Robust shape optimization using artificial neural networks based surrogate modeling for an aircraft wing

dc.citation.epage153
dc.citation.issue11
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage139
dc.citation.volume1
dc.contributor.affiliationУніверситет Мохаммеда V у Рабаті
dc.contributor.affiliationУніверситет Лілля
dc.contributor.affiliationMohammed V University in Rabat
dc.contributor.affiliationUniversity of Lille
dc.contributor.authorМуссауї, З.
dc.contributor.authorКарафі, Ю.
dc.contributor.authorБ. Абу Ель Маджд
dc.contributor.authorMoussaoui, Z.
dc.contributor.authorKarafi, Y.
dc.contributor.authorB. Abou El Majd
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T07:44:08Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractОптимізація аеродинамічної форми є дуже активною областю досліджень, яка стикається з викликами складних задач обчислювальної гідродинаміки (CFD), оптимізації з диференціальними рівняннями з частинними похідними (РПЧ) як обмеженнями та відповідної обробки невизначеностей. Це включає розробку надійних методологій проектування, які є обчислювально ефективними, зберігаючи при цьому бажаний рівень точності в процесі оптимізації. У цій статті розглядаються задачі оптимізації аеродинамічної форми, що включають невизначені умови експлуатації. Після огляду можливих підходів до врахування невизначеностей, для апроксимації аеродинамічних коефіцієнтів при зміні умов експлуатації використовується модель штучної нейронної мережі (ШНМ). Використовуються підходи до вирішення задач надійної оптимізації, засновані на детермінованих вимірюваннях, натхненні роботою Деба [ Deb K., Gupta H. Introducing robusness in multi-objective optimization. KanGAL Report 2004–2016, Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology, Kanpur, India (2004) ]. Перша процедура є прямим розширенням методу, що використовується для одноцільової оптимізації. Другий – це більш практичний підхід, який дозволяє користувачеві визначити бажаний ступінь стійкості задачі. Ці підходи були перевірені та валідовані у випадку оптимізації профілю крила літака в трансзвуковому режимі з урахуванням двох невизначених змінних: числа Маха та кута падіння.
dc.description.abstractAerodynamic shape optimization is a very active area of research that faces the challenges of highly demanding Computational Fluid Dynamics (CFD) problems, optimization with Partial Differential Equations (PDEs) as constraints, and the appropriate treatment of uncertainties. This includes the development of robust design methodologies that are computationally efficient while maintaining the desired level of accuracy in the optimization process. This paper addresses aerodynamic shape optimization problems involving uncertain operating conditions. After a review of possible approaches to account for uncertainties, an Artificial Neural Network (ANN) model is used to approximate the aerodynamic coefficients when the operating conditions vary. Robust optimization problem-solving approaches based on deterministic measurements are used, inspired by the work of Deb [Deb K., Gupta H. Introducing robustness in multi-objective optimization. KanGAL Report 2004–2016, Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology, Kanpur, India (2004)]. The first procedure is a direct extension of a technique used for single-objective optimization. The second is a more practical approach allowing a user to define the desired degree of robustness in a problem. These approaches have been tested and validated in the case of the optimization of an aircraft wing profile in the transonic regime considering two uncertain variables: the Mach number and the angle of incidence.
dc.format.extent139-153
dc.format.pages15
dc.identifier.citationMoussaoui Z. Robust shape optimization using artificial neural networks based surrogate modeling for an aircraft wing / Z. Moussaoui, Y. Karafi, B. Abou El Majd // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 139–153.
dc.identifier.citationenMoussaoui Z. Robust shape optimization using artificial neural networks based surrogate modeling for an aircraft wing / Z. Moussaoui, Y. Karafi, B. Abou El Majd // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 139–153.
dc.identifier.doi10.23939/mmc2024.01.139
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113774
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 11 (1), 2024
dc.relation.ispartofMathematical Modeling and Computing, 11 (1), 2024
dc.relation.references[1] Papadimitriou D. I., Papadimitriou C. Aerodynamic shape optimization for minimum robust drag and lift reliability constraint. Aerospace Science and Technology. 55, 24–33 (2016).
dc.relation.references[2] Nagawkar J., Leifsson L. Applications of polynomial chaos-based cokriging to simulation-based analysis and design under uncertainty. ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020. 11B-2020, V11BT11A046 (2020).
dc.relation.references[3] Du X., Leifsson L. Optimum aerodynamic shape design under uncertainty by utility theory and metamodeling. Aerospace Science and Technology. 95, 105464 (2019).
dc.relation.references[4] Tao J., Sun G., Guo L, Wang X. Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization. Chinese Journal of Aeronautics. 33 (6), 1573–1588 (2020).
dc.relation.references[5] Zhao H., Gao Z., Gao Y., Wang C. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty. Aerospace Science and Technology. 68, 530–542 (2017).
dc.relation.references[6] Wu X., Zhang W., Song S. Robust aerodynamic shape design based on an adaptive stochastic optimization framework. Structural and Multidisciplinary Optimization. 57 (3), 639–651 (2018).
dc.relation.references[7] Sabater C., Bekemeyer P., G¨ortz S. Efficient Bilevel Surrogate Approach for Optimization Under Uncertainty of Shock Control Bumps. AIAA Journal. 58 (12), 5228–5242 (2020).
dc.relation.references[8] Abou El Majd B. Parameterization adaption for 3D shape optimization in aerodynamics. International Journal of Science and Engineering. 6 (1), 61–69 (2014).
dc.relation.references[9] D´esid´eri J.-A., Abou El Majd B., Janka A. Nested and selfadaptive B´ezier parameterizations for shape optimization. Journal of Computational Physics. 224 (1), 117–131 (2007).
dc.relation.references[10] Sabater C., Le Maˆıtre O., Congedo P. M., G¨ortz S. A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources. Computer Methods in Applied Mechanics and Engineering. 376, 113632 (2021).
dc.relation.references[11] Schillings C., Schmidt S., Schulz V. Efficient shape optimization for certain and uncertain aerodynamic. Computers & Fluids. 46 (1), 78–87 (2011).
dc.relation.references[12] Shah H., Hosder S., Koziel S., Tesfahunegn Y. A., Leifsson L. Multi-fidelity robust aerodynamic design optimization under mixed uncertainty. Aerospace Science and Technology. 45, 17–29 (2015).
dc.relation.references[13] Moussaoui Z., El Bakkali H., Karafi Y., Abou El Majd B. Bayesian Approach for Aerodynamic Shape Robust Optimization. IISE Annual Conference and Expo 2023. 2231 (2023).
dc.relation.references[14] Mazaheri K., Nejati A. The Multi-point Optimization of Shock Control Bump with Constant-Lift Constraint Enhanced with Suction and Blowing for a Supercritical Airfoil. Flow, Turbulence and Combustion. 96 (3), 639–666 (2016).
dc.relation.references[15] Sederberg T., Parry S. Free-Form Deformation of Solid Geometric Models. ACM SIGGRAPH Computer Graphics. 20 (4), 151–160 (1986).
dc.relation.references[16] Roe P. L. Approximate Riemann solvers, parameter vectors, and differences scheme. Journal of Computational Physics. 43 (2), 357–371 (1981).
dc.relation.references[17] Ramachandran P., Zoph B., Le Q. V. Searching for activation functions. Preprint arXiv:1710.05941 (2017).
dc.relation.references[18] Kingma D. P., Ba J. L. Adam: A method for stochastic optimization. Preprint arXiv:1412.6980 (2014).
dc.relation.references[19] Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S., Irving G., Isard M., Kudlur M., Levenberg J., Monga R., Moore S., Murray D. G., Steiner B., Tucker P., Vasudevan V., Warden P., Wicke M., Yu Y., Zheng X. Tensorflow: A system for large-scale machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283 (2016).
dc.relation.references[20] Deb K., Gupta H. Introducing robustness in multi-objective optimization. KanGAL Report 2004–2016, Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology, Kanpur, India (2004).
dc.relation.referencesen[1] Papadimitriou D. I., Papadimitriou C. Aerodynamic shape optimization for minimum robust drag and lift reliability constraint. Aerospace Science and Technology. 55, 24–33 (2016).
dc.relation.referencesen[2] Nagawkar J., Leifsson L. Applications of polynomial chaos-based cokriging to simulation-based analysis and design under uncertainty. ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020. 11B-2020, V11BT11A046 (2020).
dc.relation.referencesen[3] Du X., Leifsson L. Optimum aerodynamic shape design under uncertainty by utility theory and metamodeling. Aerospace Science and Technology. 95, 105464 (2019).
dc.relation.referencesen[4] Tao J., Sun G., Guo L, Wang X. Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization. Chinese Journal of Aeronautics. 33 (6), 1573–1588 (2020).
dc.relation.referencesen[5] Zhao H., Gao Z., Gao Y., Wang C. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty. Aerospace Science and Technology. 68, 530–542 (2017).
dc.relation.referencesen[6] Wu X., Zhang W., Song S. Robust aerodynamic shape design based on an adaptive stochastic optimization framework. Structural and Multidisciplinary Optimization. 57 (3), 639–651 (2018).
dc.relation.referencesen[7] Sabater C., Bekemeyer P., G¨ortz S. Efficient Bilevel Surrogate Approach for Optimization Under Uncertainty of Shock Control Bumps. AIAA Journal. 58 (12), 5228–5242 (2020).
dc.relation.referencesen[8] Abou El Majd B. Parameterization adaption for 3D shape optimization in aerodynamics. International Journal of Science and Engineering. 6 (1), 61–69 (2014).
dc.relation.referencesen[9] D´esid´eri J.-A., Abou El Majd B., Janka A. Nested and selfadaptive B´ezier parameterizations for shape optimization. Journal of Computational Physics. 224 (1), 117–131 (2007).
dc.relation.referencesen[10] Sabater C., Le Maˆıtre O., Congedo P. M., G¨ortz S. A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources. Computer Methods in Applied Mechanics and Engineering. 376, 113632 (2021).
dc.relation.referencesen[11] Schillings C., Schmidt S., Schulz V. Efficient shape optimization for certain and uncertain aerodynamic. Computers & Fluids. 46 (1), 78–87 (2011).
dc.relation.referencesen[12] Shah H., Hosder S., Koziel S., Tesfahunegn Y. A., Leifsson L. Multi-fidelity robust aerodynamic design optimization under mixed uncertainty. Aerospace Science and Technology. 45, 17–29 (2015).
dc.relation.referencesen[13] Moussaoui Z., El Bakkali H., Karafi Y., Abou El Majd B. Bayesian Approach for Aerodynamic Shape Robust Optimization. IISE Annual Conference and Expo 2023. 2231 (2023).
dc.relation.referencesen[14] Mazaheri K., Nejati A. The Multi-point Optimization of Shock Control Bump with Constant-Lift Constraint Enhanced with Suction and Blowing for a Supercritical Airfoil. Flow, Turbulence and Combustion. 96 (3), 639–666 (2016).
dc.relation.referencesen[15] Sederberg T., Parry S. Free-Form Deformation of Solid Geometric Models. ACM SIGGRAPH Computer Graphics. 20 (4), 151–160 (1986).
dc.relation.referencesen[16] Roe P. L. Approximate Riemann solvers, parameter vectors, and differences scheme. Journal of Computational Physics. 43 (2), 357–371 (1981).
dc.relation.referencesen[17] Ramachandran P., Zoph B., Le Q. V. Searching for activation functions. Preprint arXiv:1710.05941 (2017).
dc.relation.referencesen[18] Kingma D. P., Ba J. L. Adam: A method for stochastic optimization. Preprint arXiv:1412.6980 (2014).
dc.relation.referencesen[19] Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S., Irving G., Isard M., Kudlur M., Levenberg J., Monga R., Moore S., Murray D. G., Steiner B., Tucker P., Vasudevan V., Warden P., Wicke M., Yu Y., Zheng X. Tensorflow: A system for large-scale machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283 (2016).
dc.relation.referencesen[20] Deb K., Gupta H. Introducing robustness in multi-objective optimization. KanGAL Report 2004–2016, Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology, Kanpur, India (2004).
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectоптимізація форми
dc.subjectаеродинамічний аналіз
dc.subjectдеформація вільної форми
dc.subjectсурогатна модель
dc.subjectмоделювання невизначеності
dc.subjectштучні нейронні мережі
dc.subjectshape optimization
dc.subjectaerodynamic analysis
dc.subjectfree-form deformation
dc.subjectsurrogate model
dc.subjectuncertainty modeling
dc.subjectartificial neural networks
dc.titleRobust shape optimization using artificial neural networks based surrogate modeling for an aircraft wing
dc.title.alternativeНадійна оптимізація форми за допомогою сурогатного моделювання крила літака на основі штучних нейронних мереж
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n11_Moussaoui_Z-Robust_shape_optimization_139-153.pdf
Size:
12.14 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n11_Moussaoui_Z-Robust_shape_optimization_139-153__COVER.png
Size:
484.72 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: