Kinetic Model for Dissolution of Cement Copper in Sulfuric Acid Solutions Containing Cupric Ions
dc.citation.epage | 402 | |
dc.citation.issue | 3 | |
dc.citation.spage | 395 | |
dc.contributor.affiliation | Inonu University | |
dc.contributor.author | Demirkiran, Nizamettin | |
dc.contributor.author | G. Deniz Turhan Özdemir | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T11:31:42Z | |
dc.date.available | 2024-01-09T11:31:42Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Досліджено кінетику розчинення порошку цементаційної міді в розчинах сульфатної кислоти, що містять йони міді. Визначено, що швидкість розчинення міді підвищується зі збільшенням концентрації кислоти, температури та швидкості перемішування. Встановлено, що швидкість розчинення посилюється зі збільшенням концентрації йонів міді до 0,025 М. Температура та концентрація йонів міді мають більш значний вплив на розчинення мідного порошку. Проведено кінетичний аналіз процесу, і встановлено, що він відповідає псевдо-гомогенній моделі реакцій першого порядку. Розрахована енергія активації становила 31,1 кДж/моль. | |
dc.description.abstract | In this paper, the dissolution kinetics of cement copper powder in sulfuric acid solutions containing cupric ions was examined. It was observed that the dissolution rate of copper increased with increasing the acid concentration, temperature, and stirring speed. It was determined that the dissolution rate of copper enhanced with increasing the cupric ion concentration up to 0.025 M. It was found that the temperature and concentration of cupric ion had more considerable effects on the dissolution of copper powder. The kinetic analysis of the process was performed, and it was observed that it fits the first order pseudo-homogenous reaction model. The activation energy was calculated to be 31.1 kJ/mol. | |
dc.format.extent | 395-402 | |
dc.format.pages | 8 | |
dc.identifier.citation | Demirkiran N. Kinetic Model for Dissolution of Cement Copper in Sulfuric Acid Solutions Containing Cupric Ions / Nizamettin Demirkiran, G. Deniz Turhan Özdemir // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 3. — P. 395–402. | |
dc.identifier.citationen | Demirkiran N. Kinetic Model for Dissolution of Cement Copper in Sulfuric Acid Solutions Containing Cupric Ions / Nizamettin Demirkiran, G. Deniz Turhan Özdemir // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 3. — P. 395–402. | |
dc.identifier.doi | doi.org/10.23939/chcht15.03.395 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60736 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (15), 2021 | |
dc.relation.references | [1] Venkatachalam S.: Hydrometallurgy. Narosa Publishing House, Delhi, India 1998. | |
dc.relation.references | [2] Noubactep C.: J. Hazard. Mater., 2010, 81, 1170. https://doi.org/10.1016/j.jhazmat.2010.05.085 | |
dc.relation.references | [3] Demirkıran N.: Rev. Chim., 2013, 64, 378. | |
dc.relation.references | [4] Shishkin A., Mironovs V., Vu H. et al.: Metals, 2018, 8, 920. https://doi.org/10.3390/met8110920 | |
dc.relation.references | [5] Habashi F.: Handbook of Extractive Metallurgy. Wiley, New York 1997. | |
dc.relation.references | [6] Karavasteva M.: Hydrometallurgy, 2005, 76, 149. https://doi.org/10.1016/j.hydromet.2004.10.003 | |
dc.relation.references | [7] Gana R., Figueroa M., Sanchez J.M., Esteso M.: J. Appl. Electrochem., 1995, 25, 240. https://doi.org/10.1007/BF00262962 | |
dc.relation.references | [8] Figueroa M., Gana R., Kattan L. et al.: J. Appl. Electrochem., 1997, 27, 99. https://doi.org/10.1023/A:10264792 | |
dc.relation.references | [9] Ekmekyapar A., Demirkıran N., Künkül A. et al.: Braz. J. Chem. Eng., 2015, 32, 155. https://doi.org/10.1590/0104-6632.20150321s00003211 | |
dc.relation.references | [10] Tanaydın M., Demirkıran N.: Sep. Sci. Technol., 2019, 54, 815. https://doi.org/10.1080/01496395.2018.1512619 | |
dc.relation.references | [11] Demirkıran N.: Ind. Eng. Chem. Res., 2013, 52, 8157. https://doi.org/10.1021/ie400438b | |
dc.relation.references | [12] Wong D., Coller B., Macfarlane D.: Electrochim. Acta, 1993, 38, 2121. https://doi.org/10.1016/0013-4686(93)80350-9 | |
dc.relation.references | [13] Grishina E., Udalova A., Rumyantsev E.: Russ. J. Electrochem., 2002, 38, 155. https://doi.org/10.1016/0013-4686(93)80350-9 | |
dc.relation.references | [14] Sribnyi V., Kuntyi O., Yavors’kyi V.: Mater. Sci., 2001, 37, 524. https://doi.org/10.1023/A:10132266 | |
dc.relation.references | [15] Sameh S., Salih I., Alwash S., Al-Waisty A.: Eng. Technol. J., 2009, 27, 993. | |
dc.relation.references | [16] Baeshov A., Kadirbayua A., Jurinov M.: Int. J. Chem. Sci., 2014, 12, 1009. | |
dc.relation.references | [17] Park I., Yoo K., Alorro R. et al.: Mater. Trans., 2017, 58, 1500. https://doi.org/10.2320/matertrans.M2017147 | |
dc.relation.references | [18] Khalid M., Hamuyuni J., Agarwal V. et al.: J. Clean. Prod., 2019, 215, 1005. https://doi.org/10.1016/j.jclepro.2019.01.083 | |
dc.relation.references | [19] Castillo J., Sepúlveda R., Araya G. et al.: Minerals, 2019, 9, 319. https://doi.org/10.3390/min9050319 | |
dc.relation.references | [20] Koyama K., Tanaka M., Lee J.: Mater.Trans., 2006, 47, 1788. https://doi.org/10.2320/matertrans.47.1788 | |
dc.relation.references | [21] Read A.: J. Phys. Chem., 1972, 76, 3656. https://doi.org/10.1021/j100668a026 | |
dc.relation.references | [22] Wen C.: Ind. Eng. Chem.,1968, 60, 34. https://doi.org/10.1021/ie50705a007 | |
dc.relation.references | [23] Levenspiel O.: Chemical Reaction Engineering. John Wiley, New York 1972. | |
dc.relation.references | [24] Mazet N.: Int. Chem. Eng., 1992, 32, 271. | |
dc.relation.references | [25] Lambert F., Gaydardzhiev S., Léonard G. et al.: Miner. Eng., 2015, 76, 38. https://doi.org/10.1016/j.mineng.2014.12.029 | |
dc.relation.referencesen | [1] Venkatachalam S., Hydrometallurgy. Narosa Publishing House, Delhi, India 1998. | |
dc.relation.referencesen | [2] Noubactep C., J. Hazard. Mater., 2010, 81, 1170. https://doi.org/10.1016/j.jhazmat.2010.05.085 | |
dc.relation.referencesen | [3] Demirkıran N., Rev. Chim., 2013, 64, 378. | |
dc.relation.referencesen | [4] Shishkin A., Mironovs V., Vu H. et al., Metals, 2018, 8, 920. https://doi.org/10.3390/met8110920 | |
dc.relation.referencesen | [5] Habashi F., Handbook of Extractive Metallurgy. Wiley, New York 1997. | |
dc.relation.referencesen | [6] Karavasteva M., Hydrometallurgy, 2005, 76, 149. https://doi.org/10.1016/j.hydromet.2004.10.003 | |
dc.relation.referencesen | [7] Gana R., Figueroa M., Sanchez J.M., Esteso M., J. Appl. Electrochem., 1995, 25, 240. https://doi.org/10.1007/BF00262962 | |
dc.relation.referencesen | [8] Figueroa M., Gana R., Kattan L. et al., J. Appl. Electrochem., 1997, 27, 99. https://doi.org/10.1023/A:10264792 | |
dc.relation.referencesen | [9] Ekmekyapar A., Demirkıran N., Künkül A. et al., Braz. J. Chem. Eng., 2015, 32, 155. https://doi.org/10.1590/0104-6632.20150321s00003211 | |
dc.relation.referencesen | [10] Tanaydın M., Demirkıran N., Sep. Sci. Technol., 2019, 54, 815. https://doi.org/10.1080/01496395.2018.1512619 | |
dc.relation.referencesen | [11] Demirkıran N., Ind. Eng. Chem. Res., 2013, 52, 8157. https://doi.org/10.1021/ie400438b | |
dc.relation.referencesen | [12] Wong D., Coller B., Macfarlane D., Electrochim. Acta, 1993, 38, 2121. https://doi.org/10.1016/0013-4686(93)80350-9 | |
dc.relation.referencesen | [13] Grishina E., Udalova A., Rumyantsev E., Russ. J. Electrochem., 2002, 38, 155. https://doi.org/10.1016/0013-4686(93)80350-9 | |
dc.relation.referencesen | [14] Sribnyi V., Kuntyi O., Yavors’kyi V., Mater. Sci., 2001, 37, 524. https://doi.org/10.1023/A:10132266 | |
dc.relation.referencesen | [15] Sameh S., Salih I., Alwash S., Al-Waisty A., Eng. Technol. J., 2009, 27, 993. | |
dc.relation.referencesen | [16] Baeshov A., Kadirbayua A., Jurinov M., Int. J. Chem. Sci., 2014, 12, 1009. | |
dc.relation.referencesen | [17] Park I., Yoo K., Alorro R. et al., Mater. Trans., 2017, 58, 1500. https://doi.org/10.2320/matertrans.M2017147 | |
dc.relation.referencesen | [18] Khalid M., Hamuyuni J., Agarwal V. et al., J. Clean. Prod., 2019, 215, 1005. https://doi.org/10.1016/j.jclepro.2019.01.083 | |
dc.relation.referencesen | [19] Castillo J., Sepúlveda R., Araya G. et al., Minerals, 2019, 9, 319. https://doi.org/10.3390/min9050319 | |
dc.relation.referencesen | [20] Koyama K., Tanaka M., Lee J., Mater.Trans., 2006, 47, 1788. https://doi.org/10.2320/matertrans.47.1788 | |
dc.relation.referencesen | [21] Read A., J. Phys. Chem., 1972, 76, 3656. https://doi.org/10.1021/j100668a026 | |
dc.relation.referencesen | [22] Wen C., Ind. Eng. Chem.,1968, 60, 34. https://doi.org/10.1021/ie50705a007 | |
dc.relation.referencesen | [23] Levenspiel O., Chemical Reaction Engineering. John Wiley, New York 1972. | |
dc.relation.referencesen | [24] Mazet N., Int. Chem. Eng., 1992, 32, 271. | |
dc.relation.referencesen | [25] Lambert F., Gaydardzhiev S., Léonard G. et al., Miner. Eng., 2015, 76, 38. https://doi.org/10.1016/j.mineng.2014.12.029 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2010.05.085 | |
dc.relation.uri | https://doi.org/10.3390/met8110920 | |
dc.relation.uri | https://doi.org/10.1016/j.hydromet.2004.10.003 | |
dc.relation.uri | https://doi.org/10.1007/BF00262962 | |
dc.relation.uri | https://doi.org/10.1023/A:10264792 | |
dc.relation.uri | https://doi.org/10.1590/0104-6632.20150321s00003211 | |
dc.relation.uri | https://doi.org/10.1080/01496395.2018.1512619 | |
dc.relation.uri | https://doi.org/10.1021/ie400438b | |
dc.relation.uri | https://doi.org/10.1016/0013-4686(93)80350-9 | |
dc.relation.uri | https://doi.org/10.1023/A:10132266 | |
dc.relation.uri | https://doi.org/10.2320/matertrans.M2017147 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2019.01.083 | |
dc.relation.uri | https://doi.org/10.3390/min9050319 | |
dc.relation.uri | https://doi.org/10.2320/matertrans.47.1788 | |
dc.relation.uri | https://doi.org/10.1021/j100668a026 | |
dc.relation.uri | https://doi.org/10.1021/ie50705a007 | |
dc.relation.uri | https://doi.org/10.1016/j.mineng.2014.12.029 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Demirkıran N., Turhan Özdemir G. D., 2021 | |
dc.subject | малахіт | |
dc.subject | цементаційна мідь | |
dc.subject | йони міді | |
dc.subject | розчинення | |
dc.subject | кінетика | |
dc.subject | malachite | |
dc.subject | cement copper | |
dc.subject | cupric ion | |
dc.subject | dissolution | |
dc.subject | kinetics | |
dc.title | Kinetic Model for Dissolution of Cement Copper in Sulfuric Acid Solutions Containing Cupric Ions | |
dc.title.alternative | Кінетична модель розчинення цементаційної міді в розчинах сульфатної кислоти, що містять йони міді | |
dc.type | Article |
Files
License bundle
1 - 1 of 1