Effect of Tween 80 on the Stability and Conformation of Telomeric G-Quadruplex DNA
dc.citation.epage | 573 | |
dc.citation.issue | 3 | |
dc.citation.spage | 567 | |
dc.contributor.affiliation | Istanbul Gelisim University | |
dc.contributor.author | Elhaty, Ismail A. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:51:56Z | |
dc.date.available | 2024-02-12T08:51:56Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | G-квадруплексна ДНК утворюється в теломері. Вона пригнічує фермент теломеразу, активний у більш ніж 85 % ракових клітин. У цій роботі було вивчено вплив Твін 80 на теломерну G-квадруплексну ДНК AGGG(TTAGGG)3 за допомогою спектроскопічної методики циркулярного дихроїзму. Отримані результати показали, що використання Твін 80 з теломерним квадруплексом є безпечним за концентрації до 1,0 %. | |
dc.description.abstract | G-quadruplex DNA is formed in telomer. It inhibits telomerase enzyme which is found active in more than 85 % of cancer cells. In this work, the effect of Tween 80 on telomeric G-quadruplex DNA, AGGG(TTAGGG)3 was studied using circular dichroism spectroscopic technique. The obtained results showed that using Tween 80 with telomeric quadruplex is safe up to less than 1.0 %. | |
dc.format.extent | 567-573 | |
dc.format.pages | 7 | |
dc.identifier.citation | Elhaty I. A. Effect of Tween 80 on the Stability and Conformation of Telomeric G-Quadruplex DNA / Ismail A. Elhaty // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 567–573. | |
dc.identifier.citationen | Elhaty I. A. Effect of Tween 80 on the Stability and Conformation of Telomeric G-Quadruplex DNA / Ismail A. Elhaty // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 567–573. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.567 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61262 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Kowalik, A.; Góźdź, S.; Kowalska, A. Telomeres and Telomerase in Oncogenesis. Oncol. Lett. 2020, 20, 1015-1027. https://doi.org/10.3892 %2Fol.2020.11659 | |
dc.relation.references | [2] Neidle, S.; Parkinson, G.N. The Structure of Telomeric DNA. Curr. Opin. Struct. Biol. 2003, 13, 275-283. http://dx.doi.org/10.1016/S0959-440X(03)00072-1 | |
dc.relation.references | [3] Burge, S.; Parkinson, G.N.; Hazel, P.; Todd, A.K.; Neidle, S. Quadruplex DNA: Sequence, Topology and Structure. Nucleic Acids Res. 2006, 34, 5402-5415. https://doi.org/10.1093/nar/gkl655 | |
dc.relation.references | [4] Salem, A.A.; El Haty, I.A.; Abdou, I.M.; Mu, Y. Interaction of Human Telomeric G-Quadruplex DNA with Thymoquinone: A Possible Mechanism for Thymoquinone Anticancer Effect. Biochim Biophys Acta Gen Subj 2015, 1850, 329-342. https://doi.org/10.1016/j.bbagen.2014.10.018 | |
dc.relation.references | [5] Shay, J.W.; Wright, W.E. Telomeres and Telomerase: Three Decades of Progress. Nat. Rev. Genet. 2019, 20, 299-309. | |
dc.relation.references | [6] Huang, H.-S.; Chen, I.-B.; Huang, K.-F.; Lu, W.-C.; Shieh, F.-Y.; Huang, Y.-Y., Huang, F.-C.; Lin, J.-J. Synthesis and Human Telomerase Inhibition of a Series of Regioisomeric Disubstituted Amidoanthraquinones. Chem. Pharm. Bull. 2007, 55, 284-292. https://doi.org/10.1248/cpb.55.284 | |
dc.relation.references | [7] Perry, P.J.; Reszka, A.P.; Wood, A.A.; Read, M.A.; Gowan, S.M.; Dosanjh, H.S., Trent, J.O.; Jenkins, T.C.; Kelland, L.R.; Neidle, S. Human Telomerase Inhibition by Regioisomeric Disubs-tituted Amidoanthracene-9,10-diones. J. Med. Chem. 1998, 41, 4873-4884. https://doi.org/10.1021/jm981067o | |
dc.relation.references | [8] Harrison, R.J.; Cuesta, J.; Chessari, G.; Read, M.A.; Basra, S.K.; Reszka, A.P.; Morrell, J.; Gowan, S.M.; Incles, C.M.; Tanious, F.A. et al. Trisubstituted Acridine Derivatives as Potent and Selective Telomerase Inhibitors. J. Med. Chem. 2003, 46, 4463-4476. https://doi.org/10.1021/jm0308693 | |
dc.relation.references | [9] Reed, J.E.; Arnal, A.A.; Neidle, S.; Vilar, R. Stabilization of G-Quadruplex DNA and Inhibition of Telomerase Activity by Square-Planar Nickel(II) Complexes. J. Am. Chem. Soc. 2006, 128, 5992-5993. https://doi.org/10.1021/ja058509n | |
dc.relation.references | [10] Han, H.; Langley, D.R.; Rangan, A.; Hurley, L.H. Selective Interactions of Cationic Porphyrins with G-Quadruplex Structures. J. Am. Chem. Soc. 2001, 123, 8902-8913. https://doi.org/10.1021/ja002179j | |
dc.relation.references | [11] Izbicka, E.; Wheelhouse, R.T.; Raymond, E.; Davidson, K.K.; Lawrence, R.A.; Sun, D.; Windle, B.E.; Hurley, L.H.; Von Hoff, D.D. Effects of Cationic Porphyrins as G-Quadruplex Interactive Agents in Human Tumor Cells. Cancer Research 1999, 59, 639-644. | |
dc.relation.references | [12] Goncalves, D.P.N.; Rodriguez, R.; Balasubramanian, S.; Sanders, J.K.M. Tetramethylpyridiniumporphyrazines - a New Class of G-Quadruplex Inducing and Stabilising Ligands. Chem-Comm 2006, 45, 4685-4687. https://doi.org/10.1039/b611731g | |
dc.relation.references | [13] Ren, L.; Zhang, A.; Huang, J.; Wang, P.; Weng, X.; Zhang, L.; Liang, F.; Tan, Z.; Zhou, X.F. Quaternary Ammonium Zinc Phthalocyanine: Inhibiting Telomerase by Stabilizing G quadrup-lexes and Inducing G-Quadruplex Structure Transition and Forma-tion. ChemBioChem 2007, 8, 775-780. https://doi.org/10.1002/cbic.200600554 | |
dc.relation.references | [14] Elhaty, I.A. Interaction between GW2974 and Telomeric G-Quadruplex DNA: A Possible Anticancer Mechanism. Chem. Pap. 2021, 75, 6323-6333. 10.1007/s11696-021-01801-w | |
dc.relation.references | [15] Kim, M.-Y.; Vankayalapati, H.; Shin-ya, K.; Wierzba, K.; Hurley, L.H. Telomestatin, a Potent Telomerase Inhibitor That Interacts Quite Specifically with the Human Telomeric Intramolecu-lar G-Quadruplex. J. Am. Chem. Soc. 2002, 124, 2098-2099. https://doi.org/10.1021/ja017308q | |
dc.relation.references | [16] Shin-ya, K.; Wierzba, K.; Matsuo, K.-i.; Ohtani, T.; Yamada, Y.; Furihata, K.; Hayakawa, Y.; Seto, H. Telomestatin, a Novel Telomerase Inhibitor from Streptomyces anulatus. J. Am. Chem. Soc. 2001, 123, 1262-1263. https://doi.org/10.1021/ja005780q | |
dc.relation.references | [17] Cuesta, J.; Read, M.A.; Neidle, S. The Design of G-Quadruplex Ligands as Telomerase Inhibitors. Mini-Rev. Med. Chem. 2003, 3, 11-21. https://doi.org/10.2174/1389557033405502 | |
dc.relation.references | [18] De Cian, A.; Lacroix, L.; Douarre, C.; Te, N.; Trentesaux mime-Smaali, C.; Riou, J.-F.; Mergny, J.-L. Targeting telomeres and Telomerase. Biochimie 2008, 90, 131-155. http://dx.doi.org/10.1016/j.biochi.2007.07.011 | |
dc.relation.references | [19] Jiang, J.; Wang, Y.; Sušac, L.; Chan, H.; Basu, R.; Zhou, Z.H.; Feigon, J. Structure of Telomerase with Telomeric DNA. Cell. 2018, 173, e1113. https://doi.org/10.1016/j.cell.2018.04.038 | |
dc.relation.references | [20] Spiegel, J.; Adhikari, S.; Balasubramanian, S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020, 2, 123-136. https://doi.org/10.1016/j.trechm.2019.07.002 | |
dc.relation.references | [21] Chen, B.; Liang, J.; Tian, X.; Liu, X. G-Quadruplex Structure: A Target for Anticancer Therapy and a Probe for Detection of Potassium. Biochemistry 2008, 73, 853-861. https://doi.org/10.1134/s0006297908080026 | |
dc.relation.references | [22] Bochman, M.L.; Paeschke, K.; Zakian, V.A. DNA Secondary Structures: Stability and Function of G-Quadruplex Structures. Nat. Rev. Genet. 2012, 13, 770-780. https://doi.org/10.1038/nrg3296 | |
dc.relation.references | [23] Du, Y.; Zhou, X. Targeting non-B-form DNA in Living Cells. Chem Rec 2013, 13, 371-384. https://doi.org/10.1002/tcr.201300005 | |
dc.relation.references | [24] Wang, Y.; Patel, D.J. Solution Structure of the Human Telo-meric Repeat d[AG3(T2AG3)3] G-Tetraplex. Structure 1993, 1, 263-282. http://dx.doi.org/10.1016/0969-2126(93)90015-9 | |
dc.relation.references | [25] Luu, K.N.; Phan, A.T.; Kuryavyi, V.; Lacroix, L.; Patel, D.J. Structure of the Human Telomere in K+ Solution: An Intramolecular (3 + 1) G-Quadruplex Scaffold. J. Am. Chem. Soc. 2006, 128, 9963-9970. https://doi.org/10.1021/ja062791w | |
dc.relation.references | [26] Parkinson, G.N.; Lee, M.P.H.; Neidle, S. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA. Nature 2002, 417, 876-880. https://doi.org/10.1038/nature755 | |
dc.relation.references | [27] Renciuk, D.; Kejnovská, I.; Skoláková, P.; Bednárová, K.; Motlová, J.; Vorlícková, M. Arrangements of Human Telomere DNA Quadruplex in Physiologically Relevant K+ Solutions. Nucleic Acids Res. 2009, 37, 6625-6634. https://dx.doi.org/10.1093 %2Fnar %2Fgkp701 | |
dc.relation.references | [28] Tan, J.H.; Gu, L.Q.; Wu, J.Y. Design of Selective G-Quadruplex Ligands as Potential Anticancer Agents. Mini-Rev. Med. Chem. 2008, 8, 1163-1178. https://doi.org/10.2174/138955708785909880 | |
dc.relation.references | [29] Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. Int. sch. res. notices 2012, 2012, 195727. https://doi.org/10.5402/2012/195727 | |
dc.relation.references | [30] Loftsson, T.; Brewster, M.E. Pharmaceutical Applications of Cyclodextrins: Basic Science and Product Development. J Pharm Pharmacol. 2010, 62, 1607-1621. https://doi.org/10.1111/j.2042-7158.2010.01030.x | |
dc.relation.references | [31] Arora, A.; Kumar, N.; Agarwal, T.; Maiti, S. Retraction: Human Telomeric G-Quadruplex: Targeting with Small Molecules. FEBS J. 2010, 277, 1345-1345. https://doi.org/10.1111/j.1742-4658.2009.07461.x | |
dc.relation.references | [32] Trotta, R.; De Tito, S.; Lauri, I.; La Pietra, V.; Marinelli, L.; Cosconati, S.; Martino, L,.; Conte, M.R.; Mayol, L.; Novellino, E. et al. A More Detailed Picture of the Interactions between Virtual Screening-Derived Hits and the DNA G-Quadruplex: NMR, Mole-cular Modelling and ITC Studies. Biochimie 2011, 93, 1280-1287. https://doi.org/10.1016/j.biochi.2011.05.021 | |
dc.relation.references | [33] Nayak, A.K.; Panigrahi, P.P. Solubility Enhancement of Etoricoxib by Cosolvency Approach. ISRN Physical Chemistry 2012, 2012, 820653. https://doi.org/10.5402/2012/820653 | |
dc.relation.references | [34] Dincalp, H.; Avcıbası, N.; Icli, S. Spectral Properties and G-Quadruplex DNA Binding Selectivities of a Series of Unsymmetrical Perylene Diimides. J. Photochem. Photobiol. A: Chem. 2007, 185, 1-12. https://doi.org/10.1016/j.jphotochem.2006.04.035 | |
dc.relation.references | [35] Galezowska, E.; Masternak, A.; Rubis, B.; Czyrski, A.; Rybczyńska, M.; Hermann, T.W.; Juskowiak, B. Spectroscopic Study and G-Quadruplex DNA Binding Affinity of Two Bioactive Papaverine-Derived Ligands. Int. J. Biol. Macromol. 2007, 41, 558-563. https://doi.org/10.1016/j.ijbiomac.2007.07.008 | |
dc.relation.references | [36] Franceschin, M.; Alvino, A.; Casagrande, V.; Mauriello, C.; Pascucci, E.; Savino, M.; Ortaggi, G.; Bianco, A. Specific Interac-tions with intra- and intermolecular G-Quadruplex DNA Structures by Hydrosoluble Coronene Derivatives: A New Class of Telome-rase Inhibitors. Bioorg Med Chem. 2007, 15, 1848-1858. https://doi.org/10.1016/j.bmc.2006.11.032 | |
dc.relation.references | [37] O'Sullivan, S.M.; Woods, J.A.; O'Brien, N.M. Use of Tween 40 and Tween 80 to Deliver a Mixture of Phytochemicals to Human Colonic Adenocarcinoma Cell (CaCo-2) Monolayers. Br. J. Nutr. 2004, 91, 757-764. https://doi.org/10.1079/bjn20041094 | |
dc.relation.references | [38] Hebda, E.; Niziol, J.; Pielichowski, J.; Sniechowski, M.; Jancia, M. Properties of DNA Complexes with New Cationic Surfactants. Chem. Chem. Technol. 2011, 5, 397-402. https://doi.org/10.23939/chcht05.04.397 | |
dc.relation.references | [39] Nakama, Y. Chapter 15 – Surfactants. In Cosmetic Science and Technology; Sakamoto, K.; Lochhead, R. Y.; Maibach H. I.; Yamashita, Y., Eds.; Elsevier: Amsterdam, 2017; pp. 231-244. | |
dc.relation.references | [40] Rosen, M.J., Kunjappu, J.T. Surfactants and interfacial phenomena; John Wiley & Sons, 2012. | |
dc.relation.references | [41] Nielsen, C.K.; Kjems, J.; Mygind, T.; Snabe, T.; Meyer, R.L. Effects of Tween 80 on Growth and Biofilm Formation in Laboratory Media. Front. Microbiol. 2016, 7, 1878. https://dx.doi.org/10.3389 %2Ffmicb.2016.01878 | |
dc.relation.references | [42] Skіba, M.; Vorobyova, V.; Kovalenko, I.; Shakun, A. Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities. Chem. Chem. Technol. 2020, 14, 297-303. https://doi.org/10.23939/chcht14.03.297 | |
dc.relation.references | [43] Chebotarev, A.; Demchuk, A.; Bevziuk, K.; Snigur, D. Mixed Ligand Complex of Lanthanum (III) and Alizarine-Complexone with Fluoride in Micellar Medium for Spectrophotometric Determination of Total Fluorine. Chem. Chem. Technol. 2020, 14, 1-6. https://doi.org/10.23939/chcht14.01.001 | |
dc.relation.references | [44] Irshad, S.; Sultana, H.; Usman, M.; Saeed, M.; Akram, N.; Yusaf, A.; Rehman, A. Solubilization of Direct Dyes in Single and Mixed Surfactant System: A Comparative Study. J. Mol. Liq. 2021, 321, 114201. https://doi.org/10.1016/j.molliq.2020.114201 | |
dc.relation.references | [45] Glasel, J.A. Validity of Nucleic Acid Purities Monitored by A260/A280 Absorbance Ratios. Biotechniques 1995, 18, 62-63. | |
dc.relation.references | [46] Xu, Y.; Noguchi, Y.; Sugiyama, H. (). The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. Bioorg. Med. Chem. 2006, 14, 5584-5591. http://dx.doi.org/10.1016/j.bmc.2006.04.033 | |
dc.relation.references | [47] Lannan, F.M.; Mamajanov, I.; Hud, N.V. Human Telomere Sequence DNA in Water-Free and High-Viscosity Solvents: G-Quadruplex Folding Governed by Kramers Rate Theory. J. Am. Chem. Soc. 2012, 134, 15324-15330. https://doi.org/10.1021/JA303499M | |
dc.relation.references | [48] Heddi, B.; Phan, A.T. Structure of Human Telomeric DNA in Crowded Solution. J. Am. Chem. Soc. 2011, 133, 9824-9833. https://doi.org/10.1021/ja200786q | |
dc.relation.references | [49] Nucleic Acids in Chemistry and Biology (3rd ed.); Blackburn, G.M.; Gait, M.J.; Loakes, D.; Williams, D.M., Eds.; RSC Publish-ing: Cambridge, 2006. | |
dc.relation.referencesen | [1] Kowalik, A.; Góźdź, S.; Kowalska, A. Telomeres and Telomerase in Oncogenesis. Oncol. Lett. 2020, 20, 1015-1027. https://doi.org/10.3892 %2Fol.2020.11659 | |
dc.relation.referencesen | [2] Neidle, S.; Parkinson, G.N. The Structure of Telomeric DNA. Curr. Opin. Struct. Biol. 2003, 13, 275-283. http://dx.doi.org/10.1016/S0959-440X(03)00072-1 | |
dc.relation.referencesen | [3] Burge, S.; Parkinson, G.N.; Hazel, P.; Todd, A.K.; Neidle, S. Quadruplex DNA: Sequence, Topology and Structure. Nucleic Acids Res. 2006, 34, 5402-5415. https://doi.org/10.1093/nar/gkl655 | |
dc.relation.referencesen | [4] Salem, A.A.; El Haty, I.A.; Abdou, I.M.; Mu, Y. Interaction of Human Telomeric G-Quadruplex DNA with Thymoquinone: A Possible Mechanism for Thymoquinone Anticancer Effect. Biochim Biophys Acta Gen Subj 2015, 1850, 329-342. https://doi.org/10.1016/j.bbagen.2014.10.018 | |
dc.relation.referencesen | [5] Shay, J.W.; Wright, W.E. Telomeres and Telomerase: Three Decades of Progress. Nat. Rev. Genet. 2019, 20, 299-309. | |
dc.relation.referencesen | [6] Huang, H.-S.; Chen, I.-B.; Huang, K.-F.; Lu, W.-C.; Shieh, F.-Y.; Huang, Y.-Y., Huang, F.-C.; Lin, J.-J. Synthesis and Human Telomerase Inhibition of a Series of Regioisomeric Disubstituted Amidoanthraquinones. Chem. Pharm. Bull. 2007, 55, 284-292. https://doi.org/10.1248/cpb.55.284 | |
dc.relation.referencesen | [7] Perry, P.J.; Reszka, A.P.; Wood, A.A.; Read, M.A.; Gowan, S.M.; Dosanjh, H.S., Trent, J.O.; Jenkins, T.C.; Kelland, L.R.; Neidle, S. Human Telomerase Inhibition by Regioisomeric Disubs-tituted Amidoanthracene-9,10-diones. J. Med. Chem. 1998, 41, 4873-4884. https://doi.org/10.1021/jm981067o | |
dc.relation.referencesen | [8] Harrison, R.J.; Cuesta, J.; Chessari, G.; Read, M.A.; Basra, S.K.; Reszka, A.P.; Morrell, J.; Gowan, S.M.; Incles, C.M.; Tanious, F.A. et al. Trisubstituted Acridine Derivatives as Potent and Selective Telomerase Inhibitors. J. Med. Chem. 2003, 46, 4463-4476. https://doi.org/10.1021/jm0308693 | |
dc.relation.referencesen | [9] Reed, J.E.; Arnal, A.A.; Neidle, S.; Vilar, R. Stabilization of G-Quadruplex DNA and Inhibition of Telomerase Activity by Square-Planar Nickel(II) Complexes. J. Am. Chem. Soc. 2006, 128, 5992-5993. https://doi.org/10.1021/ja058509n | |
dc.relation.referencesen | [10] Han, H.; Langley, D.R.; Rangan, A.; Hurley, L.H. Selective Interactions of Cationic Porphyrins with G-Quadruplex Structures. J. Am. Chem. Soc. 2001, 123, 8902-8913. https://doi.org/10.1021/ja002179j | |
dc.relation.referencesen | [11] Izbicka, E.; Wheelhouse, R.T.; Raymond, E.; Davidson, K.K.; Lawrence, R.A.; Sun, D.; Windle, B.E.; Hurley, L.H.; Von Hoff, D.D. Effects of Cationic Porphyrins as G-Quadruplex Interactive Agents in Human Tumor Cells. Cancer Research 1999, 59, 639-644. | |
dc.relation.referencesen | [12] Goncalves, D.P.N.; Rodriguez, R.; Balasubramanian, S.; Sanders, J.K.M. Tetramethylpyridiniumporphyrazines - a New Class of G-Quadruplex Inducing and Stabilising Ligands. Chem-Comm 2006, 45, 4685-4687. https://doi.org/10.1039/b611731g | |
dc.relation.referencesen | [13] Ren, L.; Zhang, A.; Huang, J.; Wang, P.; Weng, X.; Zhang, L.; Liang, F.; Tan, Z.; Zhou, X.F. Quaternary Ammonium Zinc Phthalocyanine: Inhibiting Telomerase by Stabilizing G quadrup-lexes and Inducing G-Quadruplex Structure Transition and Forma-tion. ChemBioChem 2007, 8, 775-780. https://doi.org/10.1002/cbic.200600554 | |
dc.relation.referencesen | [14] Elhaty, I.A. Interaction between GW2974 and Telomeric G-Quadruplex DNA: A Possible Anticancer Mechanism. Chem. Pap. 2021, 75, 6323-6333. 10.1007/s11696-021-01801-w | |
dc.relation.referencesen | [15] Kim, M.-Y.; Vankayalapati, H.; Shin-ya, K.; Wierzba, K.; Hurley, L.H. Telomestatin, a Potent Telomerase Inhibitor That Interacts Quite Specifically with the Human Telomeric Intramolecu-lar G-Quadruplex. J. Am. Chem. Soc. 2002, 124, 2098-2099. https://doi.org/10.1021/ja017308q | |
dc.relation.referencesen | [16] Shin-ya, K.; Wierzba, K.; Matsuo, K.-i.; Ohtani, T.; Yamada, Y.; Furihata, K.; Hayakawa, Y.; Seto, H. Telomestatin, a Novel Telomerase Inhibitor from Streptomyces anulatus. J. Am. Chem. Soc. 2001, 123, 1262-1263. https://doi.org/10.1021/ja005780q | |
dc.relation.referencesen | [17] Cuesta, J.; Read, M.A.; Neidle, S. The Design of G-Quadruplex Ligands as Telomerase Inhibitors. Mini-Rev. Med. Chem. 2003, 3, 11-21. https://doi.org/10.2174/1389557033405502 | |
dc.relation.referencesen | [18] De Cian, A.; Lacroix, L.; Douarre, C.; Te, N.; Trentesaux mime-Smaali, C.; Riou, J.-F.; Mergny, J.-L. Targeting telomeres and Telomerase. Biochimie 2008, 90, 131-155. http://dx.doi.org/10.1016/j.biochi.2007.07.011 | |
dc.relation.referencesen | [19] Jiang, J.; Wang, Y.; Sušac, L.; Chan, H.; Basu, R.; Zhou, Z.H.; Feigon, J. Structure of Telomerase with Telomeric DNA. Cell. 2018, 173, e1113. https://doi.org/10.1016/j.cell.2018.04.038 | |
dc.relation.referencesen | [20] Spiegel, J.; Adhikari, S.; Balasubramanian, S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020, 2, 123-136. https://doi.org/10.1016/j.trechm.2019.07.002 | |
dc.relation.referencesen | [21] Chen, B.; Liang, J.; Tian, X.; Liu, X. G-Quadruplex Structure: A Target for Anticancer Therapy and a Probe for Detection of Potassium. Biochemistry 2008, 73, 853-861. https://doi.org/10.1134/s0006297908080026 | |
dc.relation.referencesen | [22] Bochman, M.L.; Paeschke, K.; Zakian, V.A. DNA Secondary Structures: Stability and Function of G-Quadruplex Structures. Nat. Rev. Genet. 2012, 13, 770-780. https://doi.org/10.1038/nrg3296 | |
dc.relation.referencesen | [23] Du, Y.; Zhou, X. Targeting non-B-form DNA in Living Cells. Chem Rec 2013, 13, 371-384. https://doi.org/10.1002/tcr.201300005 | |
dc.relation.referencesen | [24] Wang, Y.; Patel, D.J. Solution Structure of the Human Telo-meric Repeat d[AG3(T2AG3)3] G-Tetraplex. Structure 1993, 1, 263-282. http://dx.doi.org/10.1016/0969-2126(93)90015-9 | |
dc.relation.referencesen | [25] Luu, K.N.; Phan, A.T.; Kuryavyi, V.; Lacroix, L.; Patel, D.J. Structure of the Human Telomere in K+ Solution: An Intramolecular (3 + 1) G-Quadruplex Scaffold. J. Am. Chem. Soc. 2006, 128, 9963-9970. https://doi.org/10.1021/ja062791w | |
dc.relation.referencesen | [26] Parkinson, G.N.; Lee, M.P.H.; Neidle, S. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA. Nature 2002, 417, 876-880. https://doi.org/10.1038/nature755 | |
dc.relation.referencesen | [27] Renciuk, D.; Kejnovská, I.; Skoláková, P.; Bednárová, K.; Motlová, J.; Vorlícková, M. Arrangements of Human Telomere DNA Quadruplex in Physiologically Relevant K+ Solutions. Nucleic Acids Res. 2009, 37, 6625-6634. https://dx.doi.org/10.1093 %2Fnar %2Fgkp701 | |
dc.relation.referencesen | [28] Tan, J.H.; Gu, L.Q.; Wu, J.Y. Design of Selective G-Quadruplex Ligands as Potential Anticancer Agents. Mini-Rev. Med. Chem. 2008, 8, 1163-1178. https://doi.org/10.2174/138955708785909880 | |
dc.relation.referencesen | [29] Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. Int. sch. res. notices 2012, 2012, 195727. https://doi.org/10.5402/2012/195727 | |
dc.relation.referencesen | [30] Loftsson, T.; Brewster, M.E. Pharmaceutical Applications of Cyclodextrins: Basic Science and Product Development. J Pharm Pharmacol. 2010, 62, 1607-1621. https://doi.org/10.1111/j.2042-7158.2010.01030.x | |
dc.relation.referencesen | [31] Arora, A.; Kumar, N.; Agarwal, T.; Maiti, S. Retraction: Human Telomeric G-Quadruplex: Targeting with Small Molecules. FEBS J. 2010, 277, 1345-1345. https://doi.org/10.1111/j.1742-4658.2009.07461.x | |
dc.relation.referencesen | [32] Trotta, R.; De Tito, S.; Lauri, I.; La Pietra, V.; Marinelli, L.; Cosconati, S.; Martino, L,.; Conte, M.R.; Mayol, L.; Novellino, E. et al. A More Detailed Picture of the Interactions between Virtual Screening-Derived Hits and the DNA G-Quadruplex: NMR, Mole-cular Modelling and ITC Studies. Biochimie 2011, 93, 1280-1287. https://doi.org/10.1016/j.biochi.2011.05.021 | |
dc.relation.referencesen | [33] Nayak, A.K.; Panigrahi, P.P. Solubility Enhancement of Etoricoxib by Cosolvency Approach. ISRN Physical Chemistry 2012, 2012, 820653. https://doi.org/10.5402/2012/820653 | |
dc.relation.referencesen | [34] Dincalp, H.; Avcıbası, N.; Icli, S. Spectral Properties and G-Quadruplex DNA Binding Selectivities of a Series of Unsymmetrical Perylene Diimides. J. Photochem. Photobiol. A: Chem. 2007, 185, 1-12. https://doi.org/10.1016/j.jphotochem.2006.04.035 | |
dc.relation.referencesen | [35] Galezowska, E.; Masternak, A.; Rubis, B.; Czyrski, A.; Rybczyńska, M.; Hermann, T.W.; Juskowiak, B. Spectroscopic Study and G-Quadruplex DNA Binding Affinity of Two Bioactive Papaverine-Derived Ligands. Int. J. Biol. Macromol. 2007, 41, 558-563. https://doi.org/10.1016/j.ijbiomac.2007.07.008 | |
dc.relation.referencesen | [36] Franceschin, M.; Alvino, A.; Casagrande, V.; Mauriello, C.; Pascucci, E.; Savino, M.; Ortaggi, G.; Bianco, A. Specific Interac-tions with intra- and intermolecular G-Quadruplex DNA Structures by Hydrosoluble Coronene Derivatives: A New Class of Telome-rase Inhibitors. Bioorg Med Chem. 2007, 15, 1848-1858. https://doi.org/10.1016/j.bmc.2006.11.032 | |
dc.relation.referencesen | [37] O'Sullivan, S.M.; Woods, J.A.; O'Brien, N.M. Use of Tween 40 and Tween 80 to Deliver a Mixture of Phytochemicals to Human Colonic Adenocarcinoma Cell (CaCo-2) Monolayers. Br. J. Nutr. 2004, 91, 757-764. https://doi.org/10.1079/bjn20041094 | |
dc.relation.referencesen | [38] Hebda, E.; Niziol, J.; Pielichowski, J.; Sniechowski, M.; Jancia, M. Properties of DNA Complexes with New Cationic Surfactants. Chem. Chem. Technol. 2011, 5, 397-402. https://doi.org/10.23939/chcht05.04.397 | |
dc.relation.referencesen | [39] Nakama, Y. Chapter 15 – Surfactants. In Cosmetic Science and Technology; Sakamoto, K.; Lochhead, R. Y.; Maibach H. I.; Yamashita, Y., Eds.; Elsevier: Amsterdam, 2017; pp. 231-244. | |
dc.relation.referencesen | [40] Rosen, M.J., Kunjappu, J.T. Surfactants and interfacial phenomena; John Wiley & Sons, 2012. | |
dc.relation.referencesen | [41] Nielsen, C.K.; Kjems, J.; Mygind, T.; Snabe, T.; Meyer, R.L. Effects of Tween 80 on Growth and Biofilm Formation in Laboratory Media. Front. Microbiol. 2016, 7, 1878. https://dx.doi.org/10.3389 %2Ffmicb.2016.01878 | |
dc.relation.referencesen | [42] Skiba, M.; Vorobyova, V.; Kovalenko, I.; Shakun, A. Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities. Chem. Chem. Technol. 2020, 14, 297-303. https://doi.org/10.23939/chcht14.03.297 | |
dc.relation.referencesen | [43] Chebotarev, A.; Demchuk, A.; Bevziuk, K.; Snigur, D. Mixed Ligand Complex of Lanthanum (III) and Alizarine-Complexone with Fluoride in Micellar Medium for Spectrophotometric Determination of Total Fluorine. Chem. Chem. Technol. 2020, 14, 1-6. https://doi.org/10.23939/chcht14.01.001 | |
dc.relation.referencesen | [44] Irshad, S.; Sultana, H.; Usman, M.; Saeed, M.; Akram, N.; Yusaf, A.; Rehman, A. Solubilization of Direct Dyes in Single and Mixed Surfactant System: A Comparative Study. J. Mol. Liq. 2021, 321, 114201. https://doi.org/10.1016/j.molliq.2020.114201 | |
dc.relation.referencesen | [45] Glasel, J.A. Validity of Nucleic Acid Purities Monitored by A260/A280 Absorbance Ratios. Biotechniques 1995, 18, 62-63. | |
dc.relation.referencesen | [46] Xu, Y.; Noguchi, Y.; Sugiyama, H. (). The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. Bioorg. Med. Chem. 2006, 14, 5584-5591. http://dx.doi.org/10.1016/j.bmc.2006.04.033 | |
dc.relation.referencesen | [47] Lannan, F.M.; Mamajanov, I.; Hud, N.V. Human Telomere Sequence DNA in Water-Free and High-Viscosity Solvents: G-Quadruplex Folding Governed by Kramers Rate Theory. J. Am. Chem. Soc. 2012, 134, 15324-15330. https://doi.org/10.1021/JA303499M | |
dc.relation.referencesen | [48] Heddi, B.; Phan, A.T. Structure of Human Telomeric DNA in Crowded Solution. J. Am. Chem. Soc. 2011, 133, 9824-9833. https://doi.org/10.1021/ja200786q | |
dc.relation.referencesen | [49] Nucleic Acids in Chemistry and Biology (3rd ed.); Blackburn, G.M.; Gait, M.J.; Loakes, D.; Williams, D.M., Eds.; RSC Publish-ing: Cambridge, 2006. | |
dc.relation.uri | https://doi.org/10.3892 | |
dc.relation.uri | http://dx.doi.org/10.1016/S0959-440X(03)00072-1 | |
dc.relation.uri | https://doi.org/10.1093/nar/gkl655 | |
dc.relation.uri | https://doi.org/10.1016/j.bbagen.2014.10.018 | |
dc.relation.uri | https://doi.org/10.1248/cpb.55.284 | |
dc.relation.uri | https://doi.org/10.1021/jm981067o | |
dc.relation.uri | https://doi.org/10.1021/jm0308693 | |
dc.relation.uri | https://doi.org/10.1021/ja058509n | |
dc.relation.uri | https://doi.org/10.1021/ja002179j | |
dc.relation.uri | https://doi.org/10.1039/b611731g | |
dc.relation.uri | https://doi.org/10.1002/cbic.200600554 | |
dc.relation.uri | https://doi.org/10.1021/ja017308q | |
dc.relation.uri | https://doi.org/10.1021/ja005780q | |
dc.relation.uri | https://doi.org/10.2174/1389557033405502 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.biochi.2007.07.011 | |
dc.relation.uri | https://doi.org/10.1016/j.cell.2018.04.038 | |
dc.relation.uri | https://doi.org/10.1016/j.trechm.2019.07.002 | |
dc.relation.uri | https://doi.org/10.1134/s0006297908080026 | |
dc.relation.uri | https://doi.org/10.1038/nrg3296 | |
dc.relation.uri | https://doi.org/10.1002/tcr.201300005 | |
dc.relation.uri | http://dx.doi.org/10.1016/0969-2126(93)90015-9 | |
dc.relation.uri | https://doi.org/10.1021/ja062791w | |
dc.relation.uri | https://doi.org/10.1038/nature755 | |
dc.relation.uri | https://dx.doi.org/10.1093 | |
dc.relation.uri | https://doi.org/10.2174/138955708785909880 | |
dc.relation.uri | https://doi.org/10.5402/2012/195727 | |
dc.relation.uri | https://doi.org/10.1111/j.2042-7158.2010.01030.x | |
dc.relation.uri | https://doi.org/10.1111/j.1742-4658.2009.07461.x | |
dc.relation.uri | https://doi.org/10.1016/j.biochi.2011.05.021 | |
dc.relation.uri | https://doi.org/10.5402/2012/820653 | |
dc.relation.uri | https://doi.org/10.1016/j.jphotochem.2006.04.035 | |
dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2007.07.008 | |
dc.relation.uri | https://doi.org/10.1016/j.bmc.2006.11.032 | |
dc.relation.uri | https://doi.org/10.1079/bjn20041094 | |
dc.relation.uri | https://doi.org/10.23939/chcht05.04.397 | |
dc.relation.uri | https://dx.doi.org/10.3389 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.297 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.01.001 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2020.114201 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.bmc.2006.04.033 | |
dc.relation.uri | https://doi.org/10.1021/JA303499M | |
dc.relation.uri | https://doi.org/10.1021/ja200786q | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Elhaty I. A., 2023 | |
dc.subject | теломер | |
dc.subject | квадруплекс | |
dc.subject | Твін 80 | |
dc.subject | циркулярний дихроїзм | |
dc.subject | конформація | |
dc.subject | telomere | |
dc.subject | quadruplex | |
dc.subject | Tween 80 | |
dc.subject | circular dichroism | |
dc.subject | conformation | |
dc.title | Effect of Tween 80 on the Stability and Conformation of Telomeric G-Quadruplex DNA | |
dc.title.alternative | Вплив твін 80 на стабільність і конформацію теломерної G-квадруплексної ДНК | |
dc.type | Article |
Files
License bundle
1 - 1 of 1