISO 8217:2017 https://www.iso.org/standard/64247.html (accessed 2017-03-01)
dc.relation.referencesen[106] DSTU 4058-2001 https://online.budstandart.com/ua/catalog/doc-page?id_doc=54025 (accessed 2002-07-01)
dc.relation.referencesen[107] Roy, C.; Chaala, A.; Darmstadt, H.; Caumia, B.; Pakdel, H.; Yang, J. Conversion of used tires to carbon black and oil by pyrolysis. In Rubber recycling; CRC Press Taylor & Francis Group Florida, 2005; pp. 458-499.
dc.relation.referencesen[108] Miguel, G.S.; Fowler, G.D.; Sollars, C.J. Pyrolysis of Tire Rubber: Porosity and Adsorption Characteristics of the Pyrolytic Chars. Ind. Eng. Chem. Res. 1998, 37, 2430–2435. https://doi.org/10.1021/ie970728x
dc.relation.referencesen[109] Berrueco, C.; Esperanza, E.; Mastral, F.J.; Ceamanos, J.; García-Bacaicoa, P. Pyrolysis of Waste Tires in an Atmospheric Static-Bed Batch Reactor: Analysis of the Gases Obtained. J. Anal. Appl. Pyrol. 2005, 74, 245–253. https://doi.org/10.1016/j.jaap.2004.10.007
dc.relation.referencesen[110] Helleur, R.; Popovic, N.; Ikura, M.; Stanciulescu, M.; Liu, D. Characterization and Potential Applications of Pyrolytic Char from Ablative Pyrolysis of Used Tires. J. Anal. Appl. Pyrol. 2001, 58, 813–824. https://doi.org/10.1016/S0165-2370(00)00207-2
dc.relation.referencesen[111] Senneca, O.; Salatino, P.; Chirone, R. A Fast Heating-Rate Thermogravimetric Study of the Pyrolysis of Scrap Tires. Fuel 1999, 78, 1575–1581. https://doi.org/10.1016/S0016-2361(99)00087-3
dc.relation.referencesen[112] Cunliffe, A.M.; Williams, P.T. Influence of Process Conditions on the Rate of Activation of Chars Derived from Pyrolysis of Used Tires. Energ. Fuel 1999, 13, 166–175. https://doi.org/10.1021/ef9801524
dc.relation.referencesen[113] Murillo, R.; Navarro, M.V.; López, J.M.; Garcıa, T.; Callén, M.S.; Aylón, E.; Mastral, A.M. Activation of Pyrolytic Tire Char with CO2: Kinetic Study. J. Anal. Appl. Pyrol. 2004, 71, 945–957. https://doi.org/10.1016/j.jaap.2003.12.005
dc.relation.referencesen[114] Murillo, R.; Navarro, M.V.; López, J.M.; Aylón, E.; Callén, M.S.; García, T.; Mastral, A.M. Kinetic Model Comparison for Waste Tire Char Reaction with CO2. Ind. Eng. Chem. Res. 2004, 43, 7768–7773. https://doi.org/10.1021/ie040026p
dc.relation.referencesen[115] Mastral, A.M.; Alvarez, R.; Callén, M.S.; Clemente, C.; Murillo, R. Characterization of Chars from Coal−Tire Copyrolysis. Ind. Eng. Chem. Res. 1999, 38, 2856–2860. https://doi.org/10.1021/ie9805032
dc.relation.referencesen[116] Chaala, A.; Darmstadt, H.; Roy, C. Acid-Base Method for the Demineralization of Pyrolytic Carbon Black. Fuel. Process. Technol. 1996, 46, 1–15. https://doi.org/10.1016/0378-3820(95)00044-5
dc.relation.referencesen[117] Sebok, E.B.; Taylor, R.L. Carbon blacks. In Encyclopedia of Materials: Science and Technology; Elsevier Ltd., 2001; pp 902–906. https://doi.org/10.1016/B0-08-043152-6/00173-X
dc.relation.referencesen[118] Sahu, A. K.; Sudhakar, K. Effect of UV Exposure on Bimodal HDPE Floats for Floating Solar Application. J. Mater. Res. Technol. 2019, 8, 147–156. https://doi.org/10.1016/j.jmrt.2017.10.002
dc.relation.referencesen[119] Mui, E.L.K.; Cheung, W.H.; McKay, G. Tyre Char Preparation from Waste Tyre Rubber for Dye Removal from Effluents. J. Hazard. Mater. 2010, 175, 151–158. https://doi.org/10.1016/j.jhazmat.2009.09.142
dc.relation.referencesen[120] Tanthapanichakoon, W.; Ariyadejwanich, P.; Japthong, P.; Nakagawa, K.; Mukai, S.R.; Tamon, H. Adsorption-Desorption Characteristics of Phenol and Reactive Dyes from Aqueous Solution on Mesoporous Activated Carbon Prepared from Waste Tires. Water. Res. 2005, 39, 1347–1353. https://doi.org/10.1016/j.watres.2004.12.044
dc.relation.referencesen[121] Lopez, G.; Olazar, M.; Artetxe, M.; Amutio, M.; Elordi, G.; Bilbao, J. Steam Activation of Pyrolytic Tyre Char at Different Temperatures. J. Anal. Appl. Pyrolysis. 2009, 85, 539–543. https://doi.org/10.1016/j.jaap.2008.11.002
dc.relation.referencesen[122] Ogasawara, S.; Kuroda, M.; Wakao, N. Preparation of Activated Carbon by Thermaldecomposition of Used Automotive Tires. Ind. Eng. Chem. Res. 1987, 26, 2552–2556. https://doi.org/10.1021/ie00072a030
dc.relation.referencesen[123] Suuberg, E.M.; Aarna, I. Kinetics of tire derived fuel (TDF) Char Oxidation and Accompanying Changes in Surface Area. Fuel 2009, 88, 179–186. https://doi.org/10.1016/j.fuel.2008.07.018
dc.relation.referencesen[124] Antoniou, N.; Stavropoulos, G.; Zabaniotou, A. Activation of End of Life Tires Pyrolytic Char for Enhancing Viability of Pyrolysis - Critical Review, Analysis and Recommendations for a Hybrid Dual System. Renew. Sustain. Energy. Rev. 2014, 39, 1053–1073. https://doi.org/10.1016/j.rser.2014.07.143
dc.relation.referencesen[125] Murillo, R.; Aylón, E.; Navarro, M.V.; Callén, M.S.; Aranda, A.; Mastral, A.M. The Application of Thermal Processes to Valorise Waste Tyre. Fuel. Process. Technol. 2006, 87, 143–147. https://doi.org/10.1016/j.fuproc.2005.07.005
dc.relation.referencesen[126] Galvagno, S.; Casu, S.; Casabianca, T.; Calabrese, A.; Cornacchia, G. Pyrolysis Process for the Treatment of Scrap Tires: Preliminary Experimental Results. Waste. manage. 2002, 22, 917–923. https://doi.org/10.1016/S0956-053X(02)00083-1
dc.relation.referencesen[127] Napoli, A.; Soudais, Y.; Lecomte, D.; Castillo, S. Scrap Tyre Pyrolysis: Are the Effluents Valuable Products? J. Anal. Appl. Pyrol. 1997, 40, 373–382. https://doi.org/10.1016/S0165-2370(97)00011-9
dc.relation.urihttps://doi.org/10.1016/j.rser.2015.11.081
dc.relation.urihttps://doi.org/10.1016/j.renene.2021.03.090
dc.relation.urihttps://doi.org/10.1016/j.sajce.2022.12.003
dc.relation.urihttps://doi.org/10.23939/chcht15.02.239
dc.relation.urihttps://doi.org/10.23939/chcht12.03.365
dc.relation.urihttp://repositsc.nuczu.edu.ua/handle/123456789/18918
dc.relation.urihttp://repositsc.nuczu.edu.ua/handle/123456789/18175
dc.relation.urihttp://repositsc.nuczu.edu.ua/handle/123456789/16152
dc.relation.urihttps://doi.org/10.23939/chcht17.04.923
dc.relation.urihttps://doi.org/10.23939/chcht16.01.159
dc.relation.urihttps://ecological.investments/shini/
dc.relation.urihttps://doi.org/10.1016/j.fuel.2020.117844
dc.relation.urihttps://doi.org/10.1016/j.aiepr.2021.06.004
dc.relation.urihttps://www.fixygen.ua/news/20240125/kilkist-avtomobiliv.html
dc.relation.urihttps://ukraine-oss.com/chy-zakonnoyu-bude-peredacha-pidpryyemstvu-vykonavczyu-vidpraczovanyh-avtomobilnyh-shyn-yakshho-osnovnym-vydom-diyalnosti-u-nogo-ye-vyrobnycztvo-inshyh-gumovyh-vyrobiv/
dc.relation.urihttps://doi.org/10.1016/j.joei.2022.04.006
dc.relation.urihttps://doi.org/10.1016/j.aiepr.2022.08.006
dc.relation.urihttps://ascania-shina.com/ua/articles/kuda-sdat-starye-shiny-na-pererabotku
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.0c03918
dc.relation.urihttps://doi.org/10.1016/S1387-1811(02)00380-3
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2020.140235
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2019.07.049
dc.relation.urihttps://doi.org/10.1016/j.polymer.2021.123486
dc.relation.urihttps://doi.org/10.1016/j.jaap.2018.08.011
dc.relation.urihttps://doi.org/10.1016/j.jaap.2017.12.016
dc.relation.urihttps://doi.org/10.23939/chcht17.03.674
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.02.143
dc.relation.urihttps://doi.org/10.1016/j.wasman.2013.05.003
dc.relation.urihttps://doi.org/10.1016/j.rser.2013.02.038
dc.relation.urihttps://doi.org/10.1016/j.jece.2017.09.057
dc.relation.urihttps://doi.org/10.3969/j.issn.1671-7627.2006.02.020
dc.relation.urihttps://doi.org/10.1002/1097-4628(20001121)78:8%3C1573::AID-APP150%3E3.0.CO;2-P
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2012.07.053
dc.relation.urihttp://nopr.niscpr.res.in/handle/123456789/13986
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2016.10.122
dc.relation.urihttps://doi.org/10.11949/0438-1157.20190198
dc.relation.urihttps://doi.org/10.1016/j.joei.2018.09.001
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2019.119151
dc.relation.urihttps://doi.org/10.1016/S1872-2067(15)60998-6
dc.relation.urihttps://doi.org/10.3390/su13063214
dc.relation.urihttps://doi.org/10.1016/j.jaap.2016.11.025
dc.relation.urihttps://doi.org/10.1016/j.rser.2020.109932
dc.relation.urihttps://doi.org/10.1016/j.enconman.2016.12.076
dc.relation.urihttps://doi.org/10.1016/j.jaap.2019.03.018
dc.relation.urihttps://doi.org/10.1016/j.jaap.2013.02.016
dc.relation.urihttps://doi.org/10.1016/j.susmat.2019.e00125
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2022.115852
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2022.09.275
dc.relation.urihttps://doi.org/10.3390/en13071817
dc.relation.urihttps://doi.org/10.1021/es0606475
dc.relation.urihttps://doi.org/10.2202/1542-6580.1570
dc.relation.urihttps://doi.org/10.1016/j.jaap.2016.10.023
dc.relation.urihttps://doi.org/10.1016/j.enconman.2014.07.033
dc.relation.urihttps://doi.org/10.1016/j.enconman.2015.02.003
dc.relation.urihttps://doi.org/10.1016/j.jaap.2003.12.003
dc.relation.urihttps://doi.org/10.1016/S0165-2370(00)00136-4
dc.relation.urihttps://doi.org/10.1021/ef950152t
dc.relation.urihttps://doi.org/10.3390/ma13061359
dc.relation.urihttps://doi.org/10.1016/S0016-2361(03)00016-4
dc.relation.urihttps://doi.org/10.3390/en15062128
dc.relation.urihttps://doi.org/10.1016/j.fuel.2020.120041
dc.relation.urihttps://doi.org/10.1016/j.fuel.2020.118872
dc.relation.urihttps://doi.org/10.1016/j.fuel.2016.07.092
dc.relation.urihttps://doi.org/10.1016/j.energy.2020.119125
dc.relation.urihttps://doi.org/10.1016/j.joei.2021.03.002
dc.relation.urihttps://doi.org/10.1016/j.matpr.2020.04.797
dc.relation.urihttps://doi.org/10.1016/S0378-3820(01)00174-6
dc.relation.urihttps://doi.org/10.1016/0016-2361(95)00083-H
dc.relation.urihttps://doi.org/10.1016/S0165-2370(00)00201-1
dc.relation.urihttps://doi.org/10.1016/j.fuel.2010.03.029
dc.relation.urihttps://doi.org/10.1016/0378-3820(95)00065-8
dc.relation.urihttps://doi.org/10.1016/S0165-2370(97)00085-5
dc.relation.urihttps://doi.org/10.1016/S0165-2370(99)00017-0
dc.relation.urihttps://doi.org/10.1021/ie030115m
dc.relation.urihttps://doi.org/10.1016/j.wasman.2003.11.006
dc.relation.urihttps://doi.org/10.1016/j.fuel.2005.04.002
dc.relation.urihttps://doi.org/10.1021/ie071573o
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2011.03.039
dc.relation.urihttps://doi.org/10.1016/0016-2361(95)00165-2
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2011.12.014
dc.relation.urihttps://doi.org/10.1016/S0378-3820(96)01044-2
dc.relation.urihttps://doi.org/10.1016/j.wasman.2007.10.009
dc.relation.urihttps://doi.org/10.1016/0016-2361(90)90193-T
dc.relation.urihttps://doi.org/10.1016/0016-2361(93)90002-J
dc.relation.urihttps://doi.org/10.1016/j.joei.2024.101598
dc.relation.urihttps://doi.org/10.1021/es7026532
dc.relation.urihttps://doi.org/10.1016/j.fuel.2011.12.033
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2011.01.009
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2007.08.005
dc.relation.urihttps://doi.org/10.1016/j.wasman.2008.03.007
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2008.07.017
dc.relation.urihttps://doi.org/10.1299/jpes.2.1359
dc.relation.urihttps://doi.org/10.1205/095758298529650
dc.relation.urihttps://doi.org/10.1016/j.fuel.2008.04.036
dc.relation.urihttps://doi.org/10.31081/1681-309X-2023-0-6-28-37
dc.relation.urihttps://doi.org/10.1016/S0165-2370(03)00042-1
dc.relation.urihttps://doi.org/10.1021/acsomega.2c02527
dc.relation.urihttps://doi.org/10.23939/chcht15.03.414
dc.relation.urihttps://www.iso.org/standard/64247.html
dc.relation.urihttps://online.budstandart.com/ua/catalog/doc-page?id_doc=54025
dc.relation.urihttps://doi.org/10.1021/ie970728x
dc.relation.urihttps://doi.org/10.1016/j.jaap.2004.10.007
dc.relation.urihttps://doi.org/10.1016/S0165-2370(00)00207-2
dc.relation.urihttps://doi.org/10.1016/S0016-2361(99)00087-3
dc.relation.urihttps://doi.org/10.1021/ef9801524
dc.relation.urihttps://doi.org/10.1016/j.jaap.2003.12.005
dc.relation.urihttps://doi.org/10.1021/ie040026p
dc.relation.urihttps://doi.org/10.1021/ie9805032
dc.relation.urihttps://doi.org/10.1016/0378-3820(95)00044-5
dc.relation.urihttps://doi.org/10.1016/B0-08-043152-6/00173-X
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2017.10.002
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2009.09.142
dc.relation.urihttps://doi.org/10.1016/j.watres.2004.12.044
dc.relation.urihttps://doi.org/10.1016/j.jaap.2008.11.002
dc.relation.urihttps://doi.org/10.1021/ie00072a030
dc.relation.urihttps://doi.org/10.1016/j.fuel.2008.07.018
dc.relation.urihttps://doi.org/10.1016/j.rser.2014.07.143
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2005.07.005
dc.relation.urihttps://doi.org/10.1016/S0956-053X(02)00083-1
dc.relation.urihttps://doi.org/10.1016/S0165-2370(97)00011-9
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Pyshyev S., Lypko Yu., Demchuk Yu., Kukhar O., Korchak B., Pochapska I., Zhytnetskyi I., 2024
dc.subjectвідпрацьовані автомобільні шини
dc.subjectальтернативні палива
dc.subjectпіроліз шин
dc.subjectкарбонізований залишок
dc.subjectрідкі продукти піролізу
dc.subjectпіролізний газ
dc.subjectwaste tires
dc.subjectalternative fuel
dc.subjecttire pyrolysis
dc.subjectcarbon black
dc.subjectpyrolysis oil
dc.subjectpyrolysis gas
dc.titleCharacteristics and Applications of Waste Tire Pyrolysis Products. A Review
dc.title.alternativeХарактеристика та застосування продуктів піролізу відпрацьованих автомобільних шин. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Pyshyev_S-Characteristics_and_Applications_244-257.pdf
Size:
782.41 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Pyshyev_S-Characteristics_and_Applications_244-257__COVER.png
Size:
543.57 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: