Antibacterial Efficacy of Silver or Arsenic Doped Polymer Composites Against Several Kinds of Bacteria
dc.citation.epage | 50 | |
dc.citation.issue | 1 | |
dc.citation.spage | 42 | |
dc.contributor.affiliation | University of North Texas | |
dc.contributor.affiliation | Ivane Javakhishvili University | |
dc.contributor.affiliation | Alfred University | |
dc.contributor.author | Brostow, Witold | |
dc.contributor.author | Gahutishvili, Marina | |
dc.contributor.author | Wren, Anthony W. | |
dc.contributor.author | Keenan, Timothy J. | |
dc.contributor.author | Yatongchai, Chokchai | |
dc.contributor.author | Hnatchuk, Nathalie | |
dc.contributor.author | Singh, Vijay | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T10:41:35Z | |
dc.date.available | 2024-01-22T10:41:35Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Досліджено структуру та ряд властивостей полімерних композитів, легованих AgNO3 та As2O3, зокрема їхню антибактеріальну активність щодо E. coli, S. aureus, C. albicans та S. epidermidis. Нові полімерні композити, леговані сріблом або миш’яком, охарактеризовані за допомогою дифракції рентгенівських променів (XRD), скануючої електронної мікроскопії в поєднанні з енергодисперсійною рентгенівською спектроскопією (SEM/EDS) та дослідженнями вивільнення йонів. Проведено антибактеріальну оцінку кожного з композиційних зразків з використанням S. aureus у рідкій бульйонній культурі з додаванням до бактеріальної культури 10, 20 та 30 % рідкого екстракту. Контрольні зразки S. aureus використовували для порівняння і реєстрували при 100 % в кожен період часу. Встановлено, що для зразків із пластифікатором PLA життєздатність бактерій значно знижується для кожної композиції, що містить Ag/As, і є подібною до кожної дози концентрації. | |
dc.description.abstract | Structure and several properties of AgNO3 and As2O3 doped polymer composites have been investigated, including their antibacterial activity against E. coli, S. aureus, C. albicans and S. epidermidis. New silver or arsenic doped polymer composites have been characterized by an X-ray diffraction (XRD), a scanning electron microscopy combined with an energy dispersive X-ray spectroscopy (SEM/EDS) and ion release studies. The antibacterial evaluation of each of the composite samples was conducted using S. aureus in the liquid broth culture, with 10, 20 and 30 % of liquid extract added to the bacterial culture. Control S. aureus stocks were used for comparison at each time period and were recorded at 100 % at each time period. For samples with the PLA plasticizer the bacterial viability was significantly reduced for each composition containing Ag/As and was similar for each dosage concentration. | |
dc.format.extent | 42-50 | |
dc.format.pages | 9 | |
dc.identifier.citation | Antibacterial Efficacy of Silver or Arsenic Doped Polymer Composites Against Several Kinds of Bacteria / Witold Brostow, Marina Gahutishvili, Anthony W. Wren, Timothy J. Keenan, Chokchai Yatongchai, Nathalie Hnatchuk, Vijay Singh // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 42–50. | |
dc.identifier.citationen | Antibacterial Efficacy of Silver or Arsenic Doped Polymer Composites Against Several Kinds of Bacteria / Witold Brostow, Marina Gahutishvili, Anthony W. Wren, Timothy J. Keenan, Chokchai Yatongchai, Nathalie Hnatchuk, Vijay Singh // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 42–50. | |
dc.identifier.doi | doi.org/10.23939/chcht16.01.042 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60959 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (16), 2022 | |
dc.relation.references | [1] Galya, T.; Sedlarik, V.; Kuritka, I.; Novotny, R.; Sedlarikova, J.; Sah, P. Antibacterial Poly(Vinyl Alcohol) Film Containing Silver Nanoparticles: Preparation and Characterization. J. Appl. Polym. Sci. 2008, 110 (5), 3178-3185. https://doi.org/10.1002/app.28908 | |
dc.relation.references | [2] Robbens, J.; Vanparys, C.; Nobels, I.; Blust, R., Van Hoecke, K., Janssen, C., De Schamphelaere, K., Roland, K., Blanchard, G., Silvestre, F. et al. Eco-, Geno- and Human Toxicology of Bio-Active Nanoparticles for Biomedical Applications. Toxicology 2010, 269, 170-181. https://doi.org/10.1016/j.tox.2009.11.002 | |
dc.relation.references | [3] Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract. Biotechnol. Prog. 2006, 22, 577-583. https://doi.org/10.1021/bp0501423 | |
dc.relation.references | [4] Brostow, W.; Hagg Lobland, H.E.; Narkis, M. Sliding Wear, Viscoelasticity, and Brittleness of Polymers. J. Mater. Res. 2006, 21, 2422-2428. https://doi.org/10.1557/jmr.2006.0300 | |
dc.relation.references | [5] Olea-Mejia, O.J.; Brostow, W.; Escobar-Halarcon, L.; Vigueras-Santiago, E. Tribological Properties of Polymer Nanohybrids Containing Gold Nanoparticles Obtained by Laser Ablation. J. Nanosci. Nanotechnol. 2012, 12, 2750-2755(6). https://doi.org/10.1166/jnn.2012.5737 | |
dc.relation.references | [6] Brostow, W.; Hagg Lobland H.E. Materials: Introduction and Applications; John Wiley & Sons: Hoboken, NJ, 2017. | |
dc.relation.references | [7] Brostow, W.; Gahutishvili, M.; Gigauri, R.; Hagg Lobland, H.E.; Japaridze, S.; Lekishvili, N. Separation of Natural Trivalent Oxides of Arsenic and Antimony. Chem. Eng. J. 2010, 159, 24-26. https://doi.org/10.1016/j.cej.2010.02.016 | |
dc.relation.references | [8] Barbakadze, K.; Brostow, W.; Datashvili, T.; Hnatchuk, N.; Lekishvili, N. Antibiocorrosive Epoxy-Based Coatings with Low Friction and High Scratch Resistance. Wear 2018, 394-395, 228-235. https://doi.org/10.1016/j.wear.2017.08.006 | |
dc.relation.references | [9] Gakhutishvili, M.; Gigauri, R. Extraction of Arsenic from Mineral Resources and Industrial Waste. Georgia Chem. J. 2010, 4 (10), 53-54. | |
dc.relation.references | [10] Bakradze, E., Vodyanitskii, Y., Urushadze, T., Chankseliani, Z., Arabidze, M., About rationing of the heavy metals in soils of Georgia, Ann. Agrarian Sci. 2018, 16, 1-6. | |
dc.relation.references | [11] Raffoux, E.; Rousselot, Ph., Poupon, Daniel , M.-T., Cassinat, B. , Delarue, R., Taksin, A.-L., Réa, D., , Buzyn, A. , Tibi, A. , Lebbé, G. et al., Combined Treatment With Arsenic Trioxide and All-Trans-Retinoic Acid in Patients With Relapsed Acute Promyelocytic Leukemia. J. Clin. Oncol. 2003, 21, 2326-2334. https://doi.org/10.1200/JCO.2003.01.149 | |
dc.relation.references | [12] Soignet, S.L., Tong, W.P., Hirschfeld, S., Warrell Jr., R.P. Clinical Study of an Organic Arsenical, Melarsoprol in Patients with Advanced Leukemia. Cancer Chemother. Pharmacol. 1999, 44, 417-421. | |
dc.relation.references | [13] Baláž, P.; Sedlák, J. Arsenic in Cancer Treatment: Challenges for Application of Realgar Nanoparticles (A Minireview). Toxins 2010, 2(6), 1568-1581. https://doi.org/10.3390/toxins2061568 | |
dc.relation.references | [14] Brostow, W.; Brumbley, S.; Gahutishvili, M.; Hnatchuk, N. Arsenic Antibacterial Polymer Composites Based on Poly(Vinyl Chloride). Macromol. Symp. 2016, 365, 258-262. https://doi.org/10.1002/masy.201650002 | |
dc.relation.references | [15] Skiba, M.; Pivovarov, A.; Vorobyova, V. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification. Chem. Chem. Technol. 2020, 14, 47-54. https://doi.org/10.23939/chcht14.01.047 | |
dc.relation.references | [16] Skiba, M.; Vorobyova, V.; Kovalenko, I.; Shakun, A. Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities. Chem. Chem. Technol. 2020, 14, 297-303. https://doi.org/10.23939/chcht14.03.297 | |
dc.relation.references | [17] Matyjas-Zgondek, E.; Bacciarelli, A.; Rybicki, E.; Szynkowska, M.I.; Kołodziejczyk, M., Antibacterial Properties of Silver-Finished Textiles, Fibres Text. East. Eur. 2008, 5, 101-107. | |
dc.relation.references | [18] Kancharla, R.; Vadeghar Ramesh, K.; Prabhakar Ginuga, R.; Sundergopal, S. Synthesis and Characterization of Indigenous Hydrophilized Polyvinylidene Fluoride Membrane for Drinking Water Purification: Experimental Study and Modeling Aspects. Chem. Chem. Technol. 2020, 14, 239-250. https://doi.org/10.23939/chcht14.02.239 | |
dc.relation.references | [19] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruction of Various Microorganisms Under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264 | |
dc.relation.references | [20] Moeck, P.; Stone-Sundberg, J.; Snyder, T.J.; Kaminsky, W. Enlivening 300 Level General Education Classes on Nano-Science and Nano-Technology with 3D Printed Crystallographic Models. J. Mater. Educ. 2014, 36, 77-96. | |
dc.relation.references | [21] Acevedo, A.; Herrera-Posada, S. Introducing Viscoelasticity to Precollege Students through a Composite Bouncing Balls Hands-On Experiment. J. Mater. Educ. 2014, 36, 69-76. | |
dc.relation.references | [22] López-Martinez, A.; Mata-Jiménez, M.; Andrade, M; Alaniz-Lumbreraz, D.; Torres-Arguelles, V.; Olvera-González, E.; de la Rosa-Miranda, E.; Castaño, V.M. Non-Linear Voltage Control in Complex Electronic Materials Systems for Power Transmission: - A Teaching Approach. J. Mater. Educ. 2014, 36, 97-105. | |
dc.relation.references | [23] Steinberg, D.; Swilley, S. Creating Positive Materials Science Learning Experiences at a University Venue for 1000 Middle School Students. J. Mater. Educ. 2008, 30, 351-360. | |
dc.relation.references | [24] Vanasupa, L.; Chen, K.C.; Stolk, J.; Savage, R.; Harding, T.; London, B.; Hughes, W. Converting Traditional Materials Labs to Project-Based Learning Experiences: Aiding Students' Development of Higher-Order Cognitive Skills. J. Mater. Educ. 2008, 30, 281-286. | |
dc.relation.references | [25] Boice, J.N.; King, C.M.; Higginbotham, C.; Guerney, R.W. Molecular Recycling: Application of the Twelve Principles of Green Chemistry in the Diversion of Post-Consumer Poly(Lactic Acid) Waste. J. Mater. Educ. 2008, 30, 257-280. | |
dc.relation.references | [26] Spinelli, L.S., Lucas, E.F. Polymers in the Production of Crude Oil: I. Experimental Discipline to Teach Laboratory Tests to Evaluate Polymers Performance. J. Mater. Educ. 2017, 39, 125-130. | |
dc.relation.references | [27] Vianna, E.L.F., Figueiredo, V.V., Middea, A., Brandão, V.S., Bertolino, L.C., Spinelli, L.S. Polymers in the Production of Crude Oil: II: An Experimental Procedure to Prepare Polymeric Magnetic Nanocomposites. J. Mater. Educ. 2019, 41(1-2), 41-50. | |
dc.relation.references | [28] Carvalho, S.P., Palermo, L.C.M., Boak, L.S., Sorbie, K.S., Lucas, E.F. Polymers in the Production of Crude Oil: III: Static Compatibility and Adsorption Test Procedure for Scale Inhibition. J. Mater. Educ. 2019, 41(3-4), 95-102. | |
dc.relation.references | [29] Silva, J. da C., Maravilha, T.S.L., Nunes, R. de C.P., Spinelli, L.S., Lucas, E.F. Polymers in the Production of Crude Oil: IV. Extractiopn of Asphaltenes Fraction Using Soxhlet. J. Mater. Educ. 2019, 41(5-6), 149-156. | |
dc.relation.references | [30] Gedde, U.W., Hedenqvist, M.S. Fundamental Polymer Science, 2nd ed.; Springer Nature Switzerland AG, 2019. https://doi.org/10.1007/978-3-030-29794-7 | |
dc.relation.references | [31] Brostow, W., Fałtynowicz, H., Gencel, O., Grigoriev, A., Hagg Lobland, H.E., Zhang, D. Mechanical and Tribological Properties of Polymers and Polymer-Based Composites. Chem. Chem. Technol. 2020, 14, 514-520. https://doi.org/10.23939/chcht14.04.514 | |
dc.relation.referencesen | [1] Galya, T.; Sedlarik, V.; Kuritka, I.; Novotny, R.; Sedlarikova, J.; Sah, P. Antibacterial Poly(Vinyl Alcohol) Film Containing Silver Nanoparticles: Preparation and Characterization. J. Appl. Polym. Sci. 2008, 110 (5), 3178-3185. https://doi.org/10.1002/app.28908 | |
dc.relation.referencesen | [2] Robbens, J.; Vanparys, C.; Nobels, I.; Blust, R., Van Hoecke, K., Janssen, C., De Schamphelaere, K., Roland, K., Blanchard, G., Silvestre, F. et al. Eco-, Geno- and Human Toxicology of Bio-Active Nanoparticles for Biomedical Applications. Toxicology 2010, 269, 170-181. https://doi.org/10.1016/j.tox.2009.11.002 | |
dc.relation.referencesen | [3] Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract. Biotechnol. Prog. 2006, 22, 577-583. https://doi.org/10.1021/bp0501423 | |
dc.relation.referencesen | [4] Brostow, W.; Hagg Lobland, H.E.; Narkis, M. Sliding Wear, Viscoelasticity, and Brittleness of Polymers. J. Mater. Res. 2006, 21, 2422-2428. https://doi.org/10.1557/jmr.2006.0300 | |
dc.relation.referencesen | [5] Olea-Mejia, O.J.; Brostow, W.; Escobar-Halarcon, L.; Vigueras-Santiago, E. Tribological Properties of Polymer Nanohybrids Containing Gold Nanoparticles Obtained by Laser Ablation. J. Nanosci. Nanotechnol. 2012, 12, 2750-2755(6). https://doi.org/10.1166/jnn.2012.5737 | |
dc.relation.referencesen | [6] Brostow, W.; Hagg Lobland H.E. Materials: Introduction and Applications; John Wiley & Sons: Hoboken, NJ, 2017. | |
dc.relation.referencesen | [7] Brostow, W.; Gahutishvili, M.; Gigauri, R.; Hagg Lobland, H.E.; Japaridze, S.; Lekishvili, N. Separation of Natural Trivalent Oxides of Arsenic and Antimony. Chem. Eng. J. 2010, 159, 24-26. https://doi.org/10.1016/j.cej.2010.02.016 | |
dc.relation.referencesen | [8] Barbakadze, K.; Brostow, W.; Datashvili, T.; Hnatchuk, N.; Lekishvili, N. Antibiocorrosive Epoxy-Based Coatings with Low Friction and High Scratch Resistance. Wear 2018, 394-395, 228-235. https://doi.org/10.1016/j.wear.2017.08.006 | |
dc.relation.referencesen | [9] Gakhutishvili, M.; Gigauri, R. Extraction of Arsenic from Mineral Resources and Industrial Waste. Georgia Chem. J. 2010, 4 (10), 53-54. | |
dc.relation.referencesen | [10] Bakradze, E., Vodyanitskii, Y., Urushadze, T., Chankseliani, Z., Arabidze, M., About rationing of the heavy metals in soils of Georgia, Ann. Agrarian Sci. 2018, 16, 1-6. | |
dc.relation.referencesen | [11] Raffoux, E.; Rousselot, Ph., Poupon, Daniel , M.-T., Cassinat, B. , Delarue, R., Taksin, A.-L., Réa, D., , Buzyn, A. , Tibi, A. , Lebbé, G. et al., Combined Treatment With Arsenic Trioxide and All-Trans-Retinoic Acid in Patients With Relapsed Acute Promyelocytic Leukemia. J. Clin. Oncol. 2003, 21, 2326-2334. https://doi.org/10.1200/JCO.2003.01.149 | |
dc.relation.referencesen | [12] Soignet, S.L., Tong, W.P., Hirschfeld, S., Warrell Jr., R.P. Clinical Study of an Organic Arsenical, Melarsoprol in Patients with Advanced Leukemia. Cancer Chemother. Pharmacol. 1999, 44, 417-421. | |
dc.relation.referencesen | [13] Baláž, P.; Sedlák, J. Arsenic in Cancer Treatment: Challenges for Application of Realgar Nanoparticles (A Minireview). Toxins 2010, 2(6), 1568-1581. https://doi.org/10.3390/toxins2061568 | |
dc.relation.referencesen | [14] Brostow, W.; Brumbley, S.; Gahutishvili, M.; Hnatchuk, N. Arsenic Antibacterial Polymer Composites Based on Poly(Vinyl Chloride). Macromol. Symp. 2016, 365, 258-262. https://doi.org/10.1002/masy.201650002 | |
dc.relation.referencesen | [15] Skiba, M.; Pivovarov, A.; Vorobyova, V. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification. Chem. Chem. Technol. 2020, 14, 47-54. https://doi.org/10.23939/chcht14.01.047 | |
dc.relation.referencesen | [16] Skiba, M.; Vorobyova, V.; Kovalenko, I.; Shakun, A. Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities. Chem. Chem. Technol. 2020, 14, 297-303. https://doi.org/10.23939/chcht14.03.297 | |
dc.relation.referencesen | [17] Matyjas-Zgondek, E.; Bacciarelli, A.; Rybicki, E.; Szynkowska, M.I.; Kołodziejczyk, M., Antibacterial Properties of Silver-Finished Textiles, Fibres Text. East. Eur. 2008, 5, 101-107. | |
dc.relation.referencesen | [18] Kancharla, R.; Vadeghar Ramesh, K.; Prabhakar Ginuga, R.; Sundergopal, S. Synthesis and Characterization of Indigenous Hydrophilized Polyvinylidene Fluoride Membrane for Drinking Water Purification: Experimental Study and Modeling Aspects. Chem. Chem. Technol. 2020, 14, 239-250. https://doi.org/10.23939/chcht14.02.239 | |
dc.relation.referencesen | [19] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruction of Various Microorganisms Under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264 | |
dc.relation.referencesen | [20] Moeck, P.; Stone-Sundberg, J.; Snyder, T.J.; Kaminsky, W. Enlivening 300 Level General Education Classes on Nano-Science and Nano-Technology with 3D Printed Crystallographic Models. J. Mater. Educ. 2014, 36, 77-96. | |
dc.relation.referencesen | [21] Acevedo, A.; Herrera-Posada, S. Introducing Viscoelasticity to Precollege Students through a Composite Bouncing Balls Hands-On Experiment. J. Mater. Educ. 2014, 36, 69-76. | |
dc.relation.referencesen | [22] López-Martinez, A.; Mata-Jiménez, M.; Andrade, M; Alaniz-Lumbreraz, D.; Torres-Arguelles, V.; Olvera-González, E.; de la Rosa-Miranda, E.; Castaño, V.M. Non-Linear Voltage Control in Complex Electronic Materials Systems for Power Transmission: - A Teaching Approach. J. Mater. Educ. 2014, 36, 97-105. | |
dc.relation.referencesen | [23] Steinberg, D.; Swilley, S. Creating Positive Materials Science Learning Experiences at a University Venue for 1000 Middle School Students. J. Mater. Educ. 2008, 30, 351-360. | |
dc.relation.referencesen | [24] Vanasupa, L.; Chen, K.C.; Stolk, J.; Savage, R.; Harding, T.; London, B.; Hughes, W. Converting Traditional Materials Labs to Project-Based Learning Experiences: Aiding Students' Development of Higher-Order Cognitive Skills. J. Mater. Educ. 2008, 30, 281-286. | |
dc.relation.referencesen | [25] Boice, J.N.; King, C.M.; Higginbotham, C.; Guerney, R.W. Molecular Recycling: Application of the Twelve Principles of Green Chemistry in the Diversion of Post-Consumer Poly(Lactic Acid) Waste. J. Mater. Educ. 2008, 30, 257-280. | |
dc.relation.referencesen | [26] Spinelli, L.S., Lucas, E.F. Polymers in the Production of Crude Oil: I. Experimental Discipline to Teach Laboratory Tests to Evaluate Polymers Performance. J. Mater. Educ. 2017, 39, 125-130. | |
dc.relation.referencesen | [27] Vianna, E.L.F., Figueiredo, V.V., Middea, A., Brandão, V.S., Bertolino, L.C., Spinelli, L.S. Polymers in the Production of Crude Oil: II: An Experimental Procedure to Prepare Polymeric Magnetic Nanocomposites. J. Mater. Educ. 2019, 41(1-2), 41-50. | |
dc.relation.referencesen | [28] Carvalho, S.P., Palermo, L.C.M., Boak, L.S., Sorbie, K.S., Lucas, E.F. Polymers in the Production of Crude Oil: III: Static Compatibility and Adsorption Test Procedure for Scale Inhibition. J. Mater. Educ. 2019, 41(3-4), 95-102. | |
dc.relation.referencesen | [29] Silva, J. da C., Maravilha, T.S.L., Nunes, R. de C.P., Spinelli, L.S., Lucas, E.F. Polymers in the Production of Crude Oil: IV. Extractiopn of Asphaltenes Fraction Using Soxhlet. J. Mater. Educ. 2019, 41(5-6), 149-156. | |
dc.relation.referencesen | [30] Gedde, U.W., Hedenqvist, M.S. Fundamental Polymer Science, 2nd ed.; Springer Nature Switzerland AG, 2019. https://doi.org/10.1007/978-3-030-29794-7 | |
dc.relation.referencesen | [31] Brostow, W., Fałtynowicz, H., Gencel, O., Grigoriev, A., Hagg Lobland, H.E., Zhang, D. Mechanical and Tribological Properties of Polymers and Polymer-Based Composites. Chem. Chem. Technol. 2020, 14, 514-520. https://doi.org/10.23939/chcht14.04.514 | |
dc.relation.uri | https://doi.org/10.1002/app.28908 | |
dc.relation.uri | https://doi.org/10.1016/j.tox.2009.11.002 | |
dc.relation.uri | https://doi.org/10.1021/bp0501423 | |
dc.relation.uri | https://doi.org/10.1557/jmr.2006.0300 | |
dc.relation.uri | https://doi.org/10.1166/jnn.2012.5737 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2010.02.016 | |
dc.relation.uri | https://doi.org/10.1016/j.wear.2017.08.006 | |
dc.relation.uri | https://doi.org/10.1200/JCO.2003.01.149 | |
dc.relation.uri | https://doi.org/10.3390/toxins2061568 | |
dc.relation.uri | https://doi.org/10.1002/masy.201650002 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.01.047 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.297 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.239 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.264 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-29794-7 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.04.514 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Brostow W., Gahutishvili M., Wren A.W., Keenan T.J., Yatongchai C., Hnatchuk N., Singh V., 2022 | |
dc.subject | миш'якові композити | |
dc.subject | срібні композити | |
dc.subject | полімерні композити | |
dc.subject | антибактеріальна поведінка | |
dc.subject | arsenic composites | |
dc.subject | silver composites | |
dc.subject | polymer composites | |
dc.subject | antibacterial behavior | |
dc.title | Antibacterial Efficacy of Silver or Arsenic Doped Polymer Composites Against Several Kinds of Bacteria | |
dc.title.alternative | Антибактеріальна ефективність полімерних композитів, легованих сріблом або мишʼяком проти кількох видів бактерій | |
dc.type | Article |
Files
License bundle
1 - 1 of 1