Theoretical analysis and experimental study of H2S dissociation processes in ultrahigh-frequency plasmotron

dc.citation.epage73
dc.citation.issue1
dc.citation.spage66
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЗнак, З. О.
dc.contributor.authorZnak, Z. O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:14:58Z
dc.date.available2024-01-22T08:14:58Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractВиконано теоретичний аналіз гідродинамічних умов у плазмохімічному реакторі за тангенціального подавання газу. Показано, що внаслідок створення закрученого потоку в реакторі виникає градієнт тиску, завдяки цьому вздовж вертикальної осі формується зона розрідження, що сприяє виникненню плазмового розряду. На підставі експериментальних досліджень плазмолізу сірководню у закрученому потоці та аналізу зображень плазмового розряду із використанням монохроматичних світлофільтрів визначено загальну структуру плазмового розряду. Встановлено вплив градієнта температури в реакторі на можливість формування кластерів сірки як передумови утворення високомолекулярного продукту – полімерної сірки.
dc.description.abstractTheoretical analysis of aerodynamic conditions in a plasma chemical reactor with tangential gas supply is carried out. It is shown that due to the creation of a swirling flow in the reactor there is a pressure gradient, due to this along the vertical axis there is a vacuum zone, which contributes to the occurrence of plasma discharge. On the basis of the carried-out experimental researches of plasmolysis of hydrogen sulphide in a swirling stream and the analysis of images of the plasma discharge with use of monochromatic light filters the general structure of the plasma discharge is established. The influence of the temperature gradient in the reactor on the possibility of the formation of sulphur clusters as a prerequisite for the formation of a high molecular weight product – polymeric sulphur – was established.
dc.format.extent66-73
dc.format.pages8
dc.identifier.citationZnak Z. O. Theoretical analysis and experimental study of H2S dissociation processes in ultrahigh-frequency plasmotron / Z. O. Znak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 66–73.
dc.identifier.citationenZnak Z. O. Theoretical analysis and experimental study of H2S dissociation processes in ultrahigh-frequency plasmotron / Z. O. Znak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 66–73.
dc.identifier.doidoi.org/ 10.23939/ctas2021.01.066
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60874
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (4), 2021
dc.relation.references1. Yavorskyi, V., Znak, Z. (2011). Plazmokhimichna tekhnolohiia spetsialnykh vydiv sirky ta vodniu. Nauka zakhidnoho rehionu Ukrainy (1990–2010), 274–287.
dc.relation.references2. Hydrogen Energy and Fuel Cells. A vision of our future (2003). Final report of the High Level Group (EUR 20719 EN). European Commission, 36.
dc.relation.references3. Ramachandran, R., Menon, R. K. (1998). An overview of industrial uses of hydrogen. Int. J. Hydrogen Energy, 23, 7, 593–598. doi.org/10.1016/S0360-3199(97) 00112-2
dc.relation.references4. Znak, Z. O., Olenych, R. R. (2015). Otrymannia stabilizovanoi polimernoi sirky plazmokhimichnym sposobom. Perspektyvni polimerni materialy ta tekhnolohii: monohrafiia, 70–84.
dc.relation.references5. Nishida, H., Abe, T. (2011). Validation study of numerical simulation of discharge plasma on DBD plasma actuator. AIAA Paper No, 3913, 12. Google Scholar
dc.relation.references6. Bogdanov, E. A., Kolobov, V. I., Kudryavtsev, A. A., Tsendin, L. D. (2002). Scaling laws for oxygen discharge plasmas. Technical Physics, 47, 8, 946–954. doi.org/10.1134/1.1501672
dc.relation.references7. Bogdanov, E. A., Kudryavtsev, A. A., Kuranov, A. I., Kozlov, I. A., Tkachenko, T. V. (2008). 2D Simulation of DBD Plasma Actuator in Air. AIAA Paper No, 1377, 16.
dc.relation.references8. Bogdanov, E. A., Kudryavtsev, A. A., Tsendin, L. D., Arslanbekov, R. R., Kolobov, V. I., Kudryavtsev, V. V. (2003). Substantiation of the two-temperature kinetic model by comparing calculations within the kinetic and fluid models of the positive column plasma of a dc oxygen discharge. Technical Physics, 48, 8, 983–994. doi.org/10.1134/1.1608559
dc.relation.references9. Corke, T., Jumper, E., Post, M., Orlov, D. (2002). Application of weakly ionized plasmas as wing flow control devices. AIAA Paper No 350, 9.
dc.relation.references10. Enloe, C., McHarg, M., Font, G. I., McLaughlin, T. (2009). Plasma-induced force and self-induced drag in the dielectric barrier discharge aerodynamic plasma actuator. AIAA Paper No, 1622. 1–8. doi.org/10.2514/6.2009-1622
dc.relation.references11. Enloe, C., McLaughlin, T., VanDyken, R., Fischer, J. (2004). Plasma structure in the aerodynamic plasma actuator. AIAA Paper No 844, 1–8.
dc.relation.references12. Font, G. (2006). Boundary Layer Control with Atmospheric Plasma Discharges. AIAA Journal, 44, 7, 121–131.
dc.relation.references13. Likhanskii, A., Shneider, M., Macheret, S., Miles, R. (2006). Modeling of interaction between weakly ionized near-surface plasmas and gas flow. AIAA Paper No. 1204, 12. doi.org/10.2514/6.2006-1204
dc.relation.references14. Forte, M., Jolibois, J., Moreau, E., Touchardm G., Cazalens M. (2006). Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity–application to airflow control. AIAA Paper, No. 2863, 9. doi.org/10.2514/6.2006-2863
dc.relation.references15. Massines, F., Rabehi, A., Decomps, P. (1998). Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. Journal of Applied Physics, 83, 2950–2957. doi.org/10.1063/1.367051
dc.relation.references16. Matveyev, A. A., Silakov, V. P. (1999). Theoretical study of the role of ultraviolet radiation of the nonequilibrium plasma in the dynamics of the microwave discharge in molecular nitrogen. Plasma Sources Science and Technology, 8, 1, 162–178.
dc.relation.references17. Javorsk, V., Znak, Z. (2009). Hydrogen sulphide decomposition in ultrahigh-frequency plasma. Chemistry & chemical technology, 3, 4, 309–314.
dc.relation.referencesen1. Yavorskyi, V., Znak, Z. (2011). Plazmokhimichna tekhnolohiia spetsialnykh vydiv sirky ta vodniu. Nauka zakhidnoho rehionu Ukrainy (1990–2010), 274–287.
dc.relation.referencesen2. Hydrogen Energy and Fuel Cells. A vision of our future (2003). Final report of the High Level Group (EUR 20719 EN). European Commission, 36.
dc.relation.referencesen3. Ramachandran, R., Menon, R. K. (1998). An overview of industrial uses of hydrogen. Int. J. Hydrogen Energy, 23, 7, 593–598. doi.org/10.1016/S0360-3199(97) 00112-2
dc.relation.referencesen4. Znak, Z. O., Olenych, R. R. (2015). Otrymannia stabilizovanoi polimernoi sirky plazmokhimichnym sposobom. Perspektyvni polimerni materialy ta tekhnolohii: monohrafiia, 70–84.
dc.relation.referencesen5. Nishida, H., Abe, T. (2011). Validation study of numerical simulation of discharge plasma on DBD plasma actuator. AIAA Paper No, 3913, 12. Google Scholar
dc.relation.referencesen6. Bogdanov, E. A., Kolobov, V. I., Kudryavtsev, A. A., Tsendin, L. D. (2002). Scaling laws for oxygen discharge plasmas. Technical Physics, 47, 8, 946–954. doi.org/10.1134/1.1501672
dc.relation.referencesen7. Bogdanov, E. A., Kudryavtsev, A. A., Kuranov, A. I., Kozlov, I. A., Tkachenko, T. V. (2008). 2D Simulation of DBD Plasma Actuator in Air. AIAA Paper No, 1377, 16.
dc.relation.referencesen8. Bogdanov, E. A., Kudryavtsev, A. A., Tsendin, L. D., Arslanbekov, R. R., Kolobov, V. I., Kudryavtsev, V. V. (2003). Substantiation of the two-temperature kinetic model by comparing calculations within the kinetic and fluid models of the positive column plasma of a dc oxygen discharge. Technical Physics, 48, 8, 983–994. doi.org/10.1134/1.1608559
dc.relation.referencesen9. Corke, T., Jumper, E., Post, M., Orlov, D. (2002). Application of weakly ionized plasmas as wing flow control devices. AIAA Paper No 350, 9.
dc.relation.referencesen10. Enloe, C., McHarg, M., Font, G. I., McLaughlin, T. (2009). Plasma-induced force and self-induced drag in the dielectric barrier discharge aerodynamic plasma actuator. AIAA Paper No, 1622. 1–8. doi.org/10.2514/6.2009-1622
dc.relation.referencesen11. Enloe, C., McLaughlin, T., VanDyken, R., Fischer, J. (2004). Plasma structure in the aerodynamic plasma actuator. AIAA Paper No 844, 1–8.
dc.relation.referencesen12. Font, G. (2006). Boundary Layer Control with Atmospheric Plasma Discharges. AIAA Journal, 44, 7, 121–131.
dc.relation.referencesen13. Likhanskii, A., Shneider, M., Macheret, S., Miles, R. (2006). Modeling of interaction between weakly ionized near-surface plasmas and gas flow. AIAA Paper No. 1204, 12. doi.org/10.2514/6.2006-1204
dc.relation.referencesen14. Forte, M., Jolibois, J., Moreau, E., Touchardm G., Cazalens M. (2006). Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity–application to airflow control. AIAA Paper, No. 2863, 9. doi.org/10.2514/6.2006-2863
dc.relation.referencesen15. Massines, F., Rabehi, A., Decomps, P. (1998). Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. Journal of Applied Physics, 83, 2950–2957. doi.org/10.1063/1.367051
dc.relation.referencesen16. Matveyev, A. A., Silakov, V. P. (1999). Theoretical study of the role of ultraviolet radiation of the nonequilibrium plasma in the dynamics of the microwave discharge in molecular nitrogen. Plasma Sources Science and Technology, 8, 1, 162–178.
dc.relation.referencesen17. Javorsk, V., Znak, Z. (2009). Hydrogen sulphide decomposition in ultrahigh-frequency plasma. Chemistry & chemical technology, 3, 4, 309–314.
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectнадвисокочастотна плазма
dc.subjectплазмовий розряд
dc.subjectплазмохімічний реактор
dc.subjectхвилевід
dc.subjectсірководень
dc.subjectрозклад
dc.subjectдисоціація
dc.subjectводень
dc.subjectсір
dc.subjectsuperhigh-frequency plasma
dc.subjectplasma discharge
dc.subjectplasma chemical reactor
dc.subjectwaveguide
dc.subjecthydrogen sulphide
dc.subjectdecomposition
dc.subjectdissociation
dc.subjecthydrogen
dc.subjectsulphur
dc.titleTheoretical analysis and experimental study of H2S dissociation processes in ultrahigh-frequency plasmotron
dc.title.alternativeТеоретичний аналіз та експериментальне дослідження процесів дисоціації H2S у надвисокочастотному плазмотроні
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n1_Znak_Z_O-Theoretical_analysis_and_experimental_66-73.pdf
Size:
636.29 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n1_Znak_Z_O-Theoretical_analysis_and_experimental_66-73__COVER.png
Size:
459.26 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: