A Binary Liquid Mixture of Bioethanol-Water and Biodiesel-Water as Fuel for NSDC I NSDC I NSDC-L Direct Ethanol - Solid Oxide Fuel Cell
dc.citation.epage | 262 | |
dc.citation.issue | 2 | |
dc.citation.spage | 254 | |
dc.contributor.affiliation | Sebelas Maret University | |
dc.contributor.author | Rahmawati, Fitria | |
dc.contributor.author | Parameswari, Arum Putri | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T10:19:05Z | |
dc.date.available | 2024-01-09T10:19:05Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Вивчено можливість використання бінарної рідкої суміші біоетанол-вода та біодизель-вода як палива для NSDC І NSDC І NSDC-L паливного елементу. Дослідження проводили за співвідношення біоетанол-вода і біодизель-вода 70:30, температури 673, 773, 873 К та швидкості витрати 1–1,5 мл•хв-1. Визначено, що найвища питома потужність 2,984 мВт•см-2 та 1,838 мВт•см-2 для біоетанолу-води та біодизеля-води, відповідно, досягається за температури 673 К, що є багатообіцяючим результатом для паливного елементу з дуже низькою швидкістю витрати рідкого палива. Встановлено, що напруга розімкнутого ланцюга (НРЦ) паливного елемента з біоетаноло-водним паливом становить 1,439 В, що наближене до теоретичного зачення. НРЦ паливного елемента з біодизель-водним паливом становить 0,710 В, що нижче теоретичного значення. Показано, що явище поляризації залишається проблемою, яка спричиняє втрату напруги під час випробування на паливному елементі. | |
dc.description.abstract | This research studies the possibility on using a binary liquid mixture of bioethanol-water and biodieselwater as fuel for a NSDC I NSDC I NSDC-L single fuel cell. The ratio of bioethanol-water was 70:30, as well as the ratio of biodiesel-water. The fuel vapor flowed into the fuel cell system under the temperatures of 673, 773 and 873 K with a flow rate of 1–1.5 ml·min-1. The highest power densities were found at 673 K which are 2.984 and 1.838 mW·cm-2 for bioethanol-water and biodiesel-water, respectively. It is a promising result for a single fuel cell test with a very low rate of liquid fuel flow. Meanwhile, open circuit voltage (OCV) of the single fuel cell with bioethanol-water fuel is 1.439 V which is close to the theoretical OCV. However, OCV of the single fuel cell with biodiesel-water as fuel is 0.710 V which is lower than the theoretical OCV. Cell polarization seems still being the problem causing voltage loss during single fuel cell test. | |
dc.format.extent | 254-262 | |
dc.format.pages | 9 | |
dc.identifier.citation | Rahmawati F. A Binary Liquid Mixture of Bioethanol-Water and Biodiesel-Water as Fuel for NSDC I NSDC I NSDC-L Direct Ethanol - Solid Oxide Fuel Cell / Fitria Rahmawati, Arum Putri Parameswari // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 254–262. | |
dc.identifier.citationen | Rahmawati F. A Binary Liquid Mixture of Bioethanol-Water and Biodiesel-Water as Fuel for NSDC I NSDC I NSDC-L Direct Ethanol - Solid Oxide Fuel Cell / Fitria Rahmawati, Arum Putri Parameswari // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 254–262. | |
dc.identifier.doi | doi.org/10.23939/chcht15.02.254 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60714 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (15), 2021 | |
dc.relation.references | [1] Alriksson B., Rose S., Van Z. et al.: Appl. Environ. Microbiol. J., 2009, 75, 2366. https://doi.org/10.1128/AEM.02479-08 | |
dc.relation.references | [2] Torres-Jimenez E., Svoljsal-Jerman M. et al.: Energ. Fuel, 2010, 24, 2002. https://doi.org/10.1021/ef901158a | |
dc.relation.references | [3] Colella W., Jacobson M.,Golden D.: J. Power Sour., 2005, 150, 150. https://doi.org/10.1016/j.jpowsour.2005.05.092 | |
dc.relation.references | [4] Badwal S., Giddey S., Kulkarni A. et al.: Appl. Energ., 2015, 145, 80. https://doi.org/10.1016/j.apenergy.2015.02.002 | |
dc.relation.references | [5] Beuscher U., Cleghorn S., Johnson W.: Int. J. Energy Res., 2005, 29, 1103. https://doi.org/10.1002/er.1142 | |
dc.relation.references | [6] Dokmaingam P.: Eng. J., 2015, 19, 1. https://doi.org/10.4186/ej.2015.19.2.1 | |
dc.relation.references | [7] Nobrega S. et al.: J. Power Sources, 2012, 213, 156, 2012. https://doi.org/10.1016/j.jpowsour.2012.03.104 | |
dc.relation.references | [8] Kirubakaran R., Jain S., Nema R.: Sustain. Energy Rev., 2009, 13, 2430. https://doi.org/10.1016/j.rser.2009.04.004 | |
dc.relation.references | [9] Nobrega S., Fonseca F., Gelin P. et al.: Energy Procedia, 2012, 28, 28. https://doi.org/10.1016/j.egypro.2012.08.037 | |
dc.relation.references | [10] Qin H. et al.: Energy Environ. Sci., 2011, 4, 1273. https://doi.org/10.1039/c0ee00420k | |
dc.relation.references | [11] Imran S., Raza R., Abbas G., Zhu B.: J. Fuel Cell Sci. Technol., 2011, 8, 061014. https://doi.org/10.1115/1.4004475 | |
dc.relation.references | [12] Hanna J., Lee W., Shi Y., Ghoniem A.: Prog. Energy Combust. Sci., 2014, 40, 74. https://doi.org/10.1016/j.pecs.2013.10.001 | |
dc.relation.references | [13] Helveg S., Lopez-Cartes C., Sehested J. et al.: Nature, 2004, 427, 5. https://doi.org/10.1038/nature02278 | |
dc.relation.references | [14] Lyu Z., Shi W., Han M.: Appl. Energ., 2018, 228, 556. https://doi.org/10.1016/j.apenergy.2018.06.114 | |
dc.relation.references | [15] Wang X., Ma Y., Raza R., Muhammed M., Zhu B.: Electrochem.Commun., 2008, 10, 1617. https://doi.org/10.1016/j.elecom.2008.08.023 | |
dc.relation.references | [16] Aslannejad H., Barelli L., Babaie A., Bozorgmehri S.: Appl. Energ., 2016, 177, 179. https://doi.org/10.1016/j.apenergy.2016.05.127 | |
dc.relation.references | [17] Steil M., Nobrega S., Georges S. et al.: Appl. Energ., 2017, 199, 180. https://doi.org/10.1016/j.apenergy.2017.04.086 | |
dc.relation.references | [18] Akdeniz Y., Timurkutluk B., Timurkutluk C.: Int. J. Hydrogen Energ., 2016, 41, 10021. https://doi.org/10.1016/j.ijhydene.2016.03.169 | |
dc.relation.references | [19] Rahmawati F., Syarif D., Paramita P., Heraldy E.: Adv. Mater. Res., 2014, 896, 49. https://doi.org/10.4028/www.scientific.net/AMR.896.49 | |
dc.relation.references | [20] Rahmawati F., Nuryanto A., Nugrahaningtyas K.: IOP Conf. Ser: Mater. Sci. Eng., 2016, 107, 012035. https://doi.org/10.1088/1757-899X/107/1/012035 | |
dc.relation.references | [21] Zhu W., Xia C., Ding D. et al.: Mater. Res. Bull., 2006, 41, 2057. https://doi.org/10.1016/j.materresbull.2006.04.001 | |
dc.relation.references | [22] Doroshenko I., Pogorelov V., Sablinskas V.: Dataset Pap. Chem., 2013, 2013. https://doi.org/10.7167/2013/329406 | |
dc.relation.references | [23] https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Parameters/Infrared_Spectroscopy_Absorption_Table | |
dc.relation.references | [24] Mattos L., Jacobs G., Davis B., Noronha F.: Chem. Rev., 2012, 112, 4094. https://doi.org/10.1021/cr2000114 | |
dc.relation.references | [25] Sukwattanajaroon V., Assabumrungrat S., Charojrochkul S. et al.: Bioethanol-Fuelled Solid Oxide Fuel Cell System for Electrical Power Generation [in]: Nayeripour M. (Ed.), Renewable Energy - Trends and Applications. IntechOpen 2011. https://doi.org/10.5772/22179 | |
dc.relation.references | [26] Bion N., Epron F., Duprez D.: Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming [in]: Spivey J., Dooley K. (Eds.), Catalysis v.22. Royal Society of Chemistry, Cambridge 2010, 1-55. https://doi.org/10.1039/9781847559630-00001 | |
dc.relation.references | [27] Syahputra R., Rahmawati F., Prameswari A., Saktian R.: AIP Conf. Proceed., 2017, 1823, 020061. https://doi.org/10.1063/1.4978134 | |
dc.relation.references | [28] Arechederra R., Treu B., Minteer S.: J. Power Sources, 2007, 173, 156. https://doi.org/10.1016/j.jpowsour.2007.08.012 | |
dc.relation.references | [29] Ribadeneira E., Hoyos B.: J. Power Sources, 2008, 180, 238. https://doi.org/10.1016/j.jpowsour.2008.01.084 | |
dc.relation.references | [30] Yang T., Sezer H., Celik I. et al.: Int. J. Electrochem. Sci., 2017, 12, 6801. https://doi.org/10.20964/2017.07.30 | |
dc.relation.referencesen | [1] Alriksson B., Rose S., Van Z. et al., Appl. Environ. Microbiol. J., 2009, 75, 2366. https://doi.org/10.1128/AEM.02479-08 | |
dc.relation.referencesen | [2] Torres-Jimenez E., Svoljsal-Jerman M. et al., Energ. Fuel, 2010, 24, 2002. https://doi.org/10.1021/ef901158a | |
dc.relation.referencesen | [3] Colella W., Jacobson M.,Golden D., J. Power Sour., 2005, 150, 150. https://doi.org/10.1016/j.jpowsour.2005.05.092 | |
dc.relation.referencesen | [4] Badwal S., Giddey S., Kulkarni A. et al., Appl. Energ., 2015, 145, 80. https://doi.org/10.1016/j.apenergy.2015.02.002 | |
dc.relation.referencesen | [5] Beuscher U., Cleghorn S., Johnson W., Int. J. Energy Res., 2005, 29, 1103. https://doi.org/10.1002/er.1142 | |
dc.relation.referencesen | [6] Dokmaingam P., Eng. J., 2015, 19, 1. https://doi.org/10.4186/ej.2015.19.2.1 | |
dc.relation.referencesen | [7] Nobrega S. et al., J. Power Sources, 2012, 213, 156, 2012. https://doi.org/10.1016/j.jpowsour.2012.03.104 | |
dc.relation.referencesen | [8] Kirubakaran R., Jain S., Nema R., Sustain. Energy Rev., 2009, 13, 2430. https://doi.org/10.1016/j.rser.2009.04.004 | |
dc.relation.referencesen | [9] Nobrega S., Fonseca F., Gelin P. et al., Energy Procedia, 2012, 28, 28. https://doi.org/10.1016/j.egypro.2012.08.037 | |
dc.relation.referencesen | [10] Qin H. et al., Energy Environ. Sci., 2011, 4, 1273. https://doi.org/10.1039/P.0ee00420k | |
dc.relation.referencesen | [11] Imran S., Raza R., Abbas G., Zhu B., J. Fuel Cell Sci. Technol., 2011, 8, 061014. https://doi.org/10.1115/1.4004475 | |
dc.relation.referencesen | [12] Hanna J., Lee W., Shi Y., Ghoniem A., Prog. Energy Combust. Sci., 2014, 40, 74. https://doi.org/10.1016/j.pecs.2013.10.001 | |
dc.relation.referencesen | [13] Helveg S., Lopez-Cartes C., Sehested J. et al., Nature, 2004, 427, 5. https://doi.org/10.1038/nature02278 | |
dc.relation.referencesen | [14] Lyu Z., Shi W., Han M., Appl. Energ., 2018, 228, 556. https://doi.org/10.1016/j.apenergy.2018.06.114 | |
dc.relation.referencesen | [15] Wang X., Ma Y., Raza R., Muhammed M., Zhu B., Electrochem.Commun., 2008, 10, 1617. https://doi.org/10.1016/j.elecom.2008.08.023 | |
dc.relation.referencesen | [16] Aslannejad H., Barelli L., Babaie A., Bozorgmehri S., Appl. Energ., 2016, 177, 179. https://doi.org/10.1016/j.apenergy.2016.05.127 | |
dc.relation.referencesen | [17] Steil M., Nobrega S., Georges S. et al., Appl. Energ., 2017, 199, 180. https://doi.org/10.1016/j.apenergy.2017.04.086 | |
dc.relation.referencesen | [18] Akdeniz Y., Timurkutluk B., Timurkutluk C., Int. J. Hydrogen Energ., 2016, 41, 10021. https://doi.org/10.1016/j.ijhydene.2016.03.169 | |
dc.relation.referencesen | [19] Rahmawati F., Syarif D., Paramita P., Heraldy E., Adv. Mater. Res., 2014, 896, 49. https://doi.org/10.4028/www.scientific.net/AMR.896.49 | |
dc.relation.referencesen | [20] Rahmawati F., Nuryanto A., Nugrahaningtyas K., IOP Conf. Ser: Mater. Sci. Eng., 2016, 107, 012035. https://doi.org/10.1088/1757-899X/107/1/012035 | |
dc.relation.referencesen | [21] Zhu W., Xia C., Ding D. et al., Mater. Res. Bull., 2006, 41, 2057. https://doi.org/10.1016/j.materresbull.2006.04.001 | |
dc.relation.referencesen | [22] Doroshenko I., Pogorelov V., Sablinskas V., Dataset Pap. Chem., 2013, 2013. https://doi.org/10.7167/2013/329406 | |
dc.relation.referencesen | [23] https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Parameters/Infrared_Spectroscopy_Absorption_Table | |
dc.relation.referencesen | [24] Mattos L., Jacobs G., Davis B., Noronha F., Chem. Rev., 2012, 112, 4094. https://doi.org/10.1021/cr2000114 | |
dc.relation.referencesen | [25] Sukwattanajaroon V., Assabumrungrat S., Charojrochkul S. et al., Bioethanol-Fuelled Solid Oxide Fuel Cell System for Electrical Power Generation [in]: Nayeripour M. (Ed.), Renewable Energy - Trends and Applications. IntechOpen 2011. https://doi.org/10.5772/22179 | |
dc.relation.referencesen | [26] Bion N., Epron F., Duprez D., Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming [in]: Spivey J., Dooley K. (Eds.), Catalysis v.22. Royal Society of Chemistry, Cambridge 2010, 1-55. https://doi.org/10.1039/9781847559630-00001 | |
dc.relation.referencesen | [27] Syahputra R., Rahmawati F., Prameswari A., Saktian R., AIP Conf. Proceed., 2017, 1823, 020061. https://doi.org/10.1063/1.4978134 | |
dc.relation.referencesen | [28] Arechederra R., Treu B., Minteer S., J. Power Sources, 2007, 173, 156. https://doi.org/10.1016/j.jpowsour.2007.08.012 | |
dc.relation.referencesen | [29] Ribadeneira E., Hoyos B., J. Power Sources, 2008, 180, 238. https://doi.org/10.1016/j.jpowsour.2008.01.084 | |
dc.relation.referencesen | [30] Yang T., Sezer H., Celik I. et al., Int. J. Electrochem. Sci., 2017, 12, 6801. https://doi.org/10.20964/2017.07.30 | |
dc.relation.uri | https://doi.org/10.1128/AEM.02479-08 | |
dc.relation.uri | https://doi.org/10.1021/ef901158a | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2005.05.092 | |
dc.relation.uri | https://doi.org/10.1016/j.apenergy.2015.02.002 | |
dc.relation.uri | https://doi.org/10.1002/er.1142 | |
dc.relation.uri | https://doi.org/10.4186/ej.2015.19.2.1 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2012.03.104 | |
dc.relation.uri | https://doi.org/10.1016/j.rser.2009.04.004 | |
dc.relation.uri | https://doi.org/10.1016/j.egypro.2012.08.037 | |
dc.relation.uri | https://doi.org/10.1039/c0ee00420k | |
dc.relation.uri | https://doi.org/10.1115/1.4004475 | |
dc.relation.uri | https://doi.org/10.1016/j.pecs.2013.10.001 | |
dc.relation.uri | https://doi.org/10.1038/nature02278 | |
dc.relation.uri | https://doi.org/10.1016/j.apenergy.2018.06.114 | |
dc.relation.uri | https://doi.org/10.1016/j.elecom.2008.08.023 | |
dc.relation.uri | https://doi.org/10.1016/j.apenergy.2016.05.127 | |
dc.relation.uri | https://doi.org/10.1016/j.apenergy.2017.04.086 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2016.03.169 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/AMR.896.49 | |
dc.relation.uri | https://doi.org/10.1088/1757-899X/107/1/012035 | |
dc.relation.uri | https://doi.org/10.1016/j.materresbull.2006.04.001 | |
dc.relation.uri | https://doi.org/10.7167/2013/329406 | |
dc.relation.uri | https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Parameters/Infrared_Spectroscopy_Absorption_Table | |
dc.relation.uri | https://doi.org/10.1021/cr2000114 | |
dc.relation.uri | https://doi.org/10.5772/22179 | |
dc.relation.uri | https://doi.org/10.1039/9781847559630-00001 | |
dc.relation.uri | https://doi.org/10.1063/1.4978134 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2007.08.012 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2008.01.084 | |
dc.relation.uri | https://doi.org/10.20964/2017.07.30 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Rahmawati F., Parameswari A., 2021 | |
dc.subject | бінарна рідка суміш | |
dc.subject | паливо | |
dc.subject | твердоксидний паливний елемент | |
dc.subject | NSDC | |
dc.subject | binary liquid mixture | |
dc.subject | fuel | |
dc.subject | solid oxide fuel cell | |
dc.subject | NSDC | |
dc.title | A Binary Liquid Mixture of Bioethanol-Water and Biodiesel-Water as Fuel for NSDC I NSDC I NSDC-L Direct Ethanol - Solid Oxide Fuel Cell | |
dc.title.alternative | Бінарна рідка суміш біоетанол-вода та біодизель-вода як паливо для NSDC І NSDC І NSDC-L етанолтвердооксидного паливного елементу | |
dc.type | Article |
Files
License bundle
1 - 1 of 1