Modeling of hydraulic load of electric drive in electrical complex of pumping station

dc.citation.epage36
dc.citation.issue1
dc.citation.journalTitleEnergy Engineering and Control Systems
dc.citation.spage31
dc.citation.volume4
dc.contributor.affiliationНаціональний університет «Львівська політехніка»
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЛисяк, Владислав
dc.contributor.authorОлійник, Михайло
dc.contributor.authorШелех, Юрій
dc.contributor.authorLysiak, Vladyslav
dc.contributor.authorOliinyk, Mykhailo
dc.contributor.authorShelekh, Yurii
dc.coverage.placenameLviv
dc.date.accessioned2019-02-08T12:34:13Z
dc.date.available2019-02-08T12:34:13Z
dc.date.created2018-03-29
dc.date.issued2018-03-29
dc.description.abstractПроаналізований сучасний стан моделювання гідравлічного навантаження електроприводу у складі електротехнічного комплексу помпових станцій. Виявлено, що більшість математичних моделей не дає можливості зі збалансованим ступенем деталізації враховувати особливості процесів помпування та споживання рідини одночасно. Проведені дослідження дають підстави зробити висновок про неможливість представлення у загальному випаду відцентрового гідравлічного навантаження у вигляді моменту опору з “вентиляторною” механічною характеристикою під час моделювання роботи електроприводу. Показано, що для коректного відображення такого гідравлічного навантаження електроприводу необхідно застосовувати такі математичні моделі, які одночасно враховують вплив кутової швидкості обертання робочого колеса помпи, в’язкості рідини та просторової будови гідравлічної мережі як на режими помпування рідини, так і на режими її споживання. Запропоновано повну математичну модель гідравлічного навантаження електроприводу помпової станції в усталених режимах з урахуванням як внутрішніх параметрів відцентрової помпи, так і просторового розподілу трубопроводу.
dc.description.abstractThe paper analyses the contemporary state of the electric drive hydraulic load modelling in the pumping stations’ electrotechnical complex applications. It was found that in the vast majority of cases, mathematical models do not allow taking into account the specificities of fluid pumping and its consumption at the same time with a balanced degree of detail. The studies conducted provide sufficient ground for making a conclusion that when modelling the electric drive operation, the centrifugal hydraulic load cannot be presented in a general case as the resistant torque with the fan mechanical characteristic. It was shown that to present such hydraulic load of the electric drive correctly, one need to use the mathematical models that simultaneously account for the effect of the pump impeller rotation speed, fluid viscosity and hydraulic network’s spatial structure on both the fluid’s pumping modes and the modes of its consumption. A complete mathematical model of the hydraulic load of the pumping station’s electric drive in steady-state modes was proposed, which takes into account both the internal parameters of the centrifugal pump and the spatial distribution of the pipeline.
dc.format.extent31-36
dc.format.pages6
dc.identifier.citationLysiak V. Modeling of hydraulic load of electric drive in electrical complex of pumping station / Vladyslav Lysiak, Mykhailo Oliinyk, Yurii Shelekh // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 31–36.
dc.identifier.citationenLysiak V. Modeling of hydraulic load of electric drive in electrical complex of pumping station / Vladyslav Lysiak, Mykhailo Oliinyk, Yurii Shelekh // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 31–36.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44104
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (4), 2018
dc.relation.references[1] Misiunas D. Burst Detection and Location in Pipelines and Pipe Networks with Application in Water Distribution Systems [Electronic resource] / D. Misiunas // Department of Industrial Electrical Engineering and Automation Lund University. – Sweden: Lund, 2004. http://www.iea.lth.se/publications/Theses/LTH-IEA-1038.pdf.
dc.relation.references[2] Kuchmystenko, O. V. Analysis and Selection of a Method for Detecting the Location and Time of a Leakage or Unauthorized Access to the Oil Trunk Pipeline / O. V. Kuchmystenko, L. I. Davydenko, H. H. Zvarych, H. N. Sementsov // SWorld International Scientific Edition, 2011, Vol. 4, Iss. 3, p. 16-22. (in Ukrainian)
dc.relation.references[3] Muzychak, A. Z. Mathematical Models and Algorithms for Analysis and Improvement of Centralized Heat Supply Systems’ Modes : Published Summary of the Thesis for a PhD Degree in Engineering : spec. 05.14.01 Power Systems and Complexes / National Academy of Sciences of Ukraine, Institute of Engineering Thermophysics. – Kyiv, 2014. – 20 p. (in Ukrainian)
dc.relation.references[4] Modelling and Monitoring of Pipelines and Networks / Editors: Verde, Cristina, Torres, Lizeth (Eds.) // © Springer International Publishing AG, 2017, 264 p. doi: 10.1007/978-3-319-55944-5.
dc.relation.references[5] Kostyshyn, V. S. Modelling of Centrifugal Pumps’ Operation Modes Based on Electrohydraulic Analogy : Published Summary of the Thesis for a Doctor of Sciences in Engineering : spec. 05.15.13 Oil and Gas Pipeline, Storage Depots and Plants / Ivano-Frankivsk National Technical University of Oil and Gas. – Ivano-Frankivsk, 2003. – 36 p. (in Ukrainian)
dc.relation.references[6] Kallesoe C. S. Model Based Fault Detection in a Centrifugal Pump Application / C. S. Kallesoe, V. Cocquempot, R. Izadi-Zamanabadi // IEEE Transactions on Control Systems Technology, 2006, Vol. 14, Iss. 2, p. 204–215. doi: 10.1109/TCST.2005.860524.
dc.relation.references[7] Berten S., Dupont Ph., Farhat M., Avellan F. Rotor-Stator Interaction Induced Pressure Fluctuations: CFD and Hydroacoustic Simulations in the Stationary Components of a Multistage Centrifugal Pump. Proc. ASME/JSME 2007 5th Joint Fluids Engineering Conference, 2007, Vol. 2, p. 963–970. doi:10.1115/FEDSM2007-37549.
dc.relation.references[8] Kurliak, P. O. Regulated Electric Drive Of The Centrifugal Pump Units Mechatronic System Operating Modes Research / Kurliak, P.O. SWorld International Scientific Edition, 2015, p. Vol. 5, p. 23–30 http://www.sworld.com.ua/index.php/uk/technical-sciences-115/electricalengineering-radio-engineering-115/25050-115-509. (in Ukrainian)
dc.relation.references[9] Goppe, G. G. Comparison of Total Energy Losses in the Technological Complex of a Fluid-Handling Application and Trunk Pipeline for Two Methods of Productivity Control / G.G. Goppe; edited by A.P. Khomenko, Yu.F. Mukhopada // Modern Technologies. Systems Analysis. Modelling. – Irkutsk: Irkutsk State University of Railway Engineering Publishers, 2008. – Vol. 4. – pp. 100–107. (in Russian)
dc.relation.references[10] Kiselychnyk, O. Mathematical Model of the Pump with Spatial Distribution of the Pipeline Taken into Account / О. Kiselychnyk, S. Burian, M. Pushkar // Contemporary Problems of Electrical Power Engineering and Automation Engineering: International Research and Engineering Conference for Young Researchers, University and PhD Students: Kyiv National Polytechnic University, 2009. – Vol. 2.– pp. 23–26. (in Ukrainian)
dc.relation.references[11] Lysiak, V. G., Shelekh, Yu. L., Sabat, M. B. Mathematical Model of the Electrotechnical Complex of the Power Supply System // Scientific and Engineering Bulletin of Information Technologies, Mechanics and Optics, 2017, Vol. 17, No. 4, p. 733-743. doi: 10.17586/2226-1494-2017-17-4-733-743. (in Russian)
dc.relation.references[12] Kutsyk, A. S. Mathematical Model of the System of a Frequency-Controlled Electric Drive, Pump and Water Supply Network / A. S. Kutsyk, A. O. Lozynskyi, O. F. Kinchur // Bulletin of Lviv Polytechnic National University. Electrical Power and Electromechanical Systems, 2015, No. 834, p. 48–55. http://ena.lp.edu.ua:8080/handle/ntb/32859. (in Ukrainian)
dc.relation.referencesen[1] Misiunas D. Burst Detection and Location in Pipelines and Pipe Networks with Application in Water Distribution Systems [Electronic resource], D. Misiunas, Department of Industrial Electrical Engineering and Automation Lund University, Sweden: Lund, 2004. http://www.iea.lth.se/publications/Theses/LTH-IEA-1038.pdf.
dc.relation.referencesen[2] Kuchmystenko, O. V. Analysis and Selection of a Method for Detecting the Location and Time of a Leakage or Unauthorized Access to the Oil Trunk Pipeline, O. V. Kuchmystenko, L. I. Davydenko, H. H. Zvarych, H. N. Sementsov, SWorld International Scientific Edition, 2011, Vol. 4, Iss. 3, p. 16-22. (in Ukrainian)
dc.relation.referencesen[3] Muzychak, A. Z. Mathematical Models and Algorithms for Analysis and Improvement of Centralized Heat Supply Systems’ Modes : Published Summary of the Thesis for a PhD Degree in Engineering : spec. 05.14.01 Power Systems and Complexes, National Academy of Sciences of Ukraine, Institute of Engineering Thermophysics, Kyiv, 2014, 20 p. (in Ukrainian)
dc.relation.referencesen[4] Modelling and Monitoring of Pipelines and Networks, Editors: Verde, Cristina, Torres, Lizeth (Eds.), © Springer International Publishing AG, 2017, 264 p. doi: 10.1007/978-3-319-55944-5.
dc.relation.referencesen[5] Kostyshyn, V. S. Modelling of Centrifugal Pumps’ Operation Modes Based on Electrohydraulic Analogy : Published Summary of the Thesis for a Doctor of Sciences in Engineering : spec. 05.15.13 Oil and Gas Pipeline, Storage Depots and Plants, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, 2003, 36 p. (in Ukrainian)
dc.relation.referencesen[6] Kallesoe C. S. Model Based Fault Detection in a Centrifugal Pump Application, C. S. Kallesoe, V. Cocquempot, R. Izadi-Zamanabadi, IEEE Transactions on Control Systems Technology, 2006, Vol. 14, Iss. 2, p. 204–215. doi: 10.1109/TCST.2005.860524.
dc.relation.referencesen[7] Berten S., Dupont Ph., Farhat M., Avellan F. Rotor-Stator Interaction Induced Pressure Fluctuations: CFD and Hydroacoustic Simulations in the Stationary Components of a Multistage Centrifugal Pump. Proc. ASME/JSME 2007 5th Joint Fluids Engineering Conference, 2007, Vol. 2, p. 963–970. doi:10.1115/FEDSM2007-37549.
dc.relation.referencesen[8] Kurliak, P. O. Regulated Electric Drive Of The Centrifugal Pump Units Mechatronic System Operating Modes Research, Kurliak, P.O. SWorld International Scientific Edition, 2015, p. Vol. 5, p. 23–30 http://www.sworld.com.ua/index.php/uk/technical-sciences-115/electricalengineering-radio-engineering-115/25050-115-509. (in Ukrainian)
dc.relation.referencesen[9] Goppe, G. G. Comparison of Total Energy Losses in the Technological Complex of a Fluid-Handling Application and Trunk Pipeline for Two Methods of Productivity Control, G.G. Goppe; edited by A.P. Khomenko, Yu.F. Mukhopada, Modern Technologies. Systems Analysis. Modelling, Irkutsk: Irkutsk State University of Railway Engineering Publishers, 2008, Vol. 4, pp. 100–107. (in Russian)
dc.relation.referencesen[10] Kiselychnyk, O. Mathematical Model of the Pump with Spatial Distribution of the Pipeline Taken into Account, O. Kiselychnyk, S. Burian, M. Pushkar, Contemporary Problems of Electrical Power Engineering and Automation Engineering: International Research and Engineering Conference for Young Researchers, University and PhD Students: Kyiv National Polytechnic University, 2009, Vol. 2, pp. 23–26. (in Ukrainian)
dc.relation.referencesen[11] Lysiak, V. G., Shelekh, Yu. L., Sabat, M. B. Mathematical Model of the Electrotechnical Complex of the Power Supply System, Scientific and Engineering Bulletin of Information Technologies, Mechanics and Optics, 2017, Vol. 17, No. 4, p. 733-743. doi: 10.17586/2226-1494-2017-17-4-733-743. (in Russian)
dc.relation.referencesen[12] Kutsyk, A. S. Mathematical Model of the System of a Frequency-Controlled Electric Drive, Pump and Water Supply Network, A. S. Kutsyk, A. O. Lozynskyi, O. F. Kinchur, Bulletin of Lviv Polytechnic National University. Electrical Power and Electromechanical Systems, 2015, No. 834, p. 48–55. http://ena.lp.edu.ua:8080/handle/ntb/32859. (in Ukrainian)
dc.relation.urihttp://www.iea.lth.se/publications/Theses/LTH-IEA-1038.pdf
dc.relation.urihttp://www.sworld.com.ua/index.php/uk/technical-sciences-115/electricalengineering-radio-engineering-115/25050-115-509
dc.relation.urihttps://ena.lpnu.ua/handle/ntb/32859
dc.rights.holder© Національний університет „Львівська політехніка“, 2018
dc.rights.holder© 2018 The Authors. Published by Lviv Polytechnic National University
dc.subjectгідравлічна мережа
dc.subjectтрубопровід
dc.subjectвідцентрова помпа
dc.subjectпомпова станція
dc.subjectелектропривод
dc.subjecthydraulic network
dc.subjectpipeline
dc.subjectcentrifugal pump
dc.subjectpumping station
dc.subjectelectric drive
dc.titleModeling of hydraulic load of electric drive in electrical complex of pumping station
dc.title.alternativeМоделювання гідравлічного навантаження електроприводу у складі електротехнічного комплексу помпової станції
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2018v4n1_Lysiak_V-Modeling_of_hydraulic_load_31-36.pdf
Size:
344.12 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2018v4n1_Lysiak_V-Modeling_of_hydraulic_load_31-36__COVER.png
Size:
447.18 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.06 KB
Format:
Plain Text
Description: