Experimental Evaluation of an Empirical Equation in a Gaseous Flow

dc.citation.epage65
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage57
dc.citation.volume18
dc.contributor.affiliationUniversidad Nacional del Centro del Perú
dc.contributor.authorPovis, Arlitt Amy Lozano
dc.contributor.authorPerez, Elias Adrián Sanabria
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:20:00Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractУ цій статті оцінено похибку оцінювання емпіричного рівняння Пола з використанням мідних труб різних діаметрів (0,00953, 0,0127, 0,01588 м), за різних умов потоку (0, 300, 500, 1000, 1500, 2000, 2500, 3000 л/год). Для проведення експериментів були використані наступні прилади: повітряний компресор, 2 проточні вентилі, голчастий вентиль, газовий ротаметр, мідні трубопроводи, манометри і передавачі, реєстратор даних Norus з вихідними сигналами від 4 до 20 мА, термопари і терморезистори. Це дало змогу встановити, що падіння тиску повітря під час проходження через труби є вищим (380 Па) для труб малого діаметру (0,00953 м) порівняно з трубами більшого діаметру (0,01270 м і 0,01588 м) з максимальним значенням 54 і 28 Па, відповідно; і відносно швидкості потоку падіння тиску зростає з квадратичною тенденцією відносно швидкості потоку. Нарешті, залишкові похибки, які має емпіричне рівняння в розрахунках перепаду тиску, у цілому, не є великими.
dc.description.abstractIn this paper, the estimation error of Dr. Pole's empirical equation was evaluated using copper pipes of different diameters (0.00953, 0.0127, 0.01588 m), under different flow pressure conditions (0, 300, 500, 1000, 1500, 2000, 2500, 3000 L/h). To carry out the experiments, the following instruments were used: an air compressor, 2 flow valves, a needle valve, a gas rotameter, copper piping, pressure gauges and transmitters, a Norus data logger with 4 to 20 mA output signals, thermocouples, and thermoresistors. They allow us to establish that the air pressure drops when the flowing through the pipes is higher (380 Pa) for small diameter pipes (0.00953 m), compared to larger diameters (0.01270 m and 0.01588 m) with a maximum of 54 and 28 Pa, respectively; and in relation to the flow rates, the pressure drop increases with a quadratic trend with respect to the flow rate. Finally, the residual errors that the empirical equation has in the pressure drop calculations, in general terms, are not of great magnitude.
dc.format.extent57-65
dc.format.pages9
dc.identifier.citationPovis A. A. L. Experimental Evaluation of an Empirical Equation in a Gaseous Flow / Arlitt Amy Lozano Povis, Elias Adrián Sanabria Perez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 57–65.
dc.identifier.citationenPovis A. A. L. Experimental Evaluation of an Empirical Equation in a Gaseous Flow / Arlitt Amy Lozano Povis, Elias Adrián Sanabria Perez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 57–65.
dc.identifier.doidoi.org/10.23939/chcht18.01.057
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111784
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Song, G.; Li, Y.; Sum, A. K. Characterization of the Coupling between Gas Hydrate Formation and Multiphase Flow Conditions. J. Nat. Gas Sci. Eng. 2020, 83, 103567. https://doi.org/10.1016/J.JNGSE.2020.103567
dc.relation.references[2] Pinchuk, S.; Galchenko, G.; Simonov, A.; Masakovskaya, L.; Roslyk, I. Complex Corrosion Protection of Tubing in Gas Wells. Chem. Chem. Technol. 2018, 12, 529–532. https://doi.org/10.23939/chcht12.04.529
dc.relation.references[3] Paolinelli, L. D.; Nesic, S. Calculation of Mass Transfer Coefficients for Corrosion Prediction in Two-Phase Gas-Liquid Pipe Flow. Int. J. Heat Mass Transf. 2021, 165, 120689. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.120689
dc.relation.references[4] Bannikov, L.; Miroshnichenko, D.; Pylypenko, O.; Pyshyev, S.; Fedevych, O.; Meshchanin, V. Coke Quenching Plenum Equipment Corrosion and Its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production. Chem. Chem. Technol. 2022, 16, 328–336. https://doi.org/10.23939/chcht16.02.328
dc.relation.references[5] Löhr, L.; Houben, R.; Moser, A. Optimal Power and Gas Flow for Large-Scale Transmission Systems. Electr. Power Syst. Res. 2020, 189, 106724. https://doi.org/10.1016/J.EPSR.2020.106724
dc.relation.references[6] Xu, L.; Zhu, F.; Zha, F.; Chu, C.; Yang, C. Effects of Gas Pressure and Confining Pressure on Gas Flow Behavior in Saturated Cohesive Soils with Low Permeability. Eng. Geol. 2019, 260, 105241. https://doi.org/10.1016/J.ENGGEO.2019.105241
dc.relation.references[7] Martínez-Aguilar, J.; González-Gago, C.; Castaños-Martínez, E.; Muñoz, J.; Calzada, M. D.; Rincón, R. Influence of Gas Flow on the Axial Distribution of Densities, Temperatures and Thermodynamic Equilibrium Degree in Surface-Wave Plasmas Sustained at Atmospheric Pressure. Spectrochim. Acta Part B At. Spectrosc. 2019, 158, 105636. https://doi.org/10.1016/J.SAB.2019.105636
dc.relation.references[8] INDECOPI. Gas Natural seco.Sistema de tuberías para instalaciones internas residenciales y comerciales. https://www.italcaseperu.com/download/NTP 111.011 2006 Instalaciones internas residenciales y comerciales.pdf (accessed 2022-03-08).
dc.relation.references[9] Badie, S.; Hale, C. P.; Lawrence, C. J.; Hewitt, G. F. Pressure Gradient and Holdup in Horizontal Two-Phase Gas–Liquid Flows with Low Liquid Loading. Int. J. Multiph. Flow 2000, 26, 1525–1543. https://doi.org/10.1016/S0301-9322(99)00102-0.
dc.relation.references[10] Wu, J.; Li, Y.; Wang, Y. Three-Dimension Simulation of Two-Phase Flows in a Thin Gas Flow Channel of PEM Fuel Cell Using a Volume of Fluid Method. Int. J. Hydrogen Energy 2020, 45 (54), 29730–29737. https://doi.org/10.1016/J.IJHYDENE.2019.09.149
dc.relation.references[11] Liang, R.; Jin, X.; Yang, S.; Shi, J.; Zhang, S. Study on Flow Structure Transition in Thermocapillary Convection under Parallel Gas Flow. Exp. Therm. Fluid Sci. 2020, 113, 110037. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2019.110037
dc.relation.references[12] Bissor, E. H.; Yurishchev, A.; Ullmann, A.; Brauner, N. Prediction of the Critical Gas Flow Rate for Avoiding Liquid Accumulation in Natural Gas Pipelines. Int. J. Multiph. Flow 2020, 130, 103361. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2020.103361
dc.relation.references[13] Alsaadi, Y.; Pereyra, E.; Torres, C.; Sarica, C. Liquid Loading of Highly Deviated Gas Wells from 60° to 88°. Proc. - SPE Annu. Tech. Conf. Exhib. 2015, 2015-January, 1752–1769. https://doi.org/10.2118/174852-MS
dc.relation.references[14] Zhou, D.; Yuan, H. A New Model for Predicting Gas-Well Liquid Loading. SPE Prod. Oper. 2010, 25 (02), 172–181. https://doi.org/10.2118/120580-PA
dc.relation.references[15] Trifonov, Y. Y. Linear and Nonlinear Instabilities of a Co-Current Gas-Liquid Flow between Two Inclined Plates Analyzed Using the Navier–Stokes Equations. Int. J. Multiph. Flow 2020, 122, 103159. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2019.103159
dc.relation.references[16] Shi, S.; Wang, Y.; Qi, Z.; Yan, W.; Zhou, F. Experimental Investigation and New Void-Fraction Calculation Method for Gas–Liquid Two-Phase Flows in Vertical Downward Pipe. Exp. Therm. Fluid Sci. 2021, 121, 110252. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2020.110252
dc.relation.references[17] Kopparthy, S.; Mansour, M.; Janiga, G.; Thévenin, D. Numerical Investigations of Turbulent Single-Phase and Two-Phase Flows in a Diffuser. Int. J. Multiph. Flow 2020, 130, 103333. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2020.103333
dc.relation.referencesen[1] Song, G.; Li, Y.; Sum, A. K. Characterization of the Coupling between Gas Hydrate Formation and Multiphase Flow Conditions. J. Nat. Gas Sci. Eng. 2020, 83, 103567. https://doi.org/10.1016/J.JNGSE.2020.103567
dc.relation.referencesen[2] Pinchuk, S.; Galchenko, G.; Simonov, A.; Masakovskaya, L.; Roslyk, I. Complex Corrosion Protection of Tubing in Gas Wells. Chem. Chem. Technol. 2018, 12, 529–532. https://doi.org/10.23939/chcht12.04.529
dc.relation.referencesen[3] Paolinelli, L. D.; Nesic, S. Calculation of Mass Transfer Coefficients for Corrosion Prediction in Two-Phase Gas-Liquid Pipe Flow. Int. J. Heat Mass Transf. 2021, 165, 120689. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.120689
dc.relation.referencesen[4] Bannikov, L.; Miroshnichenko, D.; Pylypenko, O.; Pyshyev, S.; Fedevych, O.; Meshchanin, V. Coke Quenching Plenum Equipment Corrosion and Its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production. Chem. Chem. Technol. 2022, 16, 328–336. https://doi.org/10.23939/chcht16.02.328
dc.relation.referencesen[5] Löhr, L.; Houben, R.; Moser, A. Optimal Power and Gas Flow for Large-Scale Transmission Systems. Electr. Power Syst. Res. 2020, 189, 106724. https://doi.org/10.1016/J.EPSR.2020.106724
dc.relation.referencesen[6] Xu, L.; Zhu, F.; Zha, F.; Chu, C.; Yang, C. Effects of Gas Pressure and Confining Pressure on Gas Flow Behavior in Saturated Cohesive Soils with Low Permeability. Eng. Geol. 2019, 260, 105241. https://doi.org/10.1016/J.ENGGEO.2019.105241
dc.relation.referencesen[7] Martínez-Aguilar, J.; González-Gago, C.; Castaños-Martínez, E.; Muñoz, J.; Calzada, M. D.; Rincón, R. Influence of Gas Flow on the Axial Distribution of Densities, Temperatures and Thermodynamic Equilibrium Degree in Surface-Wave Plasmas Sustained at Atmospheric Pressure. Spectrochim. Acta Part B At. Spectrosc. 2019, 158, 105636. https://doi.org/10.1016/J.SAB.2019.105636
dc.relation.referencesen[8] INDECOPI. Gas Natural seco.Sistema de tuberías para instalaciones internas residenciales y comerciales. https://www.italcaseperu.com/download/NTP 111.011 2006 Instalaciones internas residenciales y comerciales.pdf (accessed 2022-03-08).
dc.relation.referencesen[9] Badie, S.; Hale, C. P.; Lawrence, C. J.; Hewitt, G. F. Pressure Gradient and Holdup in Horizontal Two-Phase Gas–Liquid Flows with Low Liquid Loading. Int. J. Multiph. Flow 2000, 26, 1525–1543. https://doi.org/10.1016/S0301-9322(99)00102-0.
dc.relation.referencesen[10] Wu, J.; Li, Y.; Wang, Y. Three-Dimension Simulation of Two-Phase Flows in a Thin Gas Flow Channel of PEM Fuel Cell Using a Volume of Fluid Method. Int. J. Hydrogen Energy 2020, 45 (54), 29730–29737. https://doi.org/10.1016/J.IJHYDENE.2019.09.149
dc.relation.referencesen[11] Liang, R.; Jin, X.; Yang, S.; Shi, J.; Zhang, S. Study on Flow Structure Transition in Thermocapillary Convection under Parallel Gas Flow. Exp. Therm. Fluid Sci. 2020, 113, 110037. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2019.110037
dc.relation.referencesen[12] Bissor, E. H.; Yurishchev, A.; Ullmann, A.; Brauner, N. Prediction of the Critical Gas Flow Rate for Avoiding Liquid Accumulation in Natural Gas Pipelines. Int. J. Multiph. Flow 2020, 130, 103361. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2020.103361
dc.relation.referencesen[13] Alsaadi, Y.; Pereyra, E.; Torres, C.; Sarica, C. Liquid Loading of Highly Deviated Gas Wells from 60° to 88°. Proc, SPE Annu. Tech. Conf. Exhib. 2015, 2015-January, 1752–1769. https://doi.org/10.2118/174852-MS
dc.relation.referencesen[14] Zhou, D.; Yuan, H. A New Model for Predicting Gas-Well Liquid Loading. SPE Prod. Oper. 2010, 25 (02), 172–181. https://doi.org/10.2118/120580-PA
dc.relation.referencesen[15] Trifonov, Y. Y. Linear and Nonlinear Instabilities of a Co-Current Gas-Liquid Flow between Two Inclined Plates Analyzed Using the Navier–Stokes Equations. Int. J. Multiph. Flow 2020, 122, 103159. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2019.103159
dc.relation.referencesen[16] Shi, S.; Wang, Y.; Qi, Z.; Yan, W.; Zhou, F. Experimental Investigation and New Void-Fraction Calculation Method for Gas–Liquid Two-Phase Flows in Vertical Downward Pipe. Exp. Therm. Fluid Sci. 2021, 121, 110252. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2020.110252
dc.relation.referencesen[17] Kopparthy, S.; Mansour, M.; Janiga, G.; Thévenin, D. Numerical Investigations of Turbulent Single-Phase and Two-Phase Flows in a Diffuser. Int. J. Multiph. Flow 2020, 130, 103333. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2020.103333
dc.relation.urihttps://doi.org/10.1016/J.JNGSE.2020.103567
dc.relation.urihttps://doi.org/10.23939/chcht12.04.529
dc.relation.urihttps://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.120689
dc.relation.urihttps://doi.org/10.23939/chcht16.02.328
dc.relation.urihttps://doi.org/10.1016/J.EPSR.2020.106724
dc.relation.urihttps://doi.org/10.1016/J.ENGGEO.2019.105241
dc.relation.urihttps://doi.org/10.1016/J.SAB.2019.105636
dc.relation.urihttps://www.italcaseperu.com/download/NTP
dc.relation.urihttps://doi.org/10.1016/S0301-9322(99)00102-0
dc.relation.urihttps://doi.org/10.1016/J.IJHYDENE.2019.09.149
dc.relation.urihttps://doi.org/10.1016/J.EXPTHERMFLUSCI.2019.110037
dc.relation.urihttps://doi.org/10.1016/J.IJMULTIPHASEFLOW.2020.103361
dc.relation.urihttps://doi.org/10.2118/174852-MS
dc.relation.urihttps://doi.org/10.2118/120580-PA
dc.relation.urihttps://doi.org/10.1016/J.IJMULTIPHASEFLOW.2019.103159
dc.relation.urihttps://doi.org/10.1016/J.EXPTHERMFLUSCI.2020.110252
dc.relation.urihttps://doi.org/10.1016/J.IJMULTIPHASEFLOW.2020.103333
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Lozano Povis A. A., Sanabria Perez E. A., 2024
dc.subjectповітряний потік
dc.subjectвитрата
dc.subjectтиск
dc.subjectдіаметр
dc.subjectтруба
dc.subjectairflow
dc.subjectflow
dc.subjectpressure
dc.subjectdiameter
dc.subjectpipe
dc.titleExperimental Evaluation of an Empirical Equation in a Gaseous Flow
dc.title.alternativeЕкспериментальна оцінка емпіричного рівняння в газовому потоці
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Povis_A_A_L-Experimental_Evaluation_57-65.pdf
Size:
6.98 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Povis_A_A_L-Experimental_Evaluation_57-65__COVER.png
Size:
539.24 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: