Одержання нанокомпозитів на основі монтморилоніту і поліаміду в розчині
dc.citation.epage | 178 | |
dc.citation.issue | 1 | |
dc.citation.spage | 172 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Красінський, В. В. | |
dc.contributor.author | Суберляк, О. В. | |
dc.contributor.author | Земке, В. М. | |
dc.contributor.author | Чекайло, М. В. | |
dc.contributor.author | Паньків, М. О. | |
dc.contributor.author | Krasinskyi, V. V. | |
dc.contributor.author | Suberlyak, O. V. | |
dc.contributor.author | Zemke, V. M. | |
dc.contributor.author | Chekailo, M. V. | |
dc.contributor.author | Pankiv, M. O. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:14:48Z | |
dc.date.available | 2024-01-22T08:14:48Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Розроблено методику одержання нанокомпозитів на основі інтеркальованого полівінілпіролідоном монтморилоніту та поліаміду-6 осадженням із розчину в мурашиній кислоті. Методами рентгенографічного, ІЧ-спектроскопічного і мікроскопічного аналізів досліджено структуру та підтверджено наявність фізичної взаємодії між компонентами нанокомпозитів. Наявність полівінілпіролідону у структурі одержаних із розчину нанокомпозитів підтверджено ІЧ-спектроскопічним аналізом. За допомогою СЕМ-зображень встановлено, що у структурі нанокомпозитів наявні розшаровані частинки монтморилоніту з розмірами від 100 до 200 нм. | |
dc.description.abstract | The method of obtaining nanocomposites based on polyamide-6 and montmorillonite intercalated by polyvinylpyrrolidone by precipitation from a solution in formic acid was developed in the work. The structure and physical interaction between the components of nanocomposites were studied by the methods of XRD, IR spectroscopic, and microscopic analyzes. The presence of polyvinylpyrrolidone in the structure of nanocomposites obtained from the solution was confirmed by IR spectroscopic analysis. Using SEM images, it was established that exfoliated montmorillonite particles with sizes from 100 to 200 nm are present in the structure of nanocomposites. | |
dc.format.extent | 172-178 | |
dc.format.pages | 7 | |
dc.identifier.citation | Одержання нанокомпозитів на основі монтморилоніту і поліаміду в розчині / В. В. Красінський, О. В. Суберляк, В. М. Земке, М. В. Чекайло, М. О. Паньків // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2021. — Том 4. — № 1. — С. 172–178. | |
dc.identifier.citationen | Obtaining of nanocomposites based on montmorillonite and polyamide in solution / V. V. Krasinskyi, O. V. Suberlyak, V. M. Zemke, M. V. Chekailo, M. O. Pankiv // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 172–178. | |
dc.identifier.doi | doi.org/10.23939/ctas2021.01.172 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60855 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (4), 2021 | |
dc.relation.references | 1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1185–1189. doi: 10.1557/jmr.1993.1185 | |
dc.relation.references | 2. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1179–1184. doi: 10.1557/jmr.1993.1179 | |
dc.relation.references | 3. Sinha, S., Song, T., Wan, X., & Tong, Y. (2009). Scratch and normal hardness characteristics of polyamide 6/nano-clay composite. Wear, 266(7–8), 814–821. doi: 10.1016/j.wear.2008.12.010 | |
dc.relation.references | 4. Wang, C., Li, Y., Hu, G., & Cao, D. (2015). Synergistic flame retardant effects of composites containing organic montmorillonite, Nylon 6 and 2-cyclic pentaerythritoloctahydrogen tetraphosphate-4,6-benzene sulfonic acid sodium ammion-triazine. New Carbon Materials, 30(2), 186–192. doi: 10.1016/s1872-5805(15)60184-6 | |
dc.relation.references | 5. Chen, J., Beake, B., Bell, G., Tait, Y., & Gao, F. (2016). Investigation of the nanomechanical properties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures. Journal of Experimental Nanoscience, 11(9), 695–706. doi: 10.1080/17458080.2015.1136847 | |
dc.relation.references | 6. Dasari, A., Yu, Z., Mai, Y., & Kim, J. (2008). Orientation and the extent of exfoliation of clay on scratch damage in polyamide 6 nanocomposites. Nanotechnology, 19(5), 055708. doi: 10.1088/0957-4484/19/05/055708 | |
dc.relation.references | 7. Bazmara, M., Silani, M., & Dayyani, I. (2021). Effect of functionally-graded interphase on the elastoplastic behavior of nylon-6/clay nanocomposites; a numerical study. Defence Technology, 17(1), 177–184. doi: 10.1016/j.dt.2020.03.003 | |
dc.relation.references | 8. Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H., & Peijs, T. (2009). Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Composites Science and Technology, 69(15–16), 2587–2595. doi: 10.1016/j.compscitech.2009.07.016 | |
dc.relation.references | 9. Fornes, T., Hunter, D., & Paul, D. (2004). Effect of sodium montmorillonite source on nylon 6/clay nanocomposites. Polymer, 45(7), 2321–2331. doi: 10.1016/j.polymer.2004.01.061 | |
dc.relation.references | 10. Kiliaris, P., Papaspyrides, C., & Pfaendner, R. (2009). Influence of accelerated aging on clay-reinforced polyamide 6. Polymer Degradation and Stability, 94(3), 389–396. doi: 10.1016/j.polymdegradstab.2008.11.016 | |
dc.relation.references | 11. Araujo, E., Leite, A., Paz, R., Medeiros, V., Melo, T., & Lira, H. (2011). Polyamide 6 Nanocomposites with Inorganic Particles Modified with Three Quaternary Ammonium Salts. Materials, 4(11), 1956–1966. doi: 10.3390/ma4111956 | |
dc.relation.references | 12. McAdam, C., Hudson, N., Liggat, J., & Pethrick, R. (2008). Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. Journal of Applied Polymer Science, 108(4), 2242–2251. doi: 10.1002/app.25599 | |
dc.relation.references | 13. Seltzer, R., Mai, Y., & Frontini, P. (2012). Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending. Composites Part B: Engineering, 43(1), 83–89. doi: 10.1016/j.compositesb.2011.04.035 | |
dc.relation.references | 14. Gnatowski, A., Suberlak, O., Postawa, P. (2006). Functional materials based on PA6/PVP blends. Journal of Achievements in Materials and Manufacturing Engineering, 18, 91–94. | |
dc.relation.references | 15. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 44–50. doi: 10.15587/1729-4061.2017.108465 | |
dc.relation.references | 16. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ., & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3–10. doi: 10.4028/www.scientific.net/kem.756.3 | |
dc.relation.references | 17. Krasinskyi, V., Gajdos, I., Suberlyak, O., Antoniuk, V., & Jachowicz, T. (2019). Study of the structure and thermal characteristics of nanocomposites based on polyvinyl alcohol and intercalated montmorillonite. Journal of Thermoplastic Composite Materials, 089270571987919. doi: 10.1177/0892705719879199 | |
dc.relation.references | 18. Baganizi, D., Nyairo, E., Duncan, S., Singh, S., Dennis, V. Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. (2017). Nanomaterials, 7(7), 165. doi: 10.3390/nano7070165 | |
dc.relation.referencesen | 1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1185–1189. doi: 10.1557/jmr.1993.1185 | |
dc.relation.referencesen | 2. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1179–1184. doi: 10.1557/jmr.1993.1179 | |
dc.relation.referencesen | 3. Sinha, S., Song, T., Wan, X., & Tong, Y. (2009). Scratch and normal hardness characteristics of polyamide 6/nano-clay composite. Wear, 266(7–8), 814–821. doi: 10.1016/j.wear.2008.12.010 | |
dc.relation.referencesen | 4. Wang, C., Li, Y., Hu, G., & Cao, D. (2015). Synergistic flame retardant effects of composites containing organic montmorillonite, Nylon 6 and 2-cyclic pentaerythritoloctahydrogen tetraphosphate-4,6-benzene sulfonic acid sodium ammion-triazine. New Carbon Materials, 30(2), 186–192. doi: 10.1016/s1872-5805(15)60184-6 | |
dc.relation.referencesen | 5. Chen, J., Beake, B., Bell, G., Tait, Y., & Gao, F. (2016). Investigation of the nanomechanical properties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures. Journal of Experimental Nanoscience, 11(9), 695–706. doi: 10.1080/17458080.2015.1136847 | |
dc.relation.referencesen | 6. Dasari, A., Yu, Z., Mai, Y., & Kim, J. (2008). Orientation and the extent of exfoliation of clay on scratch damage in polyamide 6 nanocomposites. Nanotechnology, 19(5), 055708. doi: 10.1088/0957-4484/19/05/055708 | |
dc.relation.referencesen | 7. Bazmara, M., Silani, M., & Dayyani, I. (2021). Effect of functionally-graded interphase on the elastoplastic behavior of nylon-6/clay nanocomposites; a numerical study. Defence Technology, 17(1), 177–184. doi: 10.1016/j.dt.2020.03.003 | |
dc.relation.referencesen | 8. Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H., & Peijs, T. (2009). Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Composites Science and Technology, 69(15–16), 2587–2595. doi: 10.1016/j.compscitech.2009.07.016 | |
dc.relation.referencesen | 9. Fornes, T., Hunter, D., & Paul, D. (2004). Effect of sodium montmorillonite source on nylon 6/clay nanocomposites. Polymer, 45(7), 2321–2331. doi: 10.1016/j.polymer.2004.01.061 | |
dc.relation.referencesen | 10. Kiliaris, P., Papaspyrides, C., & Pfaendner, R. (2009). Influence of accelerated aging on clay-reinforced polyamide 6. Polymer Degradation and Stability, 94(3), 389–396. doi: 10.1016/j.polymdegradstab.2008.11.016 | |
dc.relation.referencesen | 11. Araujo, E., Leite, A., Paz, R., Medeiros, V., Melo, T., & Lira, H. (2011). Polyamide 6 Nanocomposites with Inorganic Particles Modified with Three Quaternary Ammonium Salts. Materials, 4(11), 1956–1966. doi: 10.3390/ma4111956 | |
dc.relation.referencesen | 12. McAdam, C., Hudson, N., Liggat, J., & Pethrick, R. (2008). Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. Journal of Applied Polymer Science, 108(4), 2242–2251. doi: 10.1002/app.25599 | |
dc.relation.referencesen | 13. Seltzer, R., Mai, Y., & Frontini, P. (2012). Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending. Composites Part B: Engineering, 43(1), 83–89. doi: 10.1016/j.compositesb.2011.04.035 | |
dc.relation.referencesen | 14. Gnatowski, A., Suberlak, O., Postawa, P. (2006). Functional materials based on PA6/PVP blends. Journal of Achievements in Materials and Manufacturing Engineering, 18, 91–94. | |
dc.relation.referencesen | 15. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 44–50. doi: 10.15587/1729-4061.2017.108465 | |
dc.relation.referencesen | 16. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ., & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3–10. doi: 10.4028/www.scientific.net/kem.756.3 | |
dc.relation.referencesen | 17. Krasinskyi, V., Gajdos, I., Suberlyak, O., Antoniuk, V., & Jachowicz, T. (2019). Study of the structure and thermal characteristics of nanocomposites based on polyvinyl alcohol and intercalated montmorillonite. Journal of Thermoplastic Composite Materials, 089270571987919. doi: 10.1177/0892705719879199 | |
dc.relation.referencesen | 18. Baganizi, D., Nyairo, E., Duncan, S., Singh, S., Dennis, V. Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. (2017). Nanomaterials, 7(7), 165. doi: 10.3390/nano7070165 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | поліамід | |
dc.subject | монтморилоніт | |
dc.subject | полівінілпіролідон | |
dc.subject | нанокомпозит | |
dc.subject | структура | |
dc.subject | модифікація у розчині | |
dc.subject | polyamide | |
dc.subject | montmorillonite | |
dc.subject | polyvinylpyrrolidone | |
dc.subject | nanocomposite | |
dc.subject | structure | |
dc.subject | modification in solution | |
dc.title | Одержання нанокомпозитів на основі монтморилоніту і поліаміду в розчині | |
dc.title.alternative | Obtaining of nanocomposites based on montmorillonite and polyamide in solution | |
dc.type | Article |
Files
License bundle
1 - 1 of 1