Термодинамічні параметри розчинення о-, м- та п- ізомерів 5-(нітрофеніл)-фуран-2-карбонових кислот в етилацетаті
dc.citation.epage | 7 | |
dc.citation.issue | 1 | |
dc.citation.spage | 1 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Львівський національний університет ім. Івана Франка | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Собечко, І. Б. | |
dc.contributor.author | Горак, Ю. І. | |
dc.contributor.author | Дібрівний, В. М. | |
dc.contributor.author | Клачко, О. Р. | |
dc.contributor.author | Костюк, Р. Р. | |
dc.contributor.author | Sobechko, I. B. | |
dc.contributor.author | Gorak, Yu. I. | |
dc.contributor.author | Dibrivnyi, V. M. | |
dc.contributor.author | Klachko, O. R. | |
dc.contributor.author | Kostyuk, R. R. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:14:38Z | |
dc.date.available | 2024-01-22T08:14:38Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | За температурною залежністю розчинності 5-(2-нітрофеніл)-фуран-2-карбонової кислоти, 5-(3-нітрофеніл)-фуран-2-карбонової кислоти та 5-(4-нітрофеніл)-фуран-2-карбонової кислоти в етилацетаті розраховано значення ентальпії та ентропії їх розчинення. З урахуванням ентальпії та ентропії плавлення, перерахованої до 298 К, обчислено ентальпії та ентропії змішування. Встановлено залежність розчинності карбоксилвмісних речовин за 298 К від їх температури плавлення. | |
dc.description.abstract | According to the temperature dependence of the solubility of 5-(2-nitrophenyl)-furan-2-carboxylic acid, 5-(3-nitrophenyl)-furan-2-carboxylic acid and 5-(4-nitrophenyl)-furan-2-carboxylic acid, in the values of enthalpy and entropy of their dissolution were calculated in ethyl acetate. Taking into account the enthalpy and entropy of melting listed up to 298 K, the enthalpies and entropies of mixing are calculated. The dependence of the solubility of carboxyl-containing substances at 298 K on their melting point was established. | |
dc.format.extent | 1-7 | |
dc.format.pages | 7 | |
dc.identifier.citation | Термодинамічні параметри розчинення о-, м- та п- ізомерів 5-(нітрофеніл)-фуран-2-карбонових кислот в етилацетаті / І. Б. Собечко, Ю. І. Горак, В. М. Дібрівний, О. Р. Клачко, Р. Р. Костюк // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2021. — Том 4. — № 1. — С. 1–7. | |
dc.identifier.citationen | Thermodynamic parameters of dissolution of o-, m- and p-isomers of 5-(nitrophenyl)-furan-2-carbonic acids in ethylacetate / I. B. Sobechko, Yu. I. Gorak, V. M. Dibrivnyi, O. R. Klachko, R. R. Kostyuk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 1–7. | |
dc.identifier.doi | doi.org/10.23939/ctas2021.01.001 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60838 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (4), 2021 | |
dc.relation.references | 1. Sun, M., Ma, C., Zhou, S.-J., et al. (2019). Catalytic Asymmetric (4+3) Cyclizations of in situ generated orthoquinone methides with 2-indolylmethanols. Angew. Chem. Int. Ed., 58, 8703−8708. | |
dc.relation.references | 2. Jiang, F., Luo, G.-Z., Zhu, Z.-Q. et al. (2018). Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita-baylis-hillman carbonates. J. Org. Chem., 83, 10060−10069. | |
dc.relation.references | 3. Wang, C.-S., Cheng, Y.-C., Zhou, J., et al. (2018). Metal-catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. J. Org. Chem., 83, 13861−13873. | |
dc.relation.references | 4. Jiang, F., Zhao, D., Yang, X., et al. (2017). Catalystcontrolled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catal., 7, 6984−6989. | |
dc.relation.references | 5. Lipshutz, B. H. (1986). Five-membered heteroaromatic rings as intermediates in organic synthesis Chem. Rev., 86, 795−819. | |
dc.relation.references | 6. Gandini, M. N. Belgacem (1997). Furans in polymer chemistry. Progress in Polymer Science 22, (6), 1203–1379. | |
dc.relation.references | 7. Karateev, A., Koryagin, A., Litvinov, D. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, 1. 19–23. | |
dc.relation.references | 8. Wang, Y., Furukawa, S., Fu, X., Yan, N. (2019). Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts. ACS Catal. DOI: 10.1021/acscatal.9b03744. | |
dc.relation.references | 9. Hakim, Siddiki S. M. A., Toyao T., Shimizu, K.-I. (2018). Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chem., 20, 2933–2952. | |
dc.relation.references | 10. Meng, Chen, Qingsong, Yu, Hongmin, Sun (2013). Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci., 14, 18488–18501. | |
dc.relation.references | 11. Holla, B. S., Akberali, P. M., Shivananda, M. K. (2000). Studies on arylfuran derivatives: part X Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco. 55, (4), 256–263. | |
dc.relation.references | 12. Subrahmanya, Κ. Bhat, Shivarama, Holla, Β. (2003). Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic communications, 6 (6), 625–628. | |
dc.relation.references | 13. Sobechko, I. B., Gorak, Yu. I., Van-ChinSyan, Yu., Ya. et al. (2015). Thermodynamics of solubility of isomeric 5- (nitrophenyl)-furan-2-carbaldehydes in organic solvents. News of higher educational institutions. Series: chemistry and chemical technology, 58, (3), 45–48. | |
dc.relation.references | 14. Sobechko, I. B., Van-Chin-Syan, Yu. Ya., Gorak, Yu. I., et al. (2015). Thermodynamic characteristics of the melting and dissolution of crystalline furan-2-carboxylic and 3-(furyl)-2-propenoic in organic solvent. Russian Journal of Physical Chemistry (A). 89, (6), 919–925. | |
dc.relation.references | 15. Sobechko, I., Dibrivnyi, V., Horak, Y., et al. (2017). Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents. Chemistry & Chemical Technology. 11, (4), 397–404. | |
dc.relation.references | 16. Sobechko, I., Horak, Y., Dibrivnyi, V., et al. (2019). Thermodynamic properties of 2-methyl-5-arylfuran-3 carboxylic acids chlorine derivatives in organic solvents. Chemistry & Chemical Technology, 13, (3), 280–287. | |
dc.relation.references | 17. Marshalek, A. S., Prokop, R. T., Sobechko, I. B. et al. (2017). Thermodynamic properties of some paranitro-phenyl disubstituted furan derivatives. Questions of chemistry and chemical technology. 2, (111), 36–41. | |
dc.relation.references | 18. Xinbao, Li, Yang, Cong, Cunbin, Du, Hongkun, Zhao (2017). Solubility and solution thermodynamics of 2-methyl-4-nitroaniline in eleven organic solvents at elevated temperatures. J. Chem. Thermodynamics, 105, 276–288. | |
dc.relation.references | 19. Yüfang, Wu, Xiaolu, Zhang, Yancha, Di, Yanting, Zhang (2017). Solubility determination and modelling of 4-nitro-1,2-phenylenediamine in eleven organic solvents from T = (283.15 to 318.15) K and thermodynamic properties of solutions. J. Chem. Thermodynamics, 106, 22–35. | |
dc.relation.references | 20. Renjie, Xu, Anli, Xu, Cunbin, Du, Yang, Cong, Jian, Wang (2016). Solubility determination and thermodynamic modeling of 2,4-dinitroaniline in nine organic solvents from T = (278.15 to 318.15) K and mixing properties of solutions. | |
dc.relation.references | 21. Sobechko, I. B. (2014). Solubility and dissolution characteristics of 5-(2-nitrophenyl)-furan-2-carbaldehyde, 5-(2-nitrophenyl)-furan-2-carboxylic and 3-[5-(2-nitrophenyl)-furan-2-] propenoic acids in organic solvents. Questions of chemistry and chemical technology, 5–6, 48–52. | |
dc.relation.references | 22. Ganbing, Yao, Zhihui, Li, Zhanxiang, Xia, Qingcang, Yao (2016). Solubility of N-phenylanthranilic acid in nine organic solvents from T = (283.15 to 318.15) K: Determination and modelling. J. Chem. Thermodynamics, 103, 218–227. | |
dc.relation.references | 23. Svarovskaya, N. A. (2013). Physical chemistry of solutions: Materials for the course of lectures M.: OOP Russian State University of Oil and Gas named after I. M. Gubkina. | |
dc.relation.referencesen | 1. Sun, M., Ma, C., Zhou, S.-J., et al. (2019). Catalytic Asymmetric (4+3) Cyclizations of in situ generated orthoquinone methides with 2-indolylmethanols. Angew. Chem. Int. Ed., 58, 8703−8708. | |
dc.relation.referencesen | 2. Jiang, F., Luo, G.-Z., Zhu, Z.-Q. et al. (2018). Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita-baylis-hillman carbonates. J. Org. Chem., 83, 10060−10069. | |
dc.relation.referencesen | 3. Wang, C.-S., Cheng, Y.-C., Zhou, J., et al. (2018). Metal-catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. J. Org. Chem., 83, 13861−13873. | |
dc.relation.referencesen | 4. Jiang, F., Zhao, D., Yang, X., et al. (2017). Catalystcontrolled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catal., 7, 6984−6989. | |
dc.relation.referencesen | 5. Lipshutz, B. H. (1986). Five-membered heteroaromatic rings as intermediates in organic synthesis Chem. Rev., 86, 795−819. | |
dc.relation.referencesen | 6. Gandini, M. N. Belgacem (1997). Furans in polymer chemistry. Progress in Polymer Science 22, (6), 1203–1379. | |
dc.relation.referencesen | 7. Karateev, A., Koryagin, A., Litvinov, D. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, 1. 19–23. | |
dc.relation.referencesen | 8. Wang, Y., Furukawa, S., Fu, X., Yan, N. (2019). Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts. ACS Catal. DOI: 10.1021/acscatal.9b03744. | |
dc.relation.referencesen | 9. Hakim, Siddiki S. M. A., Toyao T., Shimizu, K.-I. (2018). Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chem., 20, 2933–2952. | |
dc.relation.referencesen | 10. Meng, Chen, Qingsong, Yu, Hongmin, Sun (2013). Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci., 14, 18488–18501. | |
dc.relation.referencesen | 11. Holla, B. S., Akberali, P. M., Shivananda, M. K. (2000). Studies on arylfuran derivatives: part X Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco. 55, (4), 256–263. | |
dc.relation.referencesen | 12. Subrahmanya, K. Bhat, Shivarama, Holla, B. (2003). Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic communications, 6 (6), 625–628. | |
dc.relation.referencesen | 13. Sobechko, I. B., Gorak, Yu. I., Van-ChinSyan, Yu., Ya. et al. (2015). Thermodynamics of solubility of isomeric 5- (nitrophenyl)-furan-2-carbaldehydes in organic solvents. News of higher educational institutions. Series: chemistry and chemical technology, 58, (3), 45–48. | |
dc.relation.referencesen | 14. Sobechko, I. B., Van-Chin-Syan, Yu. Ya., Gorak, Yu. I., et al. (2015). Thermodynamic characteristics of the melting and dissolution of crystalline furan-2-carboxylic and 3-(furyl)-2-propenoic in organic solvent. Russian Journal of Physical Chemistry (A). 89, (6), 919–925. | |
dc.relation.referencesen | 15. Sobechko, I., Dibrivnyi, V., Horak, Y., et al. (2017). Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents. Chemistry & Chemical Technology. 11, (4), 397–404. | |
dc.relation.referencesen | 16. Sobechko, I., Horak, Y., Dibrivnyi, V., et al. (2019). Thermodynamic properties of 2-methyl-5-arylfuran-3 carboxylic acids chlorine derivatives in organic solvents. Chemistry & Chemical Technology, 13, (3), 280–287. | |
dc.relation.referencesen | 17. Marshalek, A. S., Prokop, R. T., Sobechko, I. B. et al. (2017). Thermodynamic properties of some paranitro-phenyl disubstituted furan derivatives. Questions of chemistry and chemical technology. 2, (111), 36–41. | |
dc.relation.referencesen | 18. Xinbao, Li, Yang, Cong, Cunbin, Du, Hongkun, Zhao (2017). Solubility and solution thermodynamics of 2-methyl-4-nitroaniline in eleven organic solvents at elevated temperatures. J. Chem. Thermodynamics, 105, 276–288. | |
dc.relation.referencesen | 19. Yüfang, Wu, Xiaolu, Zhang, Yancha, Di, Yanting, Zhang (2017). Solubility determination and modelling of 4-nitro-1,2-phenylenediamine in eleven organic solvents from T = (283.15 to 318.15) K and thermodynamic properties of solutions. J. Chem. Thermodynamics, 106, 22–35. | |
dc.relation.referencesen | 20. Renjie, Xu, Anli, Xu, Cunbin, Du, Yang, Cong, Jian, Wang (2016). Solubility determination and thermodynamic modeling of 2,4-dinitroaniline in nine organic solvents from T = (278.15 to 318.15) K and mixing properties of solutions. | |
dc.relation.referencesen | 21. Sobechko, I. B. (2014). Solubility and dissolution characteristics of 5-(2-nitrophenyl)-furan-2-carbaldehyde, 5-(2-nitrophenyl)-furan-2-carboxylic and 3-[5-(2-nitrophenyl)-furan-2-] propenoic acids in organic solvents. Questions of chemistry and chemical technology, 5–6, 48–52. | |
dc.relation.referencesen | 22. Ganbing, Yao, Zhihui, Li, Zhanxiang, Xia, Qingcang, Yao (2016). Solubility of N-phenylanthranilic acid in nine organic solvents from T = (283.15 to 318.15) K: Determination and modelling. J. Chem. Thermodynamics, 103, 218–227. | |
dc.relation.referencesen | 23. Svarovskaya, N. A. (2013). Physical chemistry of solutions: Materials for the course of lectures M., OOP Russian State University of Oil and Gas named after I. M. Gubkina. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | розчинність | |
dc.subject | ентальпія розчинення | |
dc.subject | ентальпія змішування | |
dc.subject | ентальпія плавлення | |
dc.subject | 5-(2-нітрофеніл)-фуран-2-карбонова кислота | |
dc.subject | 5-(3-нітрофеніл)-фуран-2-карбонова кислота | |
dc.subject | 5-(4-нітрофеніл)-фуран-2-карбонова кислота | |
dc.subject | solubility | |
dc.subject | enthalpy of dissolution | |
dc.subject | enthalpy of mixing | |
dc.subject | enthalpy of melting | |
dc.subject | 5-(2- nitrophenyl)-furan-2-carboxylic acid | |
dc.subject | 5-(3-nitrophenyl)-furan-2-carboxylic acid | |
dc.subject | 5-(4-nitrophenyl)-furan-2-carboxylic acid | |
dc.title | Термодинамічні параметри розчинення о-, м- та п- ізомерів 5-(нітрофеніл)-фуран-2-карбонових кислот в етилацетаті | |
dc.title.alternative | Thermodynamic parameters of dissolution of o-, m- and p-isomers of 5-(nitrophenyl)-furan-2-carbonic acids in ethylacetate | |
dc.type | Article |
Files
License bundle
1 - 1 of 1