Comparative Characteristics of Polymethacrylic Acid Hydrogel Sorption Activity in Relation to Lanthanum Ions in Different Intergel Systems

dc.citation.epage431
dc.citation.issue3
dc.citation.spage418
dc.contributor.affiliationJSC “Institute of Chemical Sciences after A. B. Bekturov”
dc.contributor.affiliationKazakh National Women’s Teacher Training University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationAl-Farabi Kazakh National University
dc.contributor.authorJumadilov, Talkybek
dc.contributor.authorMalimbayeva, Zamira
dc.contributor.authorYskak, Leila
dc.contributor.authorSuberlyak, Oleg
dc.contributor.authorKondaurov, Ruslan
dc.contributor.authorImangazy, Aldan
dc.contributor.authorAgibayeva, Laura
dc.contributor.authorAkimov, Auez
dc.contributor.authorKhimersen, Khuangul
dc.contributor.authorZhuzbayeva, Akerke
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T12:00:16Z
dc.date.available2024-01-22T12:00:16Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractВивчено явища віддаленої взаємодії в міжгелевих системах гідрогель поліметакрилової кислоти – гідрогель полі-4-вінілпіридину (hPMAA-hP4VP) та гідрогель поліметакрилової кислоти – гідрогель полі-2-метил-5-вінілпіридину (hPMAA-hP2M5VP). Встановлено, що питома електропровідність, рН та ступінь набухання гідрогелів PMAA, P4VP та P2M5VP зменшуються під час сорбції йонів лантану за участю міжгелевих систем. Визначено, що сорбційні властивості міжгелевих систем значно збільшуються (до 30 %) у порівнянні з окремими гідрогелями PMAA, P4VP та P2M5VP, що вказує на факт високої йонізації під час взаємної активації полімерів. Максимальна сорбція йонів лантану відбувається за співвідношень 17% hPMAA:83% hP4VP та 50% hPMAA:50% hP2M5VP. За допомогою ІЧ спектроскопії встановлено сорбцію рідкісноземельного металу міжгелевими системами. Показана важливість можливого застосування міжгелевих систем на основі рідкоземельних зшитих полімерних гідрогелів кислотної та основної природи для створення нових інноваційних сорбційних технологій у гідрометалургії.
dc.description.abstractPhenomena of remote interaction in intergel systems polymethacrylic acid hydrogel – poly-4-vinylpyridine hydrogel (hPMAA-hP4VP) and polymethacrylic acid hydrogel – poly-2-methyl-5-vinylpyridine hydrogel (hPMAA-hP2M5VP) have been studied. It was found that there is a decrease of specific electric conductivity, pH and swelling degree of PMAA, P4VP, P2M5VP hydrogels during lanthanum ions sorption by the intergel systems. Significant increase of sorption properties (up to 30 %) in intergel systems comparatively with individual hydrogels of PMAA, P4VP, P2M5VP points to the fact of high ionization during mutual activation of the polymers. Maximum sorption of lanthanum ions occurs at the ratios of 17%hPMAA:83%hP4VP and 50%hPMAA:50%hP2M5VP. Data on obtained IR spectra evidence to the sorption of the rare-earth metal by these intergel systems. The obtained results show a significant importance of possible application of intregel systems based on rare-crosslinked polymer hydrogels of acid and basic nature for creation of new innovative sorption technologies in hydrometallurgy.
dc.format.extent418-431
dc.format.pages14
dc.identifier.citationComparative Characteristics of Polymethacrylic Acid Hydrogel Sorption Activity in Relation to Lanthanum Ions in Different Intergel Systems / Talkybek Jumadilov, Zamira Malimbayeva, Leila Yskak, Oleg Suberlyak, Ruslan Kondaurov, Aldan Imangazy, Laura Agibayeva, Auez Akimov, Khuangul Khimersen, Akerke Zhuzbayeva // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 418–431.
dc.identifier.citationenComparative Characteristics of Polymethacrylic Acid Hydrogel Sorption Activity in Relation to Lanthanum Ions in Different Intergel Systems / Talkybek Jumadilov, Zamira Malimbayeva, Leila Yskak, Oleg Suberlyak, Ruslan Kondaurov, Aldan Imangazy, Laura Agibayeva, Auez Akimov, Khuangul Khimersen, Akerke Zhuzbayeva // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 418–431.
dc.identifier.doidoi.org/10.23939/chcht16.03.418
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61007
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (16), 2022
dc.relation.references[1] Alexandratos, S.D. Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Ind. Eng. Chem. Res. 2009, 48, 388-389. https://doi.org/10.1021/ie801242v
dc.relation.references[2] Selvi, P.; Ramasami, M.; Samuel, M.H.P.; Adaikkalam, P.; Srinivasan, G.N. Recovery of Gallium from Bayer Liquor Using Chelating Resins in Fixed-Bed Columns. Ind. Eng. Chem. Res. 2004, 43, 2216-2221. https://doi.org/10.1021/ie030695n
dc.relation.references[3] François, D.; Thomas, V.A. Ion Exchangers. In Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2008.
dc.relation.references[4] Birnhack, L.; Keller, O.; Tang, S.C.N.; Fridman-Bishop, N.; Lahav, O. A Membrane-Based Recycling Process for Minimizing Environmental Effects Inflicted by Ion-Exchange Softening Applications. Sep. Pur. Tech. 2019, 223, 24-30. https://doi.org/10.1016/j.seppur.2019.04.056
dc.relation.references[5] Ergozhin, E.; Menligaziyev, E. Polifunktsionalnyie Ionoobmenniki; Nauka: Moskwa, 1986.
dc.relation.references[6] Mulder, M. Basic Principles of Membrane Technology, 2nd ed.; Springer Netherlands, 2006. https://doi.org/10.1007/978-94-009-1766-8
dc.relation.references[7] Malika, C.; Kenza, A.; Yasmine, A.O.; Abdeltif, A.; Aicha, B. Removal of Nitrate from Drinking Water by Adsorption Using Ion Exchange Resin. Desal. Wat. Treat. 2010, 24, 109-116. https://doi.org/10.5004/dwt.2010.1251
dc.relation.references[8] Rafati, L.; Mahvi, A.H.; Asgari, A.R.; Hosseini, S.S. Removal of Chromium (VI) from Aqueous Solutions Using Lewatit FO36 Nano Ion Exchange Resin. Int. J. Envir. Sci. Tech. 2010, 7, 147-156. https://doi.org/10.1007/BF03326126
dc.relation.references[9] Tabushi, I.; Kobuke, Y.; Nakayama, N.; Aoki, T.; Yoshizawa, A. Chelating Resin Functionalized with Dithiocarbamate for the Recovery of Uranium from Seawater. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 445-448. https://doi.org/10.1021/i300015a023
dc.relation.references[10] Kawamura, Y.; Mitsuhashi, M.; Tanibe, H.; Yoshida, H. Adsorption of Metal Ions on Polyaminated Highly Porous Chitosan Chelating Resin. Ind. Eng. Chem. Res. 1993, 32, 386-391. https://doi.org/10.1021/ie00014a015
dc.relation.references[11] Guibal, E.; Milot, C.; Tobin, J.M. Metal-Anion Sorption by Chitosan Beads:  Equilibrium and Kinetic Studies. Ind. Eng. Chem. Res. 1998, 37, 1454-1463. https://doi.org/10.1021/ie9703954
dc.relation.references[12] Alexandratos, S.D.; Hussain, L.A. Bifunctionality as a Means of Enhancing Complexation Kinetics in Selective Ion Exchange Resins. Ind. Eng. Chem. Res. 1995, 34, 251-254. https://doi.org/10.1021/ie00040a026
dc.relation.references[13] Kabay, N.; Demircioglu, M.; Yayli, S.; Günay, E.; Yüksel, M.; Saǧlam, M.; Streat, M. Recovery of Uranium from Phosphoric Acid Solutions Using Chelating Ion-Exchange Resins. Ind. Eng. Chem. Res. 1998, 37, 1983-1990. https://doi.org/10.1021/ie970518k
dc.relation.references[14] Beatty, S.T.; Fischer, R.J.; Hagers, D.L.; Rosenberg, E. A Comparative Study of the Removal of Heavy Metal Ions from Water Using a Silica−Polyamine Composite and a Polystyrene Chelator Resin. Ind. Eng. Chem. Res. 1999, 38, 4402-4408. https://doi.org/10.1021/ie9903386
dc.relation.references[15] Di Natale, F.; Lancia, A. Recovery of Tungstate from Aqueous Solutions by Ion Exchange. Ind. Eng. Chem. Res. 2007, 46, 6777-6782. https://doi.org/10.1021/ie061691w
dc.relation.references[16] Kiefer, R., Holl, W.H. Sorption of Heavy Metals onto Selective Ion-Exchange Resins with Aminophosphonate Functional Groups. Ind. Eng. Chem. Res., 2001, 40, 4570-4576. https://doi.org/10.1021/ie010182l
dc.relation.references[17] Xiong, Z.; Zhao, D.; Harper, W.F. Sorption and Desorption of Perchlorate with Various Classes of Ion Exchangers:  A Comparative Study. Ind. Eng. Chem. Res. 2007, 46, 9213-9222. https://doi.org/10.1021/ie0702025
dc.relation.references[18] Maslov, O.D.; Tserenpil, Sh.; Norov, N.; Gustova, M.V.; Filippov, M.F.; Belov, A.G.; Altangerel, M.; Enhbat, N. Uranium Recovery from Coal ash Dumps of Mongolia. Sol. Fuel Chem. 2010, 44, 433-438. https://doi.org/10.3103/S0361521910060133
dc.relation.references[19] Ladola, Y.S.; Kadam, S.V.; Hareendran, K.N.; Chowdhury, S.; Biswas, S.; Roy, S.B.; Pandit, A.B. Analysis of Uranium Leaching Process and Effect of Cake Washing on Uranium Recovery. J. Mat. Sci. Eng. Adv. Tech. 2014, 10, 63-75.
dc.relation.references[20] Cheru, M.S., del Rosario, A.V.; Yimam, A.; Tadesse, B.; Berhe, G.G. Hydrometallurgical Removal of Uranium and Thorium from Ethiopian Tantalite Ore. Phys. Prob. Min. Proc., 2019, 55, 448-457. https://doi.org/10.5277/ppmp18153
dc.relation.references[21] Horkay, F.; Basser, P.J.; Hecht, A.-M.; Geissler, E. Structural Investigations of a Neutralized Polyelectrolyte Gel and an Associating Neutral Hydrogel. Polymer 2005, 46, 4242-4247. https://doi.org/10.1016/j.polymer.2005.02.054
dc.relation.references[22] Kondrashova, Yu.; Safronov, A. Proceedings of 16th Russian Youth Conference Devoted to 85 Years of Birth of Prof. Kochergin V.P. Russia, Ekaterinburg, 2006; p 232.
dc.relation.references[23] Kim, S.J.; Yoon, S.G.; Kim, S.I. Effect of the Water State on the Electrical Bending Behavior of Chitosan/Poly(diallyldimethylammonium Chloride) Hydrogels in NaCl Solutions. J. Polym. Sci. B 2004, 42, 914-921. https://doi.org/10.1002/polb.10778
dc.relation.references[24] Chen, L.; Yu, X.; Li, Q. Reswelling Behavior of Polycation Hydrogels Carrying Charges on the Chain Backbone by Two-Step Surfactant Bindings. J. Appl. Polym. Sci. 2006, 102, 3791-3794. https://doi.org/10.1002/app.24747
dc.relation.references[25] Sitnikova, N.; Malyshkina, I.; Gavrilova, N.; Philippova, O. Proceedings of 4th International Symposium on Molecular Order and Mobility in Polymer Systems, Russia, St. Petersburg, 2002; p 229.
dc.relation.references[26] Alimbekova, B.T.; Korganbayeva, Zh.K.; Himersen, H.J.; Kondaurov, R.G.; Jumadilov, T.K. Features of Polymethacrylic Acid and Poly-2-Methyl-5-Vinylpyridine Hydrogels Remote Interaction in an Aqueous Medium. J. Chem. Chem. Eng. 2014, 3, 265-269
dc.relation.references[27] Jumadilov, T. Mutual Activation and High Selectivity of Polymeric Structures in Intergel Systems. Abstracts of Papers of Third International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, September 1-4, 2013; Iv. Javakhishvili Tbilisi State University: Tbilisi, 2013, p 43.
dc.relation.references[28] Jumadilov, T. Electrochemical and Conformational Behaviour of Intergel Systems Based on the Rare Crosslinked Polyacid and Polyvynilpyrydines. Conference of Lithuanian Chemical Society “Chemistry and Chemical Technology”, Lithuania, Kaunas, 2014; pp 226-229.
dc.relation.references[29] Alimbekova, B.T.; Jumadilov, T.K.; Korganbayeva, Zh.K. Some Features of Polymer Hydrogels Interaction with Low Molecular Salts. Bull. d'EUROTALENT-FIDJIP 2013, 5, 28-32.
dc.relation.references[30] Erzhet, B.; Jumadilov, T.K.; Korganbayeva, ZhK. Electrochemical and Volume-Gravimetric Properties of Intergel System Based on Polyacrylic Acid and Poly-4-Vinylpyridine Hydrogels. Bull. d'EUROTALENT-FIDJIP 2013, 5, 41-45.
dc.relation.references[31] Jumadilov, T.; Kaldayeva, S.; Kondaurov, R.; Erzhan, B.; Erzhet, B. Mutual Activation and High Selectivity of Polymeric Structures in Intergel Systems. In High Performance Polymers for Engineering Based Composites; CRC Press: Boca Raton, 2015; pp 111-119.
dc.relation.references[32] Jumadilov, T. Effect of Remote Interraction of Polymeric Hydrogels in Innovative Technology. Ind. Kazakhstan, 2011, 2, 70-72.
dc.relation.references[33] Bekturov, E.; Suleimenov, I. Polimernie Hydrogeli; Nauka: Moskwa, 1998.
dc.relation.references[34] Jumadilov, T.; Kondaurov, R.; Abilov, Zh.; Grazulevicius, J.V.; Akimov, A.A. Influence of Polyacrylic Acid and poly-4-Vinylpyridine Hydrogels Mutual Activation in Intergel System on their Sorption Properties in Relation to Lanthanum (III) Ions. Pol. Bul. 2017, 74, 4701-4713. https://doi.org/10.1007/s00289-017-1985-3
dc.relation.references[35] Jumadilov, T., Abilov, Zh., Kondaurov, R. Intergel Systems: Highly Effective Instruments for Rare Earth Elements Extraction from Industrial Solutions. In Chemical Engineering of Polymers. Production of Functional and Flexible Materials Composites; AAP Press: Sydney, 2017; pp 267-279. https://doi.org/10.1201/9781315365985-20
dc.relation.references[36] Jumadilov, T.K.; Kondaurov, R.G.; Kozhabekov, S.S.; Tolegen, G.A.; Eskalieva, G.K.; Khakimzhanov, S.A. Influence of Poly-Acrylic Acid Hydrogel’s Swelling Degree on Sorption Ability of Intergel System Polyacrylic Acid Hydrogel–Poly-4-vinylpyridine Hydrogel in Relation to Neodymium Ions. Chem. Tech. Met. 2018, 53, 88-93.
dc.relation.references[37] Tereshenkova, A.A; Statkus, M.A.; Tihomirova, T.I.; Tsizin, G.I. Sorption Concentrating of Lanthanum on Modified Low-Polar Sorbents. Moscow Univ. Bull. 2013, 54, 203-209.
dc.relation.references[38] Praktikum po Phyziko-Khimicheskim Metodam Analiza; Petruhin, O., Ed.; Khimia: Moskwa, 1987.
dc.relation.referencesen[1] Alexandratos, S.D. Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Ind. Eng. Chem. Res. 2009, 48, 388-389. https://doi.org/10.1021/ie801242v
dc.relation.referencesen[2] Selvi, P.; Ramasami, M.; Samuel, M.H.P.; Adaikkalam, P.; Srinivasan, G.N. Recovery of Gallium from Bayer Liquor Using Chelating Resins in Fixed-Bed Columns. Ind. Eng. Chem. Res. 2004, 43, 2216-2221. https://doi.org/10.1021/ie030695n
dc.relation.referencesen[3] François, D.; Thomas, V.A. Ion Exchangers. In Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2008.
dc.relation.referencesen[4] Birnhack, L.; Keller, O.; Tang, S.C.N.; Fridman-Bishop, N.; Lahav, O. A Membrane-Based Recycling Process for Minimizing Environmental Effects Inflicted by Ion-Exchange Softening Applications. Sep. Pur. Tech. 2019, 223, 24-30. https://doi.org/10.1016/j.seppur.2019.04.056
dc.relation.referencesen[5] Ergozhin, E.; Menligaziyev, E. Polifunktsionalnyie Ionoobmenniki; Nauka: Moskwa, 1986.
dc.relation.referencesen[6] Mulder, M. Basic Principles of Membrane Technology, 2nd ed.; Springer Netherlands, 2006. https://doi.org/10.1007/978-94-009-1766-8
dc.relation.referencesen[7] Malika, C.; Kenza, A.; Yasmine, A.O.; Abdeltif, A.; Aicha, B. Removal of Nitrate from Drinking Water by Adsorption Using Ion Exchange Resin. Desal. Wat. Treat. 2010, 24, 109-116. https://doi.org/10.5004/dwt.2010.1251
dc.relation.referencesen[8] Rafati, L.; Mahvi, A.H.; Asgari, A.R.; Hosseini, S.S. Removal of Chromium (VI) from Aqueous Solutions Using Lewatit FO36 Nano Ion Exchange Resin. Int. J. Envir. Sci. Tech. 2010, 7, 147-156. https://doi.org/10.1007/BF03326126
dc.relation.referencesen[9] Tabushi, I.; Kobuke, Y.; Nakayama, N.; Aoki, T.; Yoshizawa, A. Chelating Resin Functionalized with Dithiocarbamate for the Recovery of Uranium from Seawater. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 445-448. https://doi.org/10.1021/i300015a023
dc.relation.referencesen[10] Kawamura, Y.; Mitsuhashi, M.; Tanibe, H.; Yoshida, H. Adsorption of Metal Ions on Polyaminated Highly Porous Chitosan Chelating Resin. Ind. Eng. Chem. Res. 1993, 32, 386-391. https://doi.org/10.1021/ie00014a015
dc.relation.referencesen[11] Guibal, E.; Milot, C.; Tobin, J.M. Metal-Anion Sorption by Chitosan Beads:  Equilibrium and Kinetic Studies. Ind. Eng. Chem. Res. 1998, 37, 1454-1463. https://doi.org/10.1021/ie9703954
dc.relation.referencesen[12] Alexandratos, S.D.; Hussain, L.A. Bifunctionality as a Means of Enhancing Complexation Kinetics in Selective Ion Exchange Resins. Ind. Eng. Chem. Res. 1995, 34, 251-254. https://doi.org/10.1021/ie00040a026
dc.relation.referencesen[13] Kabay, N.; Demircioglu, M.; Yayli, S.; Günay, E.; Yüksel, M.; Saǧlam, M.; Streat, M. Recovery of Uranium from Phosphoric Acid Solutions Using Chelating Ion-Exchange Resins. Ind. Eng. Chem. Res. 1998, 37, 1983-1990. https://doi.org/10.1021/ie970518k
dc.relation.referencesen[14] Beatty, S.T.; Fischer, R.J.; Hagers, D.L.; Rosenberg, E. A Comparative Study of the Removal of Heavy Metal Ions from Water Using a Silica−Polyamine Composite and a Polystyrene Chelator Resin. Ind. Eng. Chem. Res. 1999, 38, 4402-4408. https://doi.org/10.1021/ie9903386
dc.relation.referencesen[15] Di Natale, F.; Lancia, A. Recovery of Tungstate from Aqueous Solutions by Ion Exchange. Ind. Eng. Chem. Res. 2007, 46, 6777-6782. https://doi.org/10.1021/ie061691w
dc.relation.referencesen[16] Kiefer, R., Holl, W.H. Sorption of Heavy Metals onto Selective Ion-Exchange Resins with Aminophosphonate Functional Groups. Ind. Eng. Chem. Res., 2001, 40, 4570-4576. https://doi.org/10.1021/ie010182l
dc.relation.referencesen[17] Xiong, Z.; Zhao, D.; Harper, W.F. Sorption and Desorption of Perchlorate with Various Classes of Ion Exchangers:  A Comparative Study. Ind. Eng. Chem. Res. 2007, 46, 9213-9222. https://doi.org/10.1021/ie0702025
dc.relation.referencesen[18] Maslov, O.D.; Tserenpil, Sh.; Norov, N.; Gustova, M.V.; Filippov, M.F.; Belov, A.G.; Altangerel, M.; Enhbat, N. Uranium Recovery from Coal ash Dumps of Mongolia. Sol. Fuel Chem. 2010, 44, 433-438. https://doi.org/10.3103/S0361521910060133
dc.relation.referencesen[19] Ladola, Y.S.; Kadam, S.V.; Hareendran, K.N.; Chowdhury, S.; Biswas, S.; Roy, S.B.; Pandit, A.B. Analysis of Uranium Leaching Process and Effect of Cake Washing on Uranium Recovery. J. Mat. Sci. Eng. Adv. Tech. 2014, 10, 63-75.
dc.relation.referencesen[20] Cheru, M.S., del Rosario, A.V.; Yimam, A.; Tadesse, B.; Berhe, G.G. Hydrometallurgical Removal of Uranium and Thorium from Ethiopian Tantalite Ore. Phys. Prob. Min. Proc., 2019, 55, 448-457. https://doi.org/10.5277/ppmp18153
dc.relation.referencesen[21] Horkay, F.; Basser, P.J.; Hecht, A.-M.; Geissler, E. Structural Investigations of a Neutralized Polyelectrolyte Gel and an Associating Neutral Hydrogel. Polymer 2005, 46, 4242-4247. https://doi.org/10.1016/j.polymer.2005.02.054
dc.relation.referencesen[22] Kondrashova, Yu.; Safronov, A. Proceedings of 16th Russian Youth Conference Devoted to 85 Years of Birth of Prof. Kochergin V.P. Russia, Ekaterinburg, 2006; p 232.
dc.relation.referencesen[23] Kim, S.J.; Yoon, S.G.; Kim, S.I. Effect of the Water State on the Electrical Bending Behavior of Chitosan/Poly(diallyldimethylammonium Chloride) Hydrogels in NaCl Solutions. J. Polym. Sci. B 2004, 42, 914-921. https://doi.org/10.1002/polb.10778
dc.relation.referencesen[24] Chen, L.; Yu, X.; Li, Q. Reswelling Behavior of Polycation Hydrogels Carrying Charges on the Chain Backbone by Two-Step Surfactant Bindings. J. Appl. Polym. Sci. 2006, 102, 3791-3794. https://doi.org/10.1002/app.24747
dc.relation.referencesen[25] Sitnikova, N.; Malyshkina, I.; Gavrilova, N.; Philippova, O. Proceedings of 4th International Symposium on Molecular Order and Mobility in Polymer Systems, Russia, St. Petersburg, 2002; p 229.
dc.relation.referencesen[26] Alimbekova, B.T.; Korganbayeva, Zh.K.; Himersen, H.J.; Kondaurov, R.G.; Jumadilov, T.K. Features of Polymethacrylic Acid and Poly-2-Methyl-5-Vinylpyridine Hydrogels Remote Interaction in an Aqueous Medium. J. Chem. Chem. Eng. 2014, 3, 265-269
dc.relation.referencesen[27] Jumadilov, T. Mutual Activation and High Selectivity of Polymeric Structures in Intergel Systems. Abstracts of Papers of Third International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, September 1-4, 2013; Iv. Javakhishvili Tbilisi State University: Tbilisi, 2013, p 43.
dc.relation.referencesen[28] Jumadilov, T. Electrochemical and Conformational Behaviour of Intergel Systems Based on the Rare Crosslinked Polyacid and Polyvynilpyrydines. Conference of Lithuanian Chemical Society "Chemistry and Chemical Technology", Lithuania, Kaunas, 2014; pp 226-229.
dc.relation.referencesen[29] Alimbekova, B.T.; Jumadilov, T.K.; Korganbayeva, Zh.K. Some Features of Polymer Hydrogels Interaction with Low Molecular Salts. Bull. d'EUROTALENT-FIDJIP 2013, 5, 28-32.
dc.relation.referencesen[30] Erzhet, B.; Jumadilov, T.K.; Korganbayeva, ZhK. Electrochemical and Volume-Gravimetric Properties of Intergel System Based on Polyacrylic Acid and Poly-4-Vinylpyridine Hydrogels. Bull. d'EUROTALENT-FIDJIP 2013, 5, 41-45.
dc.relation.referencesen[31] Jumadilov, T.; Kaldayeva, S.; Kondaurov, R.; Erzhan, B.; Erzhet, B. Mutual Activation and High Selectivity of Polymeric Structures in Intergel Systems. In High Performance Polymers for Engineering Based Composites; CRC Press: Boca Raton, 2015; pp 111-119.
dc.relation.referencesen[32] Jumadilov, T. Effect of Remote Interraction of Polymeric Hydrogels in Innovative Technology. Ind. Kazakhstan, 2011, 2, 70-72.
dc.relation.referencesen[33] Bekturov, E.; Suleimenov, I. Polimernie Hydrogeli; Nauka: Moskwa, 1998.
dc.relation.referencesen[34] Jumadilov, T.; Kondaurov, R.; Abilov, Zh.; Grazulevicius, J.V.; Akimov, A.A. Influence of Polyacrylic Acid and poly-4-Vinylpyridine Hydrogels Mutual Activation in Intergel System on their Sorption Properties in Relation to Lanthanum (III) Ions. Pol. Bul. 2017, 74, 4701-4713. https://doi.org/10.1007/s00289-017-1985-3
dc.relation.referencesen[35] Jumadilov, T., Abilov, Zh., Kondaurov, R. Intergel Systems: Highly Effective Instruments for Rare Earth Elements Extraction from Industrial Solutions. In Chemical Engineering of Polymers. Production of Functional and Flexible Materials Composites; AAP Press: Sydney, 2017; pp 267-279. https://doi.org/10.1201/9781315365985-20
dc.relation.referencesen[36] Jumadilov, T.K.; Kondaurov, R.G.; Kozhabekov, S.S.; Tolegen, G.A.; Eskalieva, G.K.; Khakimzhanov, S.A. Influence of Poly-Acrylic Acid Hydrogel’s Swelling Degree on Sorption Ability of Intergel System Polyacrylic Acid Hydrogel–Poly-4-vinylpyridine Hydrogel in Relation to Neodymium Ions. Chem. Tech. Met. 2018, 53, 88-93.
dc.relation.referencesen[37] Tereshenkova, A.A; Statkus, M.A.; Tihomirova, T.I.; Tsizin, G.I. Sorption Concentrating of Lanthanum on Modified Low-Polar Sorbents. Moscow Univ. Bull. 2013, 54, 203-209.
dc.relation.referencesen[38] Praktikum po Phyziko-Khimicheskim Metodam Analiza; Petruhin, O., Ed.; Khimia: Moskwa, 1987.
dc.relation.urihttps://doi.org/10.1021/ie801242v
dc.relation.urihttps://doi.org/10.1021/ie030695n
dc.relation.urihttps://doi.org/10.1016/j.seppur.2019.04.056
dc.relation.urihttps://doi.org/10.1007/978-94-009-1766-8
dc.relation.urihttps://doi.org/10.5004/dwt.2010.1251
dc.relation.urihttps://doi.org/10.1007/BF03326126
dc.relation.urihttps://doi.org/10.1021/i300015a023
dc.relation.urihttps://doi.org/10.1021/ie00014a015
dc.relation.urihttps://doi.org/10.1021/ie9703954
dc.relation.urihttps://doi.org/10.1021/ie00040a026
dc.relation.urihttps://doi.org/10.1021/ie970518k
dc.relation.urihttps://doi.org/10.1021/ie9903386
dc.relation.urihttps://doi.org/10.1021/ie061691w
dc.relation.urihttps://doi.org/10.1021/ie010182l
dc.relation.urihttps://doi.org/10.1021/ie0702025
dc.relation.urihttps://doi.org/10.3103/S0361521910060133
dc.relation.urihttps://doi.org/10.5277/ppmp18153
dc.relation.urihttps://doi.org/10.1016/j.polymer.2005.02.054
dc.relation.urihttps://doi.org/10.1002/polb.10778
dc.relation.urihttps://doi.org/10.1002/app.24747
dc.relation.urihttps://doi.org/10.1007/s00289-017-1985-3
dc.relation.urihttps://doi.org/10.1201/9781315365985-20
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Jumadilov T., Malimbayeva Z., Yskak L., Suberlyak O., Kondaurov R., Imangazy A., Agibayeva L., Akimov A., Khimersen H., Zhuzbayeva A., 2022
dc.subjectміжгелеві системи
dc.subjectсорбція
dc.subjectйони La3+
dc.subjectІЧ-спектроскопія
dc.subjectдесорбція
dc.subjectintergel systems
dc.subjectsorption
dc.subjectLa3+ ions
dc.subjectIR spectroscopy
dc.subjectdesorption
dc.titleComparative Characteristics of Polymethacrylic Acid Hydrogel Sorption Activity in Relation to Lanthanum Ions in Different Intergel Systems
dc.title.alternativeПорівняльна характеристика сорбційної активності гідрогелів поліметакрилової кислоти стосовно йонів лантану в деяких міжгелевих системах
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n3_Jumadilov_T-Comparative_Characteristics_418-431.pdf
Size:
745.73 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n3_Jumadilov_T-Comparative_Characteristics_418-431__COVER.png
Size:
552.05 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: