Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars
dc.citation.epage | 922 | |
dc.citation.issue | 4 | |
dc.citation.spage | 916 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Danylo Halytsky Lviv National Medical University | |
dc.contributor.author | Gunka, Volodymyr | |
dc.contributor.author | Sidun, Iurii | |
dc.contributor.author | Poliak, Olha | |
dc.contributor.author | Demchuk, Yuriy | |
dc.contributor.author | Prysiazhnyi, Yuriy | |
dc.contributor.author | Hrynchuk, Yurii | |
dc.contributor.author | Drapak, Iryna | |
dc.contributor.author | Astakhova, Olena | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T08:54:14Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Робота присвячена абсолютно новому в’яжучому для асфальтбетонних сумішей, зокрема і щебенево-мастикових. У ролі в’яжучого запропоновано використовувати сировину для виробництва бітумів – гудрони, що модифіковані формілюючим агентом (каталізатор та формалін). У роботі доведена перевага використання гудрону, модифікованого формаліном, у порівняні із стандартними окисненими бітумами, на прикладі встановлених фізико-механічних властивостей бітумних в’яжучих та щебенево-мастикового асфальтобетону SMA 15. | |
dc.description.abstract | The work is devoted to a completely new binder for asphalt-concrete mixtures, in particular, crushed stone-mastic mixtures. In the role of a binder, it is proposed to use raw materials for the production of bitumen − tars modified with a forming agent (catalyst and formalin). The paper proves the advantage of using tar modified with formalin, in comparison with standard oxidized bitumens, on the example of established physical and mechanical properties of bituminous binders and crushed-mastic asphalt concrete SMA-15. | |
dc.format.extent | 916-922 | |
dc.format.pages | 7 | |
dc.identifier.citation | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars / Volodymyr Gunka, Iurii Sidun, Olha Poliak, Yuriy Demchuk, Yuriy Prysiazhnyi, Yurii Hrynchuk, Iryna Drapak, Olena Astakhova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 916–922. | |
dc.identifier.citationen | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars / Volodymyr Gunka, Iurii Sidun, Olha Poliak, Yuriy Demchuk, Yuriy Prysiazhnyi, Yurii Hrynchuk, Iryna Drapak, Olena Astakhova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 916–922. | |
dc.identifier.doi | doi.org/10.23939/chcht17.04.916 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63703 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 4 (17), 2023 | |
dc.relation.references | [1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742-777. https://doi.org/10.3390/app9040742 | |
dc.relation.references | [2] Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Bratychak, M. Polymer Modified Bitumen. Chem. Chem. Technol. 2016, 10, 631-636. https://doi.org/10.23939/chcht10.04si.631 | |
dc.relation.references | [3] Zhu, J.; Birgisson, B.; Kringos, N. Polymer Modification of Bitumen: Advances and Challenges. Eur. Polym. J. 2014, 54, 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005 | |
dc.relation.references | [4] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.references | [5] Asphalt Institute and Eurobitume. The bitumen industry – a global perspective: production, chemistry, use, specification, and occupational exposure. Third edition; Asphalt Institute, Eurobitume: Lexigton, KY, Brussels, Belgium, 2015. | |
dc.relation.references | [6] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.references | [7] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774 | |
dc.relation.references | [8] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295-302. https://doi.org/10.23939/chcht16.02.295 | |
dc.relation.references | [9] Gunka, V.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Prysiazhnyi, Yu.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature effect on the chemical modification of bitumen with maleic anhydride. Chem. Chem. Technol. 2022, 16, 475-483. https://doi.org/10.23939/chcht16.03.475 | |
dc.relation.references | [10] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14 | |
dc.relation.references | [11] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.references | [12] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95-102. https://doi.org/10.1007/978-3-030-57340-9_12 | |
dc.relation.references | [13] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.references | [14] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D.Lignite Oxidative Desulphurization: Notice 3 – Process Technological Aspects and Application of Products. Int. J. Coal Sci. 2019, 6, 63-73. https://doi.org/10.1007/s40789-018-0228-z | |
dc.relation.references | [15] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934 | |
dc.relation.references | [16] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438 | |
dc.relation.references | [17] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation Of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture For Application In Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154 | |
dc.relation.references | [18] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689 | |
dc.relation.references | [19] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
dc.relation.references | [20] NFPA 704. Standard System for the Identification of the Hazards of Materials for Emergency Response, 2022. | |
dc.relation.references | [21] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.references | [22] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal. 2020, 62, 420-429. | |
dc.relation.references | [23] DSTU B V.2.7-319:2016 Asphalt mixtures and asphalt concrete for road and airfield. Test methods, 2016. | |
dc.relation.references | [24] DSTU B B.2.7-127:2015 Asphalt concrete mixtures and asphalt concrete with crushed stone and mastic. Technical specifications, 2015. | |
dc.relation.references | [25] Gunka, V.; Hidei, V.; Sidun, I.; Demchuk, Y.; Stadnik, V.; Shapoval, P.; Sobol, K.; Vytrykush, N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183 | |
dc.relation.references | [26] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, Iu.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693 | |
dc.relation.references | [27] DSTU 4044:2019 (National Standard of Ukraine), Viscous Petroleum Road Bitumens. Specification, 2019. | |
dc.relation.references | [28] DSTU 9169:2021 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of resistance to stripping from mineral material, 2022. | |
dc.relation.references | [29] SОU 42.1-37641918-068:2017 (Organization Standard of Ukraine), Viscous Road Bitumen, Modified Additives Based On Waxes. Specifications, 2017. | |
dc.relation.references | [30] SOU 45.2-00018112-067:2011 (Organization Standard of Ukraine), Construction materials. Pavement grade viscous bitumen’s, modified by adhesion promoters. Specifications, 2011. | |
dc.relation.referencesen | [1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742-777. https://doi.org/10.3390/app9040742 | |
dc.relation.referencesen | [2] Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Bratychak, M. Polymer Modified Bitumen. Chem. Chem. Technol. 2016, 10, 631-636. https://doi.org/10.23939/chcht10.04si.631 | |
dc.relation.referencesen | [3] Zhu, J.; Birgisson, B.; Kringos, N. Polymer Modification of Bitumen: Advances and Challenges. Eur. Polym. J. 2014, 54, 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005 | |
dc.relation.referencesen | [4] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.referencesen | [5] Asphalt Institute and Eurobitume. The bitumen industry – a global perspective: production, chemistry, use, specification, and occupational exposure. Third edition; Asphalt Institute, Eurobitume: Lexigton, KY, Brussels, Belgium, 2015. | |
dc.relation.referencesen | [6] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.referencesen | [7] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774 | |
dc.relation.referencesen | [8] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295-302. https://doi.org/10.23939/chcht16.02.295 | |
dc.relation.referencesen | [9] Gunka, V.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Prysiazhnyi, Yu.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature effect on the chemical modification of bitumen with maleic anhydride. Chem. Chem. Technol. 2022, 16, 475-483. https://doi.org/10.23939/chcht16.03.475 | |
dc.relation.referencesen | [10] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14 | |
dc.relation.referencesen | [11] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.referencesen | [12] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95-102. https://doi.org/10.1007/978-3-030-57340-9_12 | |
dc.relation.referencesen | [13] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.referencesen | [14] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D.Lignite Oxidative Desulphurization: Notice 3 – Process Technological Aspects and Application of Products. Int. J. Coal Sci. 2019, 6, 63-73. https://doi.org/10.1007/s40789-018-0228-z | |
dc.relation.referencesen | [15] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934 | |
dc.relation.referencesen | [16] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438 | |
dc.relation.referencesen | [17] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation Of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture For Application In Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154 | |
dc.relation.referencesen | [18] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689 | |
dc.relation.referencesen | [19] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
dc.relation.referencesen | [20] NFPA 704. Standard System for the Identification of the Hazards of Materials for Emergency Response, 2022. | |
dc.relation.referencesen | [21] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.referencesen | [22] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal. 2020, 62, 420-429. | |
dc.relation.referencesen | [23] DSTU B V.2.7-319:2016 Asphalt mixtures and asphalt concrete for road and airfield. Test methods, 2016. | |
dc.relation.referencesen | [24] DSTU B B.2.7-127:2015 Asphalt concrete mixtures and asphalt concrete with crushed stone and mastic. Technical specifications, 2015. | |
dc.relation.referencesen | [25] Gunka, V.; Hidei, V.; Sidun, I.; Demchuk, Y.; Stadnik, V.; Shapoval, P.; Sobol, K.; Vytrykush, N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183 | |
dc.relation.referencesen | [26] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, Iu.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693 | |
dc.relation.referencesen | [27] DSTU 4044:2019 (National Standard of Ukraine), Viscous Petroleum Road Bitumens. Specification, 2019. | |
dc.relation.referencesen | [28] DSTU 9169:2021 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of resistance to stripping from mineral material, 2022. | |
dc.relation.referencesen | [29] SOU 42.1-37641918-068:2017 (Organization Standard of Ukraine), Viscous Road Bitumen, Modified Additives Based On Waxes. Specifications, 2017. | |
dc.relation.referencesen | [30] SOU 45.2-00018112-067:2011 (Organization Standard of Ukraine), Construction materials. Pavement grade viscous bitumen’s, modified by adhesion promoters. Specifications, 2011. | |
dc.relation.uri | https://doi.org/10.3390/app9040742 | |
dc.relation.uri | https://doi.org/10.23939/chcht10.04si.631 | |
dc.relation.uri | https://doi.org/10.1016/j.eurpolymj.2014.02.005 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.uri | https://doi.org/10.3390/ma15051774 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.02.295 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.03.475 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-27011-7_14 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-57340-9_12 | |
dc.relation.uri | https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.uri | https://doi.org/10.1007/s40789-018-0228-z | |
dc.relation.uri | https://doi.org/10.3390/coatings12121934 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.03.438 | |
dc.relation.uri | https://doi.org/10.1080/14680629.2020.1828154 | |
dc.relation.uri | https://doi.org/10.3390/su142315689 | |
dc.relation.uri | https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.uri | https://doi.org/10.3390/coatings13071183 | |
dc.relation.uri | https://doi.org/10.3390/ma15165693 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Gunka V., Sidun Iu., Poliak O., Demchuk Yu., Prysiazhnyi Yu., Hrynchuk Yu., Drapak I., Astakhova O., 2023 | |
dc.subject | щебенево-мастиковий асфальтобетон | |
dc.subject | гудрон | |
dc.subject | формалін | |
dc.subject | формальдегід | |
dc.subject | каталізатор | |
dc.subject | stone mastic asphalt | |
dc.subject | tar | |
dc.subject | formalin | |
dc.subject | formaldehyde | |
dc.subject | catalyst | |
dc.title | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars | |
dc.title.alternative | Одержання бітуму, модифікованого низькомолекулярними органічними сполуками із нафтових залишків. 9. Щебенево-мастиковий асфальтобетон із використанням гудронів, модифікованих формаліном | |
dc.type | Article |
Files
License bundle
1 - 1 of 1