An improved Levenberg–Marquardt method for nonsmooth equations with application to multi-stream heat exchangers

dc.citation.epage554
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage547
dc.contributor.affiliationПолітехнічний університет Мохаммеда VI
dc.contributor.affiliationКембриджський університет
dc.contributor.affiliationMohammed VI Polytechnic University
dc.contributor.affiliationUniversity of Cambridge
dc.contributor.authorЕль Мудден, М.
dc.contributor.authorБенджеллон, С.
dc.contributor.authorЧкіфа, А.
dc.contributor.authorФаузі, Х.
dc.contributor.authorEl Moudden, M.
dc.contributor.authorBenjelloun, S.
dc.contributor.authorChkifa, A.
dc.contributor.authorFawzi, H.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:33:06Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractСистеми негладких рівнянь дуже корисні для вивчення нелінійних задач доповнюваності, варіаційних нерівностей, задач дворівневого програмування та виникають під час математичного моделювання багатьох задач хімічної обробки, механіки та техніки. У цій роботі вводимо гібридний метод розв’язування систем негладких рівнянь, який поєднує ідею методів типу Левенберга–Марквардта з методами розшарування, уникаючи при цьому гіпотези про диференційовність оціночної функції найменших квадратів. Деякі чисельні результати порівняння запропонованого методу з ЛП-методом Ньютона свідчать про те, що вдосконалений алгоритм Левенберга–Марквардта досить добре працює на практиці. Як застосування запропонованого алгоритму розглянуто задачу мережі багатопотокових теплообмінників, де теплообмінна мережа повинна бути спроектована так, щоб відповідати заданій температурі на виході для заданого набору потоків.
dc.description.abstractSystems of nonsmooth equations are very useful in the study of nonlinear complementarity problems, variational inequality problems, bilevel programming problems, and arise in the mathematical modeling of many problems in chemical processing, mechanics and engineering. In this paper, we introduce a hybrid method for solving systems of nonsmooth equations, which combines the idea of Levenberg–Marquardt–type methods with bundle techniques, while avoiding the hypothesis of differentiability of the least squares merit function. Some numerical results comparing the proposed method with LP-Newton method indicate that the improved Levenberg–Marquardt algorithm works quite well in practice. As an application of the proposed algorithm, we consider the multi-stream heat exchanger network problem, where a heat exchange network must be designed to meet a specified exit temperature for a given set of streams.
dc.format.extent547-554
dc.format.pages8
dc.identifier.citationAn improved Levenberg–Marquardt method for nonsmooth equations with application to multi-stream heat exchangers / M. El Moudden, S. Benjelloun, A. Chkifa, H. Fawzi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 547–554.
dc.identifier.citationenAn improved Levenberg–Marquardt method for nonsmooth equations with application to multi-stream heat exchangers / M. El Moudden, S. Benjelloun, A. Chkifa, H. Fawzi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 547–554.
dc.identifier.doidoi.org/10.23939/mmc2022.03.547
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63479
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 3 (9), 2022
dc.relation.references[1] Pang J.-S., Qi L. Nonsmooth equations: motivation and algorithms. SIAM Journal on Optimization. 3 (3), 443–465 (1993).
dc.relation.references[2] Zhang J.-l., Zhang X. A smoothing Levenberg–Marquardt method for NCP. Applied Mathematics and Computation. 178 (2), 212–228 (2006).
dc.relation.references[3] Qi L., Sun J. A nonsmooth version of Newton’s method. Mathematical Programming. 58 (1–3), 353–367 (1993).
dc.relation.references[4] Sun D., Han J. Newton and quasi-Newton methods for a class of nonsmooth equations and related problems. SIAM Journal on Optimization. 7 (2), 463–480 (1997).
dc.relation.references[5] Qi L. Trust region algorithms for solving nonsmooth equations. SIAM Journal on Optimization. 5 (1), 219–230 (1995).
dc.relation.references[6] Sheng Z., Yuan G., Cui Z., Duan X., Wang X. An adaptive trust region algorithm for large-residual nonsmooth least squares problems. Journal of Industrial and Management Optimization. 14 (2), 707–718 (2018).
dc.relation.references[7] Gabriel S. A., Pang J. S. A Trust Region Method for Constrained Nonsmooth Equations. In: Hager W. W., Hearn D. W., Pardalos P. M. (eds) Large Scale Optimization. 155–181 (1994).
dc.relation.references[8] Qi L., Xiao X., Zhang L. A parameter-self-adjusting Levenberg–Marquardt method for solving nonsmooth equations. Journal of Computational Mathematics. 34 (3), 317–338 (2016).
dc.relation.references[9] Ling C., Wang G., He H. A new Levenberg–Marquardt type algorithm for solving nonsmooth constrained equations. Applied Mathematics and Computation. 229, 107–122 (2014).
dc.relation.references[10] Yigui O. A superlinearly convergent ODE-type trust region algorithm for nonsmooth nonlinear equations. Journal of Applied Mathematics and Computing. 22 (3), 371–380 (2006).
dc.relation.references[11] Long Q., Wu C. A quasisecant method for solving a system of nonsmooth equations. Computers & Mathematics with Applications. 66 (4), 419–431 (2013).
dc.relation.references[12] Long Q., Wu C., Wang X. A system of nonsmooth equations solver based upon subgradient method. Applied Mathematics and Computation. 251, 284–299 (2015).
dc.relation.references[13] Pattison R. C., Baldea M. Multistream heat exchangers: equation-oriented modeling and flowsheet optimization. AIChE Journal. 61 (6), 1856–1866 (2015).
dc.relation.references[14] Hasan M. F., Karimi I., Alfadala H., Grootjans H. Operational modeling of multistream heat exchangers with phase changes. AIChE Journal. 55 (1), 150–171 (2009).
dc.relation.references[15] Khan M. S., Husnil Y. A., Getu M., Lee M. Modeling and simulation of multi-stream heat exchanger using artificial neural network. Computer Aided Chemical Engineering. 31, 1196–1200 (2012).
dc.relation.references[16] Clarke F. Optimization and Nonsmooth Analysis. SIAM, Philadelphia. Vol. 5 (1990).
dc.relation.references[17] Facchinei F., Fischer A., Herrich M. An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions. Mathematical Programming. 146 (1–2), 1–36 (2014).
dc.relation.references[18] Smieta´nski M. J. Some quadrature-based versions of the generalized Newton method for solving nonsmooth equations. Journal of Computational and Applied Mathematics. 235 (17), 5131–5139 (2011).
dc.relation.references[19] Song L., Gao Y. A smoothing Levenberg–Marquardt method for nonlinear complementarity problems. Numerical Algorithms. 79 (4), 1305–1321 (2018).
dc.relation.references[20] Zhang L., Zhou W. Spectral gradient projection method for solving nonlinear monotone equations. Journal of Computational and Applied Mathematics. 196 (2), 478–484 (2006).
dc.relation.references[21] Watson H. A., Khan K. A., Barton P. I. Multistream heat exchanger modeling and design. AIChE Journal. 61 (10), 3390–3403 (2015).
dc.relation.referencesen[1] Pang J.-S., Qi L. Nonsmooth equations: motivation and algorithms. SIAM Journal on Optimization. 3 (3), 443–465 (1993).
dc.relation.referencesen[2] Zhang J.-l., Zhang X. A smoothing Levenberg–Marquardt method for NCP. Applied Mathematics and Computation. 178 (2), 212–228 (2006).
dc.relation.referencesen[3] Qi L., Sun J. A nonsmooth version of Newton’s method. Mathematical Programming. 58 (1–3), 353–367 (1993).
dc.relation.referencesen[4] Sun D., Han J. Newton and quasi-Newton methods for a class of nonsmooth equations and related problems. SIAM Journal on Optimization. 7 (2), 463–480 (1997).
dc.relation.referencesen[5] Qi L. Trust region algorithms for solving nonsmooth equations. SIAM Journal on Optimization. 5 (1), 219–230 (1995).
dc.relation.referencesen[6] Sheng Z., Yuan G., Cui Z., Duan X., Wang X. An adaptive trust region algorithm for large-residual nonsmooth least squares problems. Journal of Industrial and Management Optimization. 14 (2), 707–718 (2018).
dc.relation.referencesen[7] Gabriel S. A., Pang J. S. A Trust Region Method for Constrained Nonsmooth Equations. In: Hager W. W., Hearn D. W., Pardalos P. M. (eds) Large Scale Optimization. 155–181 (1994).
dc.relation.referencesen[8] Qi L., Xiao X., Zhang L. A parameter-self-adjusting Levenberg–Marquardt method for solving nonsmooth equations. Journal of Computational Mathematics. 34 (3), 317–338 (2016).
dc.relation.referencesen[9] Ling C., Wang G., He H. A new Levenberg–Marquardt type algorithm for solving nonsmooth constrained equations. Applied Mathematics and Computation. 229, 107–122 (2014).
dc.relation.referencesen[10] Yigui O. A superlinearly convergent ODE-type trust region algorithm for nonsmooth nonlinear equations. Journal of Applied Mathematics and Computing. 22 (3), 371–380 (2006).
dc.relation.referencesen[11] Long Q., Wu C. A quasisecant method for solving a system of nonsmooth equations. Computers & Mathematics with Applications. 66 (4), 419–431 (2013).
dc.relation.referencesen[12] Long Q., Wu C., Wang X. A system of nonsmooth equations solver based upon subgradient method. Applied Mathematics and Computation. 251, 284–299 (2015).
dc.relation.referencesen[13] Pattison R. C., Baldea M. Multistream heat exchangers: equation-oriented modeling and flowsheet optimization. AIChE Journal. 61 (6), 1856–1866 (2015).
dc.relation.referencesen[14] Hasan M. F., Karimi I., Alfadala H., Grootjans H. Operational modeling of multistream heat exchangers with phase changes. AIChE Journal. 55 (1), 150–171 (2009).
dc.relation.referencesen[15] Khan M. S., Husnil Y. A., Getu M., Lee M. Modeling and simulation of multi-stream heat exchanger using artificial neural network. Computer Aided Chemical Engineering. 31, 1196–1200 (2012).
dc.relation.referencesen[16] Clarke F. Optimization and Nonsmooth Analysis. SIAM, Philadelphia. Vol. 5 (1990).
dc.relation.referencesen[17] Facchinei F., Fischer A., Herrich M. An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions. Mathematical Programming. 146 (1–2), 1–36 (2014).
dc.relation.referencesen[18] Smieta´nski M. J. Some quadrature-based versions of the generalized Newton method for solving nonsmooth equations. Journal of Computational and Applied Mathematics. 235 (17), 5131–5139 (2011).
dc.relation.referencesen[19] Song L., Gao Y. A smoothing Levenberg–Marquardt method for nonlinear complementarity problems. Numerical Algorithms. 79 (4), 1305–1321 (2018).
dc.relation.referencesen[20] Zhang L., Zhou W. Spectral gradient projection method for solving nonlinear monotone equations. Journal of Computational and Applied Mathematics. 196 (2), 478–484 (2006).
dc.relation.referencesen[21] Watson H. A., Khan K. A., Barton P. I. Multistream heat exchanger modeling and design. AIChE Journal. 61 (10), 3390–3403 (2015).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectсистеми негладких рівнянь
dc.subjectметод Левенберга–Марквардта
dc.subjectметоди розшарування
dc.subjectбагатопотокова теплообмінна мережа
dc.subjectтеплообмін
dc.subjectsystems of nonsmooth equations
dc.subjectLevenberg–Marquardt method
dc.subjectbundle techniques
dc.subjectmulti-stream heat exchanger network
dc.subjectheat transfer
dc.titleAn improved Levenberg–Marquardt method for nonsmooth equations with application to multi-stream heat exchangers
dc.title.alternativeУдосконалений метод Левенберга–Марквардта для негладких рівнянь із застосуванням до багатопотокових теплообмінників
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n3_El_Moudden_M-An_improved_Levenberg-Marquardt_547-554.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n3_El_Moudden_M-An_improved_Levenberg-Marquardt_547-554__COVER.png
Size:
433.34 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: