Development of a Statistical Model to Predict Methane Production from Waste Activated Sludge Co-Digested with Olive Mill Wastewater and Cattle Dung by Response Surface Methodology

dc.citation.epage153
dc.citation.issue1
dc.citation.spage141
dc.contributor.affiliationUniversité Amar Telidji
dc.contributor.affiliationLaboratoire des technologies douces, valorisation, physico-chimie des matériaux biologiques et biodiversité
dc.contributor.affiliationUniversité Kasdi Merbah Ouargla
dc.contributor.authorMaamri, Sarra
dc.contributor.authorMoussa, Amrani
dc.contributor.authorYacine, Moussaoui
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T10:29:33Z
dc.date.available2024-02-09T10:29:33Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ наш час зростання кількості населення, призводить до утворення великої кількості відходів біомаси внаслідок різноманітної людської, промислової та сільськогосподарської діяльності. Для регулювання відходів біомаси та пом'якшення величезного спектра шкоди навколишньому середовищу застосовують переважно анаеробне бродіння. Метою цієї статті є підвищення ефективності анаеробного бродіння багатокомпонентних субстратів з використанням суміші відходів активного мулу (ВАМ), стічних вод виробництва оливкової олії (СВВОО) і гною великої рогатої худоби (ГВРХ). У плануванні експерименту використано методологію поверхні відгуку для визначення індивідуального впливу й інтерактивного ефекту на вихід метану та хімічне зниження потреби в кисні. Після числової оптимізації за допомогою Design Expert® оптимальні фактичні значення тестових факторів були такими: початкове pH = 8, співвідношення загальна хімічна потреба в кисні : загальний азот = 47, 42, співвідношення ГВРХ/ВАМ-СВВОО = 0,352, загальний сухий залишок ЗСЗ = 42,94 г/л. Отримані результати вказують, що ефективності анаеробного спільного бродіння можна досягти через оптимізацію складу субстрату для забезпечення більшого мікробного синергічного ефекту.
dc.description.abstractNowadays, population growth is likely to lead to a wide variety of biomass wastes generation from the diversified human, industrial, and agricultural activities. Anaerobic digestion is mostly applied to manage biomass wastes and mitigate a huge spectrum of environmental damages. This paper aims to enhance the anaerobic digestion efficiency of multicomponent substrates, using a mixture of waste activated sludge (WAS), olive mill wastewater (OMW), and cattle manure (CM). A Response Surface Methodology is employed in experimental design to determine individual and interactive effects on methane yield and chemical oxygen demand reduction. After numerical optimization using Design Expert®, the optimum values of the test factors in actual were as follows: initial pH = 8, COD/N ratio = 47, 42, CM/WAS-OMW ratio = 0.352, TS = 42.94 g/L. The obtained results indicate that anaerobic co-digestion performance could be achieved by optimising substrate composition to assure a larger microbial synergistic effect.
dc.format.extent141-153
dc.format.pages13
dc.identifier.citationMaamri S. Development of a Statistical Model to Predict Methane Production from Waste Activated Sludge Co-Digested with Olive Mill Wastewater and Cattle Dung by Response Surface Methodology / Sarra Maamri, Amrani Moussa, Moussaoui Yacine // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 141–153.
dc.identifier.citationenMaamri S. Development of a Statistical Model to Predict Methane Production from Waste Activated Sludge Co-Digested with Olive Mill Wastewater and Cattle Dung by Response Surface Methodology / Sarra Maamri, Amrani Moussa, Moussaoui Yacine // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 141–153.
dc.identifier.doidoi.org/10.23939/chcht17.01.141
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61214
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (17), 2023
dc.relation.references[1] Zhang, Q.; Hu, J.; Lee D.-J.; Chang, Y.; Lee, Y.-J. Sludge Treatment: Current Research Trends. Bioresour. Technol. 2017, 243, 1159-1172. https://doi.org/10.1016/j.biortech.2017.07.070
dc.relation.references[2] Zhang, G.; Wu, Z.; Cheng, F.; Min, Z.; Lee, D.-J. Thermophilic Digestion of Waste-Activated Sludge Coupled with Solar Pond. Renew. Energ. 2016, 98, 142-147. https://doi.org/10.1016/j.renene.2016.03.052
dc.relation.references[3] Wei, L.-L.; Zhao, Q.-L.; Hu, K.; Lee, D.-J.; Xie, C.-M.; Jiang, J.-Q. Extracellular Biological Organic Matters in Sewage Sludge During Mesophilic Digestion at Reduced Hydraulic Retention Time. Water Res. 2011, 45, 1472-1480. https://doi.org/10.1016/j.watres.2010.11.003
dc.relation.references[4] Zhang, Y.; Chen, X.; Gu, Y.; Zhou, X. A physicochemical Method for Increasing Methane Production from Rice Straw: Extrusion Combined with Alkali Pretreatment. Appl. Energy 2015, 160, 39-48. https://doi.org/10.1016/j.apenergy.2015.09.011
dc.relation.references[5] Wan, J.; Jing, Y.; Rao, Y.; Zhang, S.; Luo, G. Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses. Appl. Environ. Microbiol. 2018, 84. http://dx.doi.org/10.1128/AEM.02632-17
dc.relation.references[6] Carrère, H.; Rafrafi, Y.; Battimelli, A.; Torrijos, M.; Delgenès, J.-P.; Ruysschaert, G. Methane Potential of Waste Activated Sludge and Fatty Residues: Impact of Codigestion and Alkaline Pretreatments. Open Environmental Engineering Journal 2010, 3, 71-76. http://dx.doi.org/10.2174/1874829501003010071
dc.relation.references[7] Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review. J. Hazard. Mater. 2010, 183, 1-15. https://doi.org/10.1016/j.jhazmat.2010.06.129
dc.relation.references[8] Abelleira-Pereira, J.M.; Pérez-Elvira, S.I.; Sánchez-Oneto, J. de la Cruz, R.; Portela, J.R.; Nebot, E. Enhancement of Methane Production in Mesophilic Anaerobic Digestion of Secondary Sewage Sludge by Advanced Thermal Hydrolysis Pretreatment. Water Res. 2015, 71, 330-340. https://doi.org/10.1016/j.watres.2014.12.027
dc.relation.references[9] Jang, H.M.; Kim, M-S.; Ha, J.H.; Park, J.M. Reactor Performance and Methanogenic Archaea Species in Thermophilic Anaerobic co-Digestion of Waste Activated Sludge Mixed with Food Wastewater. Chem. Eng. J. 2015, 276, 20-28. https://doi.org/10.1016/j.cej.2015.04.072
dc.relation.references[10] Jing, Y.; Wan, J.; Angelidaki, I.; Zhang, S.; Luo, G. iTRAQ Quantitative Proteomic Analysis Reveals the Pathways for Methanation of Propionate Facilitated by Magnetite. Water Res. 2017, 108, 212-221. http://dx.doi.org/10.1016/j.watres.2016.10.077
dc.relation.references[11] Zhen, G.; Lu, X.; Kobayashi, T.; Li, Y.-Y.; Xu, K.; Zhao, Y. Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis. Appl. Energy 2015, 148, 78-86. https://doi.org/10.1016/j.apenergy.2015.03.038
dc.relation.references[12] Fernández-Rodríguez, M.; Rincón, B.; Fermoso, F.G.; Jiménez, A.M.; Borja, R. Assessment of Two-Phase Olive Mill Solid Waste and Microalgae co-Digestion to Improve Methane Production and Process Kinetics. Bioresour. Technol. 2014, 157, 263-269. https://doi.org/10.1016/j.biortech.2014.01.096
dc.relation.references[13] Zhang, M.; Zhang, Y.; Li, Z.; Zhang, C.; Tan, X.; Liu, X.; Wan, C.; Yang, X.; Lee, D.-J. Anaerobic co-Digestion of Food Waste/Excess Sludge: Substrates – Products Transformation and Role of NADH as an Indicator. J. Environ. Manage. 2019, 232, 197-206. https://doi.org/10.1016/j.jenvman.2018.11.087
dc.relation.references[14] Nordlander, E.; Thorin, E.; Yan, J. Investigating the Possibility of Applying an ADM1 Based Model to a Full-Scale co-Digestion Plant. Biochem. Eng. J. 2017, 120, 73-83. https://doi.org/10.1016/j.bej.2016.12.014
dc.relation.references[15] Anjum, M.; Khalid, A.; Qadeer, S.; Miandad, R. Synergistic Effect of co-Digestion to Enhance Anaerobic Degradation of Catering Waste and Orange Peel for Biogas Production. Waste Manag. Res. 2017, 35, 967-977. https://doi.org/10.1177/0734242X17715904
dc.relation.references[16] Li, J.; Wei, L.; Duan, Q.; Hu, G.; Zhang, G. Semi-Continuous Anaerobic co-Digestion of Dairy Manure with Three Crop Residues for Biogas Production. Bioresour. Technol. 2014, 156, 307-313. http://dx.doi.org/10.1016/j.biortech.2014.01.064
dc.relation.references[17] Xu, R.; Zhang, K.; Liu, P.; Khan, A.; Xiong, J.; Tian, F.; Li, X. A Critical Review on the Interaction of Substrate Nutrient Balance and Microbial Community Structure and Function in Anaerobic co-Digestion. Bioresour. Technol. 2018, 247, 1119-1127. https://doi.org/10.1016/j.biortech.2017.09.095
dc.relation.references[18] O-Thong, S.; Boe, K.; Angelidaki, I. Thermophilic Anaerobic co-Digestion of Oil Palm Empty Fruit Bunches with Palm Oil Mill Effluent for Efficient Biogas Production. Appl. Energy 2012, 93, 648-654. https://doi.org/10.1016/j.apenergy.2011.12.092
dc.relation.references[19] Kashi, S.; Satari, B.; Lundin, M.; Horváth, I.S.; Othman, M. Application of a Mixture Design to Identify the Effects of Substrates Ratios and Interactions on Anaerobic co-Digestion of Municipal Sludge, Grease Trap Waste, and Meat Processing Waste. J. Environ. Chem. Eng. 2017, 5, 6156-6164. https://doi.org/10.1016/j.jece.2017.11.045
dc.relation.references[20] Carrère, H.; Bougrier, C.; Castets, D.; Delgenès, J.P. Impact of Initial Biodegradability on Sludge Anaerobic Digestion Enhancement by Thermal Pretreatment. J. Environ. Sci. Health A 2008, 43, 1551-1555. http://dx.doi.org/10.1080/10934520802293735
dc.relation.references[21] Heo, N.H.; Park, S.C.; Kang, H. Effects of Mixture Ratio and Hydraulic Retention Time on Single-Stage Anaerobic Co-digestion of Food Waste and Waste Activated Sludge. J. Environ. Sci. Health A 2004, 39, 1739-1756. https://doi.org/10.1081/ESE-120037874
dc.relation.references[22] Bolzonella, D.; Battistoni, P.; Susini, C.; Cecchi, F. Anaerobic Codigestion of Waste Activated Sludge and OFMSW: The Experiences of Viareggio and Treviso Plants (Italy). Water Sci. Technol. 2006, 53, 203-211. http://dx.doi.org/10.2166/wst.2006.251
dc.relation.references[23] Dinsdale, R.M.; Premier, G.C.; Hawkes, F.R.; Hawkes, D.L. Two-Stage Anaerobic co-Digestion of Waste Activated Sludge and Fruit/Vegetable Waste Using Inclined Tubular Digesters. Bioresour. Technol. 2000, 72, 159-168. https://doi.org/10.1016/S0960-8524(99)00105-4
dc.relation.references[24] De Vrieze, J.; De Lathouwer, L.; Verstraete, W.; Boon, N. High-Rate Iron-Rich Activated Sludge as Stabilizing Agent for the Anaerobic Digestion of Kitchen Waste. Water Res. 2013, 47, 3732-3741. https://doi.org/10.1016/j.watres.2013.04.020
dc.relation.references[25] Sun, Y.; Wang, D.; Qiao, W.; Wang, W.; Zhu, T. Anaerobic co-Digestion of Municipal Biomass Wastes and Waste Activated Sludge: Dynamic Model and Material Balances. J. Environ. Sci. 2013, 25, 2112-2122. https://doi.org/10.1016/S1001-0742(12)60236-8
dc.relation.references[26] Silvestre, G.; Illa, J.; Fernández, B.; Bonmatí, A. Thermophilic Anaerobic co-Digestion of Sewage Sludge with Grease Waste: Effect of Long Chain Fatty Acids in the Methane Yield and its Dewatering Properties. Appl. Energy 2014, 117, 87-94. https://doi.org/10.1016/j.apenergy.2013.11.075
dc.relation.references[27] Di Maria, F.; Micale, C.; Contini, S. Energetic and Environmental Sustainability of the co-Digestion of Sludge with Bio-Waste in a Life Cycle Perspective. Appl. Energy 2016, 171, 67-76. https://doi.org/10.1016/j.apenergy.2016.03.036
dc.relation.references[28] Di Maria, F.; Sordi, A.; Cirulli, G.; Micale, C. Amount of Energy Recoverable from an Existing Sludge Digester with the co-Digestion with Fruit and Vegetable Waste at Reduced Retention Time. Appl. Energy 2015, 150, 9-14. https://doi.org/10.1016/j.apenergy.2015.01.146
dc.relation.references[29] Tsapekos, P.; Kougias, P.G.; Treu, L.; Campanaro, S.; Angelidaki, I. Process Performance and Comparative Metagenomic Analysis During co-Digestion of Manure and Lignocellulosic Biomass for Biogas Production. Appl. Energy 2017, 185, 126-135. https://doi.org/10.1016/j.apenergy.2016.10.081
dc.relation.references[30] Zheng, Z.; Liu, J.; Yuan, X.; Wang, X.; Zhu, W.; Yang, F.; Cui, Z. Effect of Dairy Manure to Switchgrass co-Digestion Ratio on Methane Production and the Bacterial Community in Batch Anaerobic Digestion. Appl. Energy 2015, 151, 249-257. https://doi.org/10.1016/j.apenergy.2015.04.078
dc.relation.references[31] APHA. Standard methods for the examination of water and wastewater; 20th Ed.; American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC, 1998.
dc.relation.references[32] González-Fernández, C.; Molinuevo-Salces, B.; García-González, M.C. Evaluation of Anaerobic Codigestion of Microalgal Biomass and Swine Manure Via Response Surface Methodology. Appl. Energy 2011, 88, 3448-3453. https://doi.org/10.1016/j.apenergy.2010.12.035
dc.relation.references[33] Babaki, M.; Yousefi, M.; Habibi Z.; Mohammadi, M. Process Optimization for Biodiesel Production from Waste Cooking Oil Using Multi-Enzyme Systems Through Response Surface Methodology. Renew. Energ. 2017, 105, 465-472. https://doi.org/10.1016/j.renene.2016.12.086
dc.relation.references[34] Mason, R.L.; Gunst, R.F.; Hess, J.L. Statistical Design and Analysis of Experiments: With Applications to Engineering and Science; John Wiley & Sons: Hoboken, 2003.
dc.relation.references[35] Myers, R.H.; Montgomery, D.C. Response surface methodology: process and product optimisation using designed experiments; Wiley: New York; 1995.
dc.relation.references[36] Qian, J.; Du, X.; Zhang, B.; Fan, B.; Yang, X.; Optimization of QR Code Readability in Movement State Using Response Surface Methodology for Implementing Continuous Chain Traceability. Comput. Electron. Agric. 2017, 139, 56-64. https://doi.org/10.1016/j.compag.2017.05.009
dc.relation.references[37] Rostamian, H.; Lotfollahi, M.N. New Functionality for Energy Parameter of Redlich-Kwong Equation of State for Density Calculation of Pure Carbon Dioxide and Ethane in Liquid, Vapor and Supercritical Phases. Period. Polytech. Chem. Eng. 2016, 60, 93-97. http://dx.doi.org/10.3311/PPch.8221
dc.relation.references[38] Niladevi, K.N.; Sukumaran, R.K.; Jacob, N.; Anisha, G.S.; Prema, P. Optimization of Laccase Production From a Novel Strain—Streptomyces Psammoticus Using Response Surface Methodology. Microbiol. Res. 2009, 164, 105-113. https://doi.org/10.1016/j.micres.2006.10.006
dc.relation.references[39] Lay, J.-J.; Li, Y.-Y.; Noike, T. Influences of pH and Moisture Content on the Methane Production in High-Solids Sludge Digestion. Water Res. 1997, 31, 1518-1524. https://doi.org/10.1016/S0043-1354(96)00413-7
dc.relation.references[40] Gueguim Kana, E.B.; Oloke, J.K.; Lateef, A.; Adesiyan, M.O. Modeling and Optimization of Biogas Production on Saw Dust and Other co-Substrates Using Artificial Neural Network and Genetic Algorithm. Renew. Energy 2012, 46, 276-281. https://doi.org/10.1016/j.renene.2012.03.027
dc.relation.references[41] Pishgar, R.; Hamza, R.A.; Tay, J.H. Augmenting Lagoon Process Using Reactivated Freeze-dried Biogranules. Appl. Biochem. Biotechnol. 2017, 183, 137-154. https://doi.org/10.1007/s12010-017-2435-2
dc.relation.references[42] Mao, C.; Wang, X.; Xi, J.; Feng, Y.; Ren, G. Linkage of Kinetic Parameters with Process Parameters and Operational Conditions During Anaerobic Digestion. Energy 2017, 135, 352-360. https://doi.org/10.1016/j.energy.2017.06.050
dc.relation.references[43] Suschka, J.; Kowalski, E.; Mazierski, J.; Grübel, K. Alkaline Solubilisation of Waste Activated Sludge (WAS) for Soluble Organic Substrate – (SCOD) Production. Arch. Environ. Prot. 2015, 41, 29-38. http://dx.doi.org/10.1515/aep-2015-0012
dc.relation.references[44] Kim, J.; Park, C.; Kim, T.-H.; Lee, M.; Kim, S.; Kim, S.-W.; Lee, J. Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge. J. Biosci. Bioeng. 2003, 95, 271-275. https://doi.org/10.1016/S1389-1723(03)80028-2
dc.relation.references[45] Angelidaki, I.; Ahring, B.K.; Deng, H.; Schmidt, J.E. Anaerobic Digestion of Olive Oil Mill Effluents Together with Swine Manure in UASB Reactors. Water Sci. Technol. 2002, 45, 213-218. https://doi.org/10.2166/wst.2002.0334
dc.relation.references[46] Al-Mallahi, J.; Furuichi, T.; Ishii, K. Appropriate Conditions for Applying Naoh-Pretreated Two-Phase Olive Milling Waste for Codigestion with Food Waste to Enhance Biogas Production. Waste Manage. 2016, 48, 430-439. https://doi.org/10.1016/j.wasman.2015.10.009
dc.relation.references[47] Carrere, H.; Passos, F.; Antonopoulou, G.; Rouches, E.; Affes, R.; Battimelli, A.; Ferrer, I.; Steyer, J.P.; Lyberatos, G. Enhancement of Anaerobic Digestion Performance: Which Pretreatment for Which Waste? Proceedings of the 5th International Conference on Engineering for Waste and Biomass Valorisation (WasteEng14), August 25-28, 2014, Rio de Janeiro 2014.
dc.relation.references[48] Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The Anaerobic co-Digestion of Food Waste and Cattle Manure. Bioresour. Technol. 2013, 129, 170-176. https://doi.org/10.1016/j.biortech.2012.10.138
dc.relation.references[49] Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sust. Energ. Rev. 2015, 45, 540-555. https://doi.org/10.1016/j.rser.2015.02.032
dc.relation.references[50] Zhang, P.; Chen, Y.; Zhou, Q.; Zheng, X.; Zhu, X.; Zhao, Y. Understanding Short-Chain Fatty Acids Accumulation Enhanced in Waste Activated Sludge Alkaline Fermentation: Kinetics and Microbiology. Environ. Sci. Technol. 2010, 44, 9343-9348. https://doi.org/10.1021/es102878m
dc.relation.references[51] Welte, C.; Kröninger, L.; Deppenmeier, U. Experimental Evidence of an Acetate Transporter Protein and Characterization of Acetate Activation in Aceticlastic Methanogenesis of Methanosarcina Mazei. FEMS Microbiol. Lett. 2014, 359, 147-153. https://doi.org/10.1111/1574-6968.12550
dc.relation.references[52] Wormald, R.M.; Rout, S. P.; Mayes, W.; Gomes, H.; Humphreys, P.N. Hydrogenotrophic Methanogenesis Under Alkaline Conditions. Front. Microbiol. 2020, 11, 614227. https://doi.org/10.3389/fmicb.2020.614227
dc.relation.references[53] Xu, J.; Bu, F.; Zhu, W.; Luo, G.; Xie, L. Microbial Consortiums of Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas Upgrading Systems under Different Conditions of Temperature, pH and CO. Microorganisms 2020, 8, 772. https://doi.org/10.3390/microorganisms8050772
dc.relation.references[54] Jin, Q.; Kirk, M.F. pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Front. Environ. Sci. 2018, 6, 21. https://doi.org/10.3389/fenvs.2018.00021
dc.relation.references[55] Carrere, H.; Rafrafi, Y.; Battimelli, A.; Torrijos, M.; Delgenes, J.P.; Motte, C. Improving Methane Production During the Codigestion of Waste-Activated Sludge and Fatty Wastewater: Impact of Thermo-Alkaline Pretreatment on Batch and Semi-Continuous Processes. Chem. Eng. J. 2012, 210, 404-409. https://doi.org/10.1016/j.cej.2012.09.005
dc.relation.references[56] Li, J.; Rui, J.; Yao, M.; Zhang, S.; Yan, X.; Wang, Y.; Yan, Z.; Li, X. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure. Front. Microbiol. 2015, 6, 1337. http://dx.doi.org/10.3389/fmicb.2015.01337
dc.relation.references[57] Oleszek, M.; Krzemińska, I. Enhancement of Biogas Production by Co-Digestion of Maize Silage with Common Goldenrod Rich in Biologically Active Compounds. Bioresources 2017, 12, 704-714. http://dx.doi.org/10.15376/biores.12.1.704-714
dc.relation.references[58] Barragán-Trinidad, M.; Carrillo-Reyes, J.; Buitrón, G. Hydrolysis of Microalgal Biomass Using Ruminal Microorganisms as a Pretreatment to Increase Methane Recovery. Bioresour. Technol. 2017, 244, 100-107. https://doi.org/10.1016/j.biortech.2017.07.117
dc.relation.references[59] Oz, N.A.; Uzun, A.C. Ultrasound Pretreatment for Enhanced Biogas Production from Olive Mill Wastewater. Ultrason. Sonochem. 2015, 22, 565-572. https://doi.org/10.1016/j.ultsonch.2014.04.018
dc.relation.references[60] Zhang, Y.; Yan, L.; Chi, L.; Long, X.; Mei, Z.; Zhang, Z. Startup and Operation of Anaerobic EGSB Reactor Treating Palm Oil Mill Effluent. J. Environ. Sci. (China) 2008, 20, 658-663. https://doi.org/10.1016/S1001-0742(08)62109-9
dc.relation.references[61] Khoufi, S.; Louhichi, A.; Sayadi, S. Optimization of Anaerobic co-Digestion of Olive Mill Wastewater and Liquid Poultry Manure in Batch Condition and Semi-Continuous Jet-Loop Reactor. Bioresour. Technol. 2015, 182, 67-74. https://doi.org/10.1016/j.biortech.2015.01.092
dc.relation.references[62] Gonçalves, M.R.; Costa, J.C.; Marques, I.P.; Alves, M.M. Strategies for Lipids and Phenolics Degradation in the Anaerobic Treatment of Olive Mill Wastewater. Water Res. 2012, 46, 1684-1692. http://dx.doi.org/10.1016/j.watres.2011.12.046
dc.relation.references[63] Abbassi-Guendouz, A.; Brockmann, D.; Trably, E.; Dumas, C.; Delgenès, J.-P.; Steyer, J.-P.; Escudié, R. Total Solids Content Drives High Solid Anaerobic Digestion via Mass Transfer Limitation. Bioresour. Technol. 2012, 111, 55-61. http://dx.doi.org/10.1016/j.biortech.2012.01.174
dc.relation.referencesen[1] Zhang, Q.; Hu, J.; Lee D.-J.; Chang, Y.; Lee, Y.-J. Sludge Treatment: Current Research Trends. Bioresour. Technol. 2017, 243, 1159-1172. https://doi.org/10.1016/j.biortech.2017.07.070
dc.relation.referencesen[2] Zhang, G.; Wu, Z.; Cheng, F.; Min, Z.; Lee, D.-J. Thermophilic Digestion of Waste-Activated Sludge Coupled with Solar Pond. Renew. Energ. 2016, 98, 142-147. https://doi.org/10.1016/j.renene.2016.03.052
dc.relation.referencesen[3] Wei, L.-L.; Zhao, Q.-L.; Hu, K.; Lee, D.-J.; Xie, C.-M.; Jiang, J.-Q. Extracellular Biological Organic Matters in Sewage Sludge During Mesophilic Digestion at Reduced Hydraulic Retention Time. Water Res. 2011, 45, 1472-1480. https://doi.org/10.1016/j.watres.2010.11.003
dc.relation.referencesen[4] Zhang, Y.; Chen, X.; Gu, Y.; Zhou, X. A physicochemical Method for Increasing Methane Production from Rice Straw: Extrusion Combined with Alkali Pretreatment. Appl. Energy 2015, 160, 39-48. https://doi.org/10.1016/j.apenergy.2015.09.011
dc.relation.referencesen[5] Wan, J.; Jing, Y.; Rao, Y.; Zhang, S.; Luo, G. Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses. Appl. Environ. Microbiol. 2018, 84. http://dx.doi.org/10.1128/AEM.02632-17
dc.relation.referencesen[6] Carrère, H.; Rafrafi, Y.; Battimelli, A.; Torrijos, M.; Delgenès, J.-P.; Ruysschaert, G. Methane Potential of Waste Activated Sludge and Fatty Residues: Impact of Codigestion and Alkaline Pretreatments. Open Environmental Engineering Journal 2010, 3, 71-76. http://dx.doi.org/10.2174/1874829501003010071
dc.relation.referencesen[7] Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review. J. Hazard. Mater. 2010, 183, 1-15. https://doi.org/10.1016/j.jhazmat.2010.06.129
dc.relation.referencesen[8] Abelleira-Pereira, J.M.; Pérez-Elvira, S.I.; Sánchez-Oneto, J. de la Cruz, R.; Portela, J.R.; Nebot, E. Enhancement of Methane Production in Mesophilic Anaerobic Digestion of Secondary Sewage Sludge by Advanced Thermal Hydrolysis Pretreatment. Water Res. 2015, 71, 330-340. https://doi.org/10.1016/j.watres.2014.12.027
dc.relation.referencesen[9] Jang, H.M.; Kim, M-S.; Ha, J.H.; Park, J.M. Reactor Performance and Methanogenic Archaea Species in Thermophilic Anaerobic co-Digestion of Waste Activated Sludge Mixed with Food Wastewater. Chem. Eng. J. 2015, 276, 20-28. https://doi.org/10.1016/j.cej.2015.04.072
dc.relation.referencesen[10] Jing, Y.; Wan, J.; Angelidaki, I.; Zhang, S.; Luo, G. iTRAQ Quantitative Proteomic Analysis Reveals the Pathways for Methanation of Propionate Facilitated by Magnetite. Water Res. 2017, 108, 212-221. http://dx.doi.org/10.1016/j.watres.2016.10.077
dc.relation.referencesen[11] Zhen, G.; Lu, X.; Kobayashi, T.; Li, Y.-Y.; Xu, K.; Zhao, Y. Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis. Appl. Energy 2015, 148, 78-86. https://doi.org/10.1016/j.apenergy.2015.03.038
dc.relation.referencesen[12] Fernández-Rodríguez, M.; Rincón, B.; Fermoso, F.G.; Jiménez, A.M.; Borja, R. Assessment of Two-Phase Olive Mill Solid Waste and Microalgae co-Digestion to Improve Methane Production and Process Kinetics. Bioresour. Technol. 2014, 157, 263-269. https://doi.org/10.1016/j.biortech.2014.01.096
dc.relation.referencesen[13] Zhang, M.; Zhang, Y.; Li, Z.; Zhang, C.; Tan, X.; Liu, X.; Wan, C.; Yang, X.; Lee, D.-J. Anaerobic co-Digestion of Food Waste/Excess Sludge: Substrates – Products Transformation and Role of NADH as an Indicator. J. Environ. Manage. 2019, 232, 197-206. https://doi.org/10.1016/j.jenvman.2018.11.087
dc.relation.referencesen[14] Nordlander, E.; Thorin, E.; Yan, J. Investigating the Possibility of Applying an ADM1 Based Model to a Full-Scale co-Digestion Plant. Biochem. Eng. J. 2017, 120, 73-83. https://doi.org/10.1016/j.bej.2016.12.014
dc.relation.referencesen[15] Anjum, M.; Khalid, A.; Qadeer, S.; Miandad, R. Synergistic Effect of co-Digestion to Enhance Anaerobic Degradation of Catering Waste and Orange Peel for Biogas Production. Waste Manag. Res. 2017, 35, 967-977. https://doi.org/10.1177/0734242X17715904
dc.relation.referencesen[16] Li, J.; Wei, L.; Duan, Q.; Hu, G.; Zhang, G. Semi-Continuous Anaerobic co-Digestion of Dairy Manure with Three Crop Residues for Biogas Production. Bioresour. Technol. 2014, 156, 307-313. http://dx.doi.org/10.1016/j.biortech.2014.01.064
dc.relation.referencesen[17] Xu, R.; Zhang, K.; Liu, P.; Khan, A.; Xiong, J.; Tian, F.; Li, X. A Critical Review on the Interaction of Substrate Nutrient Balance and Microbial Community Structure and Function in Anaerobic co-Digestion. Bioresour. Technol. 2018, 247, 1119-1127. https://doi.org/10.1016/j.biortech.2017.09.095
dc.relation.referencesen[18] O-Thong, S.; Boe, K.; Angelidaki, I. Thermophilic Anaerobic co-Digestion of Oil Palm Empty Fruit Bunches with Palm Oil Mill Effluent for Efficient Biogas Production. Appl. Energy 2012, 93, 648-654. https://doi.org/10.1016/j.apenergy.2011.12.092
dc.relation.referencesen[19] Kashi, S.; Satari, B.; Lundin, M.; Horváth, I.S.; Othman, M. Application of a Mixture Design to Identify the Effects of Substrates Ratios and Interactions on Anaerobic co-Digestion of Municipal Sludge, Grease Trap Waste, and Meat Processing Waste. J. Environ. Chem. Eng. 2017, 5, 6156-6164. https://doi.org/10.1016/j.jece.2017.11.045
dc.relation.referencesen[20] Carrère, H.; Bougrier, C.; Castets, D.; Delgenès, J.P. Impact of Initial Biodegradability on Sludge Anaerobic Digestion Enhancement by Thermal Pretreatment. J. Environ. Sci. Health A 2008, 43, 1551-1555. http://dx.doi.org/10.1080/10934520802293735
dc.relation.referencesen[21] Heo, N.H.; Park, S.C.; Kang, H. Effects of Mixture Ratio and Hydraulic Retention Time on Single-Stage Anaerobic Co-digestion of Food Waste and Waste Activated Sludge. J. Environ. Sci. Health A 2004, 39, 1739-1756. https://doi.org/10.1081/ESE-120037874
dc.relation.referencesen[22] Bolzonella, D.; Battistoni, P.; Susini, C.; Cecchi, F. Anaerobic Codigestion of Waste Activated Sludge and OFMSW: The Experiences of Viareggio and Treviso Plants (Italy). Water Sci. Technol. 2006, 53, 203-211. http://dx.doi.org/10.2166/wst.2006.251
dc.relation.referencesen[23] Dinsdale, R.M.; Premier, G.C.; Hawkes, F.R.; Hawkes, D.L. Two-Stage Anaerobic co-Digestion of Waste Activated Sludge and Fruit/Vegetable Waste Using Inclined Tubular Digesters. Bioresour. Technol. 2000, 72, 159-168. https://doi.org/10.1016/S0960-8524(99)00105-4
dc.relation.referencesen[24] De Vrieze, J.; De Lathouwer, L.; Verstraete, W.; Boon, N. High-Rate Iron-Rich Activated Sludge as Stabilizing Agent for the Anaerobic Digestion of Kitchen Waste. Water Res. 2013, 47, 3732-3741. https://doi.org/10.1016/j.watres.2013.04.020
dc.relation.referencesen[25] Sun, Y.; Wang, D.; Qiao, W.; Wang, W.; Zhu, T. Anaerobic co-Digestion of Municipal Biomass Wastes and Waste Activated Sludge: Dynamic Model and Material Balances. J. Environ. Sci. 2013, 25, 2112-2122. https://doi.org/10.1016/S1001-0742(12)60236-8
dc.relation.referencesen[26] Silvestre, G.; Illa, J.; Fernández, B.; Bonmatí, A. Thermophilic Anaerobic co-Digestion of Sewage Sludge with Grease Waste: Effect of Long Chain Fatty Acids in the Methane Yield and its Dewatering Properties. Appl. Energy 2014, 117, 87-94. https://doi.org/10.1016/j.apenergy.2013.11.075
dc.relation.referencesen[27] Di Maria, F.; Micale, C.; Contini, S. Energetic and Environmental Sustainability of the co-Digestion of Sludge with Bio-Waste in a Life Cycle Perspective. Appl. Energy 2016, 171, 67-76. https://doi.org/10.1016/j.apenergy.2016.03.036
dc.relation.referencesen[28] Di Maria, F.; Sordi, A.; Cirulli, G.; Micale, C. Amount of Energy Recoverable from an Existing Sludge Digester with the co-Digestion with Fruit and Vegetable Waste at Reduced Retention Time. Appl. Energy 2015, 150, 9-14. https://doi.org/10.1016/j.apenergy.2015.01.146
dc.relation.referencesen[29] Tsapekos, P.; Kougias, P.G.; Treu, L.; Campanaro, S.; Angelidaki, I. Process Performance and Comparative Metagenomic Analysis During co-Digestion of Manure and Lignocellulosic Biomass for Biogas Production. Appl. Energy 2017, 185, 126-135. https://doi.org/10.1016/j.apenergy.2016.10.081
dc.relation.referencesen[30] Zheng, Z.; Liu, J.; Yuan, X.; Wang, X.; Zhu, W.; Yang, F.; Cui, Z. Effect of Dairy Manure to Switchgrass co-Digestion Ratio on Methane Production and the Bacterial Community in Batch Anaerobic Digestion. Appl. Energy 2015, 151, 249-257. https://doi.org/10.1016/j.apenergy.2015.04.078
dc.relation.referencesen[31] APHA. Standard methods for the examination of water and wastewater; 20th Ed.; American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC, 1998.
dc.relation.referencesen[32] González-Fernández, C.; Molinuevo-Salces, B.; García-González, M.C. Evaluation of Anaerobic Codigestion of Microalgal Biomass and Swine Manure Via Response Surface Methodology. Appl. Energy 2011, 88, 3448-3453. https://doi.org/10.1016/j.apenergy.2010.12.035
dc.relation.referencesen[33] Babaki, M.; Yousefi, M.; Habibi Z.; Mohammadi, M. Process Optimization for Biodiesel Production from Waste Cooking Oil Using Multi-Enzyme Systems Through Response Surface Methodology. Renew. Energ. 2017, 105, 465-472. https://doi.org/10.1016/j.renene.2016.12.086
dc.relation.referencesen[34] Mason, R.L.; Gunst, R.F.; Hess, J.L. Statistical Design and Analysis of Experiments: With Applications to Engineering and Science; John Wiley & Sons: Hoboken, 2003.
dc.relation.referencesen[35] Myers, R.H.; Montgomery, D.C. Response surface methodology: process and product optimisation using designed experiments; Wiley: New York; 1995.
dc.relation.referencesen[36] Qian, J.; Du, X.; Zhang, B.; Fan, B.; Yang, X.; Optimization of QR Code Readability in Movement State Using Response Surface Methodology for Implementing Continuous Chain Traceability. Comput. Electron. Agric. 2017, 139, 56-64. https://doi.org/10.1016/j.compag.2017.05.009
dc.relation.referencesen[37] Rostamian, H.; Lotfollahi, M.N. New Functionality for Energy Parameter of Redlich-Kwong Equation of State for Density Calculation of Pure Carbon Dioxide and Ethane in Liquid, Vapor and Supercritical Phases. Period. Polytech. Chem. Eng. 2016, 60, 93-97. http://dx.doi.org/10.3311/PPch.8221
dc.relation.referencesen[38] Niladevi, K.N.; Sukumaran, R.K.; Jacob, N.; Anisha, G.S.; Prema, P. Optimization of Laccase Production From a Novel Strain-Streptomyces Psammoticus Using Response Surface Methodology. Microbiol. Res. 2009, 164, 105-113. https://doi.org/10.1016/j.micres.2006.10.006
dc.relation.referencesen[39] Lay, J.-J.; Li, Y.-Y.; Noike, T. Influences of pH and Moisture Content on the Methane Production in High-Solids Sludge Digestion. Water Res. 1997, 31, 1518-1524. https://doi.org/10.1016/S0043-1354(96)00413-7
dc.relation.referencesen[40] Gueguim Kana, E.B.; Oloke, J.K.; Lateef, A.; Adesiyan, M.O. Modeling and Optimization of Biogas Production on Saw Dust and Other co-Substrates Using Artificial Neural Network and Genetic Algorithm. Renew. Energy 2012, 46, 276-281. https://doi.org/10.1016/j.renene.2012.03.027
dc.relation.referencesen[41] Pishgar, R.; Hamza, R.A.; Tay, J.H. Augmenting Lagoon Process Using Reactivated Freeze-dried Biogranules. Appl. Biochem. Biotechnol. 2017, 183, 137-154. https://doi.org/10.1007/s12010-017-2435-2
dc.relation.referencesen[42] Mao, C.; Wang, X.; Xi, J.; Feng, Y.; Ren, G. Linkage of Kinetic Parameters with Process Parameters and Operational Conditions During Anaerobic Digestion. Energy 2017, 135, 352-360. https://doi.org/10.1016/j.energy.2017.06.050
dc.relation.referencesen[43] Suschka, J.; Kowalski, E.; Mazierski, J.; Grübel, K. Alkaline Solubilisation of Waste Activated Sludge (WAS) for Soluble Organic Substrate – (SCOD) Production. Arch. Environ. Prot. 2015, 41, 29-38. http://dx.doi.org/10.1515/aep-2015-0012
dc.relation.referencesen[44] Kim, J.; Park, C.; Kim, T.-H.; Lee, M.; Kim, S.; Kim, S.-W.; Lee, J. Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge. J. Biosci. Bioeng. 2003, 95, 271-275. https://doi.org/10.1016/S1389-1723(03)80028-2
dc.relation.referencesen[45] Angelidaki, I.; Ahring, B.K.; Deng, H.; Schmidt, J.E. Anaerobic Digestion of Olive Oil Mill Effluents Together with Swine Manure in UASB Reactors. Water Sci. Technol. 2002, 45, 213-218. https://doi.org/10.2166/wst.2002.0334
dc.relation.referencesen[46] Al-Mallahi, J.; Furuichi, T.; Ishii, K. Appropriate Conditions for Applying Naoh-Pretreated Two-Phase Olive Milling Waste for Codigestion with Food Waste to Enhance Biogas Production. Waste Manage. 2016, 48, 430-439. https://doi.org/10.1016/j.wasman.2015.10.009
dc.relation.referencesen[47] Carrere, H.; Passos, F.; Antonopoulou, G.; Rouches, E.; Affes, R.; Battimelli, A.; Ferrer, I.; Steyer, J.P.; Lyberatos, G. Enhancement of Anaerobic Digestion Performance: Which Pretreatment for Which Waste? Proceedings of the 5th International Conference on Engineering for Waste and Biomass Valorisation (WasteEng14), August 25-28, 2014, Rio de Janeiro 2014.
dc.relation.referencesen[48] Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The Anaerobic co-Digestion of Food Waste and Cattle Manure. Bioresour. Technol. 2013, 129, 170-176. https://doi.org/10.1016/j.biortech.2012.10.138
dc.relation.referencesen[49] Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sust. Energ. Rev. 2015, 45, 540-555. https://doi.org/10.1016/j.rser.2015.02.032
dc.relation.referencesen[50] Zhang, P.; Chen, Y.; Zhou, Q.; Zheng, X.; Zhu, X.; Zhao, Y. Understanding Short-Chain Fatty Acids Accumulation Enhanced in Waste Activated Sludge Alkaline Fermentation: Kinetics and Microbiology. Environ. Sci. Technol. 2010, 44, 9343-9348. https://doi.org/10.1021/es102878m
dc.relation.referencesen[51] Welte, C.; Kröninger, L.; Deppenmeier, U. Experimental Evidence of an Acetate Transporter Protein and Characterization of Acetate Activation in Aceticlastic Methanogenesis of Methanosarcina Mazei. FEMS Microbiol. Lett. 2014, 359, 147-153. https://doi.org/10.1111/1574-6968.12550
dc.relation.referencesen[52] Wormald, R.M.; Rout, S. P.; Mayes, W.; Gomes, H.; Humphreys, P.N. Hydrogenotrophic Methanogenesis Under Alkaline Conditions. Front. Microbiol. 2020, 11, 614227. https://doi.org/10.3389/fmicb.2020.614227
dc.relation.referencesen[53] Xu, J.; Bu, F.; Zhu, W.; Luo, G.; Xie, L. Microbial Consortiums of Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas Upgrading Systems under Different Conditions of Temperature, pH and CO. Microorganisms 2020, 8, 772. https://doi.org/10.3390/microorganisms8050772
dc.relation.referencesen[54] Jin, Q.; Kirk, M.F. pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Front. Environ. Sci. 2018, 6, 21. https://doi.org/10.3389/fenvs.2018.00021
dc.relation.referencesen[55] Carrere, H.; Rafrafi, Y.; Battimelli, A.; Torrijos, M.; Delgenes, J.P.; Motte, C. Improving Methane Production During the Codigestion of Waste-Activated Sludge and Fatty Wastewater: Impact of Thermo-Alkaline Pretreatment on Batch and Semi-Continuous Processes. Chem. Eng. J. 2012, 210, 404-409. https://doi.org/10.1016/j.cej.2012.09.005
dc.relation.referencesen[56] Li, J.; Rui, J.; Yao, M.; Zhang, S.; Yan, X.; Wang, Y.; Yan, Z.; Li, X. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure. Front. Microbiol. 2015, 6, 1337. http://dx.doi.org/10.3389/fmicb.2015.01337
dc.relation.referencesen[57] Oleszek, M.; Krzemińska, I. Enhancement of Biogas Production by Co-Digestion of Maize Silage with Common Goldenrod Rich in Biologically Active Compounds. Bioresources 2017, 12, 704-714. http://dx.doi.org/10.15376/biores.12.1.704-714
dc.relation.referencesen[58] Barragán-Trinidad, M.; Carrillo-Reyes, J.; Buitrón, G. Hydrolysis of Microalgal Biomass Using Ruminal Microorganisms as a Pretreatment to Increase Methane Recovery. Bioresour. Technol. 2017, 244, 100-107. https://doi.org/10.1016/j.biortech.2017.07.117
dc.relation.referencesen[59] Oz, N.A.; Uzun, A.C. Ultrasound Pretreatment for Enhanced Biogas Production from Olive Mill Wastewater. Ultrason. Sonochem. 2015, 22, 565-572. https://doi.org/10.1016/j.ultsonch.2014.04.018
dc.relation.referencesen[60] Zhang, Y.; Yan, L.; Chi, L.; Long, X.; Mei, Z.; Zhang, Z. Startup and Operation of Anaerobic EGSB Reactor Treating Palm Oil Mill Effluent. J. Environ. Sci. (China) 2008, 20, 658-663. https://doi.org/10.1016/S1001-0742(08)62109-9
dc.relation.referencesen[61] Khoufi, S.; Louhichi, A.; Sayadi, S. Optimization of Anaerobic co-Digestion of Olive Mill Wastewater and Liquid Poultry Manure in Batch Condition and Semi-Continuous Jet-Loop Reactor. Bioresour. Technol. 2015, 182, 67-74. https://doi.org/10.1016/j.biortech.2015.01.092
dc.relation.referencesen[62] Gonçalves, M.R.; Costa, J.C.; Marques, I.P.; Alves, M.M. Strategies for Lipids and Phenolics Degradation in the Anaerobic Treatment of Olive Mill Wastewater. Water Res. 2012, 46, 1684-1692. http://dx.doi.org/10.1016/j.watres.2011.12.046
dc.relation.referencesen[63] Abbassi-Guendouz, A.; Brockmann, D.; Trably, E.; Dumas, C.; Delgenès, J.-P.; Steyer, J.-P.; Escudié, R. Total Solids Content Drives High Solid Anaerobic Digestion via Mass Transfer Limitation. Bioresour. Technol. 2012, 111, 55-61. http://dx.doi.org/10.1016/j.biortech.2012.01.174
dc.relation.urihttps://doi.org/10.1016/j.biortech.2017.07.070
dc.relation.urihttps://doi.org/10.1016/j.renene.2016.03.052
dc.relation.urihttps://doi.org/10.1016/j.watres.2010.11.003
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2015.09.011
dc.relation.urihttp://dx.doi.org/10.1128/AEM.02632-17
dc.relation.urihttp://dx.doi.org/10.2174/1874829501003010071
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2010.06.129
dc.relation.urihttps://doi.org/10.1016/j.watres.2014.12.027
dc.relation.urihttps://doi.org/10.1016/j.cej.2015.04.072
dc.relation.urihttp://dx.doi.org/10.1016/j.watres.2016.10.077
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2015.03.038
dc.relation.urihttps://doi.org/10.1016/j.biortech.2014.01.096
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2018.11.087
dc.relation.urihttps://doi.org/10.1016/j.bej.2016.12.014
dc.relation.urihttps://doi.org/10.1177/0734242X17715904
dc.relation.urihttp://dx.doi.org/10.1016/j.biortech.2014.01.064
dc.relation.urihttps://doi.org/10.1016/j.biortech.2017.09.095
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2011.12.092
dc.relation.urihttps://doi.org/10.1016/j.jece.2017.11.045
dc.relation.urihttp://dx.doi.org/10.1080/10934520802293735
dc.relation.urihttps://doi.org/10.1081/ESE-120037874
dc.relation.urihttp://dx.doi.org/10.2166/wst.2006.251
dc.relation.urihttps://doi.org/10.1016/S0960-8524(99)00105-4
dc.relation.urihttps://doi.org/10.1016/j.watres.2013.04.020
dc.relation.urihttps://doi.org/10.1016/S1001-0742(12)60236-8
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2013.11.075
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2016.03.036
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2015.01.146
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2016.10.081
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2015.04.078
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2010.12.035
dc.relation.urihttps://doi.org/10.1016/j.renene.2016.12.086
dc.relation.urihttps://doi.org/10.1016/j.compag.2017.05.009
dc.relation.urihttp://dx.doi.org/10.3311/PPch.8221
dc.relation.urihttps://doi.org/10.1016/j.micres.2006.10.006
dc.relation.urihttps://doi.org/10.1016/S0043-1354(96)00413-7
dc.relation.urihttps://doi.org/10.1016/j.renene.2012.03.027
dc.relation.urihttps://doi.org/10.1007/s12010-017-2435-2
dc.relation.urihttps://doi.org/10.1016/j.energy.2017.06.050
dc.relation.urihttp://dx.doi.org/10.1515/aep-2015-0012
dc.relation.urihttps://doi.org/10.1016/S1389-1723(03)80028-2
dc.relation.urihttps://doi.org/10.2166/wst.2002.0334
dc.relation.urihttps://doi.org/10.1016/j.wasman.2015.10.009
dc.relation.urihttps://doi.org/10.1016/j.biortech.2012.10.138
dc.relation.urihttps://doi.org/10.1016/j.rser.2015.02.032
dc.relation.urihttps://doi.org/10.1021/es102878m
dc.relation.urihttps://doi.org/10.1111/1574-6968.12550
dc.relation.urihttps://doi.org/10.3389/fmicb.2020.614227
dc.relation.urihttps://doi.org/10.3390/microorganisms8050772
dc.relation.urihttps://doi.org/10.3389/fenvs.2018.00021
dc.relation.urihttps://doi.org/10.1016/j.cej.2012.09.005
dc.relation.urihttp://dx.doi.org/10.3389/fmicb.2015.01337
dc.relation.urihttp://dx.doi.org/10.15376/biores.12.1.704-714
dc.relation.urihttps://doi.org/10.1016/j.biortech.2017.07.117
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2014.04.018
dc.relation.urihttps://doi.org/10.1016/S1001-0742(08)62109-9
dc.relation.urihttps://doi.org/10.1016/j.biortech.2015.01.092
dc.relation.urihttp://dx.doi.org/10.1016/j.watres.2011.12.046
dc.relation.urihttp://dx.doi.org/10.1016/j.biortech.2012.01.174
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Maamri S., Moussa A., Yacine M., 2023
dc.subjectвідходи активного мулу
dc.subjectстічні води виробництва оливкової олії
dc.subjectгній великої рогатої худоби
dc.subjectметодологія поверхні відгуку
dc.subjectанаеробне спільне бродіння
dc.subjectwaste activated sludge
dc.subjectolive mill wastewater
dc.subjectcattle manure
dc.subjectresponse surface methodology
dc.subjectanaerobic co-digestion
dc.titleDevelopment of a Statistical Model to Predict Methane Production from Waste Activated Sludge Co-Digested with Olive Mill Wastewater and Cattle Dung by Response Surface Methodology
dc.title.alternativeРозроблення статистичної моделі для прогнозування виробництва метану з відходів активного мулу через спільне бродіння зі стічними водами виробництва оливкової олії та гноєм великої рогатої худоби за допомогою методології поверхні відгуку
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n1_Maamri_S-Development_of_a_Statistical_141-153.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n1_Maamri_S-Development_of_a_Statistical_141-153__COVER.png
Size:
1.33 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: