Одержання нанокомпозитів на основі монтморилоніту і поліаміду в розчині

dc.citation.epage178
dc.citation.issue1
dc.citation.spage172
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКрасінський, В. В.
dc.contributor.authorСуберляк, О. В.
dc.contributor.authorЗемке, В. М.
dc.contributor.authorЧекайло, М. В.
dc.contributor.authorПаньків, М. О.
dc.contributor.authorKrasinskyi, V. V.
dc.contributor.authorSuberlyak, O. V.
dc.contributor.authorZemke, V. M.
dc.contributor.authorChekailo, M. V.
dc.contributor.authorPankiv, M. O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:14:48Z
dc.date.available2024-01-22T08:14:48Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractРозроблено методику одержання нанокомпозитів на основі інтеркальованого полівінілпіролідоном монтморилоніту та поліаміду-6 осадженням із розчину в мурашиній кислоті. Методами рентгенографічного, ІЧ-спектроскопічного і мікроскопічного аналізів досліджено структуру та підтверджено наявність фізичної взаємодії між компонентами нанокомпозитів. Наявність полівінілпіролідону у структурі одержаних із розчину нанокомпозитів підтверджено ІЧ-спектроскопічним аналізом. За допомогою СЕМ-зображень встановлено, що у структурі нанокомпозитів наявні розшаровані частинки монтморилоніту з розмірами від 100 до 200 нм.
dc.description.abstractThe method of obtaining nanocomposites based on polyamide-6 and montmorillonite intercalated by polyvinylpyrrolidone by precipitation from a solution in formic acid was developed in the work. The structure and physical interaction between the components of nanocomposites were studied by the methods of XRD, IR spectroscopic, and microscopic analyzes. The presence of polyvinylpyrrolidone in the structure of nanocomposites obtained from the solution was confirmed by IR spectroscopic analysis. Using SEM images, it was established that exfoliated montmorillonite particles with sizes from 100 to 200 nm are present in the structure of nanocomposites.
dc.format.extent172-178
dc.format.pages7
dc.identifier.citationОдержання нанокомпозитів на основі монтморилоніту і поліаміду в розчині / В. В. Красінський, О. В. Суберляк, В. М. Земке, М. В. Чекайло, М. О. Паньків // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2021. — Том 4. — № 1. — С. 172–178.
dc.identifier.citationenObtaining of nanocomposites based on montmorillonite and polyamide in solution / V. V. Krasinskyi, O. V. Suberlyak, V. M. Zemke, M. V. Chekailo, M. O. Pankiv // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 172–178.
dc.identifier.doidoi.org/10.23939/ctas2021.01.172
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60855
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (4), 2021
dc.relation.references1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1185–1189. doi: 10.1557/jmr.1993.1185
dc.relation.references2. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1179–1184. doi: 10.1557/jmr.1993.1179
dc.relation.references3. Sinha, S., Song, T., Wan, X., & Tong, Y. (2009). Scratch and normal hardness characteristics of polyamide 6/nano-clay composite. Wear, 266(7–8), 814–821. doi: 10.1016/j.wear.2008.12.010
dc.relation.references4. Wang, C., Li, Y., Hu, G., & Cao, D. (2015). Synergistic flame retardant effects of composites containing organic montmorillonite, Nylon 6 and 2-cyclic pentaerythritoloctahydrogen tetraphosphate-4,6-benzene sulfonic acid sodium ammion-triazine. New Carbon Materials, 30(2), 186–192. doi: 10.1016/s1872-5805(15)60184-6
dc.relation.references5. Chen, J., Beake, B., Bell, G., Tait, Y., & Gao, F. (2016). Investigation of the nanomechanical properties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures. Journal of Experimental Nanoscience, 11(9), 695–706. doi: 10.1080/17458080.2015.1136847
dc.relation.references6. Dasari, A., Yu, Z., Mai, Y., & Kim, J. (2008). Orientation and the extent of exfoliation of clay on scratch damage in polyamide 6 nanocomposites. Nanotechnology, 19(5), 055708. doi: 10.1088/0957-4484/19/05/055708
dc.relation.references7. Bazmara, M., Silani, M., & Dayyani, I. (2021). Effect of functionally-graded interphase on the elastoplastic behavior of nylon-6/clay nanocomposites; a numerical study. Defence Technology, 17(1), 177–184. doi: 10.1016/j.dt.2020.03.003
dc.relation.references8. Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H., & Peijs, T. (2009). Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Composites Science and Technology, 69(15–16), 2587–2595. doi: 10.1016/j.compscitech.2009.07.016
dc.relation.references9. Fornes, T., Hunter, D., & Paul, D. (2004). Effect of sodium montmorillonite source on nylon 6/clay nanocomposites. Polymer, 45(7), 2321–2331. doi: 10.1016/j.polymer.2004.01.061
dc.relation.references10. Kiliaris, P., Papaspyrides, C., & Pfaendner, R. (2009). Influence of accelerated aging on clay-reinforced polyamide 6. Polymer Degradation and Stability, 94(3), 389–396. doi: 10.1016/j.polymdegradstab.2008.11.016
dc.relation.references11. Araujo, E., Leite, A., Paz, R., Medeiros, V., Melo, T., & Lira, H. (2011). Polyamide 6 Nanocomposites with Inorganic Particles Modified with Three Quaternary Ammonium Salts. Materials, 4(11), 1956–1966. doi: 10.3390/ma4111956
dc.relation.references12. McAdam, C., Hudson, N., Liggat, J., & Pethrick, R. (2008). Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. Journal of Applied Polymer Science, 108(4), 2242–2251. doi: 10.1002/app.25599
dc.relation.references13. Seltzer, R., Mai, Y., & Frontini, P. (2012). Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending. Composites Part B: Engineering, 43(1), 83–89. doi: 10.1016/j.compositesb.2011.04.035
dc.relation.references14. Gnatowski, A., Suberlak, O., Postawa, P. (2006). Functional materials based on PA6/PVP blends. Journal of Achievements in Materials and Manufacturing Engineering, 18, 91–94.
dc.relation.references15. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 44–50. doi: 10.15587/1729-4061.2017.108465
dc.relation.references16. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ., & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3–10. doi: 10.4028/www.scientific.net/kem.756.3
dc.relation.references17. Krasinskyi, V., Gajdos, I., Suberlyak, O., Antoniuk, V., & Jachowicz, T. (2019). Study of the structure and thermal characteristics of nanocomposites based on polyvinyl alcohol and intercalated montmorillonite. Journal of Thermoplastic Composite Materials, 089270571987919. doi: 10.1177/0892705719879199
dc.relation.references18. Baganizi, D., Nyairo, E., Duncan, S., Singh, S., Dennis, V. Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. (2017). Nanomaterials, 7(7), 165. doi: 10.3390/nano7070165
dc.relation.referencesen1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1185–1189. doi: 10.1557/jmr.1993.1185
dc.relation.referencesen2. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1179–1184. doi: 10.1557/jmr.1993.1179
dc.relation.referencesen3. Sinha, S., Song, T., Wan, X., & Tong, Y. (2009). Scratch and normal hardness characteristics of polyamide 6/nano-clay composite. Wear, 266(7–8), 814–821. doi: 10.1016/j.wear.2008.12.010
dc.relation.referencesen4. Wang, C., Li, Y., Hu, G., & Cao, D. (2015). Synergistic flame retardant effects of composites containing organic montmorillonite, Nylon 6 and 2-cyclic pentaerythritoloctahydrogen tetraphosphate-4,6-benzene sulfonic acid sodium ammion-triazine. New Carbon Materials, 30(2), 186–192. doi: 10.1016/s1872-5805(15)60184-6
dc.relation.referencesen5. Chen, J., Beake, B., Bell, G., Tait, Y., & Gao, F. (2016). Investigation of the nanomechanical properties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures. Journal of Experimental Nanoscience, 11(9), 695–706. doi: 10.1080/17458080.2015.1136847
dc.relation.referencesen6. Dasari, A., Yu, Z., Mai, Y., & Kim, J. (2008). Orientation and the extent of exfoliation of clay on scratch damage in polyamide 6 nanocomposites. Nanotechnology, 19(5), 055708. doi: 10.1088/0957-4484/19/05/055708
dc.relation.referencesen7. Bazmara, M., Silani, M., & Dayyani, I. (2021). Effect of functionally-graded interphase on the elastoplastic behavior of nylon-6/clay nanocomposites; a numerical study. Defence Technology, 17(1), 177–184. doi: 10.1016/j.dt.2020.03.003
dc.relation.referencesen8. Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H., & Peijs, T. (2009). Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Composites Science and Technology, 69(15–16), 2587–2595. doi: 10.1016/j.compscitech.2009.07.016
dc.relation.referencesen9. Fornes, T., Hunter, D., & Paul, D. (2004). Effect of sodium montmorillonite source on nylon 6/clay nanocomposites. Polymer, 45(7), 2321–2331. doi: 10.1016/j.polymer.2004.01.061
dc.relation.referencesen10. Kiliaris, P., Papaspyrides, C., & Pfaendner, R. (2009). Influence of accelerated aging on clay-reinforced polyamide 6. Polymer Degradation and Stability, 94(3), 389–396. doi: 10.1016/j.polymdegradstab.2008.11.016
dc.relation.referencesen11. Araujo, E., Leite, A., Paz, R., Medeiros, V., Melo, T., & Lira, H. (2011). Polyamide 6 Nanocomposites with Inorganic Particles Modified with Three Quaternary Ammonium Salts. Materials, 4(11), 1956–1966. doi: 10.3390/ma4111956
dc.relation.referencesen12. McAdam, C., Hudson, N., Liggat, J., & Pethrick, R. (2008). Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. Journal of Applied Polymer Science, 108(4), 2242–2251. doi: 10.1002/app.25599
dc.relation.referencesen13. Seltzer, R., Mai, Y., & Frontini, P. (2012). Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending. Composites Part B: Engineering, 43(1), 83–89. doi: 10.1016/j.compositesb.2011.04.035
dc.relation.referencesen14. Gnatowski, A., Suberlak, O., Postawa, P. (2006). Functional materials based on PA6/PVP blends. Journal of Achievements in Materials and Manufacturing Engineering, 18, 91–94.
dc.relation.referencesen15. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 44–50. doi: 10.15587/1729-4061.2017.108465
dc.relation.referencesen16. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ., & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3–10. doi: 10.4028/www.scientific.net/kem.756.3
dc.relation.referencesen17. Krasinskyi, V., Gajdos, I., Suberlyak, O., Antoniuk, V., & Jachowicz, T. (2019). Study of the structure and thermal characteristics of nanocomposites based on polyvinyl alcohol and intercalated montmorillonite. Journal of Thermoplastic Composite Materials, 089270571987919. doi: 10.1177/0892705719879199
dc.relation.referencesen18. Baganizi, D., Nyairo, E., Duncan, S., Singh, S., Dennis, V. Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. (2017). Nanomaterials, 7(7), 165. doi: 10.3390/nano7070165
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectполіамід
dc.subjectмонтморилоніт
dc.subjectполівінілпіролідон
dc.subjectнанокомпозит
dc.subjectструктура
dc.subjectмодифікація у розчині
dc.subjectpolyamide
dc.subjectmontmorillonite
dc.subjectpolyvinylpyrrolidone
dc.subjectnanocomposite
dc.subjectstructure
dc.subjectmodification in solution
dc.titleОдержання нанокомпозитів на основі монтморилоніту і поліаміду в розчині
dc.title.alternativeObtaining of nanocomposites based on montmorillonite and polyamide in solution
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n1_Krasinskyi_V_V-Obtaining_of_nanocomposites_172-178.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n1_Krasinskyi_V_V-Obtaining_of_nanocomposites_172-178__COVER.png
Size:
468.21 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: