Theoretical analysis and experimental study of H2S dissociation processes in ultrahigh-frequency plasmotron
dc.citation.epage | 73 | |
dc.citation.issue | 1 | |
dc.citation.spage | 66 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Знак, З. О. | |
dc.contributor.author | Znak, Z. O. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:14:58Z | |
dc.date.available | 2024-01-22T08:14:58Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Виконано теоретичний аналіз гідродинамічних умов у плазмохімічному реакторі за тангенціального подавання газу. Показано, що внаслідок створення закрученого потоку в реакторі виникає градієнт тиску, завдяки цьому вздовж вертикальної осі формується зона розрідження, що сприяє виникненню плазмового розряду. На підставі експериментальних досліджень плазмолізу сірководню у закрученому потоці та аналізу зображень плазмового розряду із використанням монохроматичних світлофільтрів визначено загальну структуру плазмового розряду. Встановлено вплив градієнта температури в реакторі на можливість формування кластерів сірки як передумови утворення високомолекулярного продукту – полімерної сірки. | |
dc.description.abstract | Theoretical analysis of aerodynamic conditions in a plasma chemical reactor with tangential gas supply is carried out. It is shown that due to the creation of a swirling flow in the reactor there is a pressure gradient, due to this along the vertical axis there is a vacuum zone, which contributes to the occurrence of plasma discharge. On the basis of the carried-out experimental researches of plasmolysis of hydrogen sulphide in a swirling stream and the analysis of images of the plasma discharge with use of monochromatic light filters the general structure of the plasma discharge is established. The influence of the temperature gradient in the reactor on the possibility of the formation of sulphur clusters as a prerequisite for the formation of a high molecular weight product – polymeric sulphur – was established. | |
dc.format.extent | 66-73 | |
dc.format.pages | 8 | |
dc.identifier.citation | Znak Z. O. Theoretical analysis and experimental study of H2S dissociation processes in ultrahigh-frequency plasmotron / Z. O. Znak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 66–73. | |
dc.identifier.citationen | Znak Z. O. Theoretical analysis and experimental study of H2S dissociation processes in ultrahigh-frequency plasmotron / Z. O. Znak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 66–73. | |
dc.identifier.doi | doi.org/ 10.23939/ctas2021.01.066 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60874 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (4), 2021 | |
dc.relation.references | 1. Yavorskyi, V., Znak, Z. (2011). Plazmokhimichna tekhnolohiia spetsialnykh vydiv sirky ta vodniu. Nauka zakhidnoho rehionu Ukrainy (1990–2010), 274–287. | |
dc.relation.references | 2. Hydrogen Energy and Fuel Cells. A vision of our future (2003). Final report of the High Level Group (EUR 20719 EN). European Commission, 36. | |
dc.relation.references | 3. Ramachandran, R., Menon, R. K. (1998). An overview of industrial uses of hydrogen. Int. J. Hydrogen Energy, 23, 7, 593–598. doi.org/10.1016/S0360-3199(97) 00112-2 | |
dc.relation.references | 4. Znak, Z. O., Olenych, R. R. (2015). Otrymannia stabilizovanoi polimernoi sirky plazmokhimichnym sposobom. Perspektyvni polimerni materialy ta tekhnolohii: monohrafiia, 70–84. | |
dc.relation.references | 5. Nishida, H., Abe, T. (2011). Validation study of numerical simulation of discharge plasma on DBD plasma actuator. AIAA Paper No, 3913, 12. Google Scholar | |
dc.relation.references | 6. Bogdanov, E. A., Kolobov, V. I., Kudryavtsev, A. A., Tsendin, L. D. (2002). Scaling laws for oxygen discharge plasmas. Technical Physics, 47, 8, 946–954. doi.org/10.1134/1.1501672 | |
dc.relation.references | 7. Bogdanov, E. A., Kudryavtsev, A. A., Kuranov, A. I., Kozlov, I. A., Tkachenko, T. V. (2008). 2D Simulation of DBD Plasma Actuator in Air. AIAA Paper No, 1377, 16. | |
dc.relation.references | 8. Bogdanov, E. A., Kudryavtsev, A. A., Tsendin, L. D., Arslanbekov, R. R., Kolobov, V. I., Kudryavtsev, V. V. (2003). Substantiation of the two-temperature kinetic model by comparing calculations within the kinetic and fluid models of the positive column plasma of a dc oxygen discharge. Technical Physics, 48, 8, 983–994. doi.org/10.1134/1.1608559 | |
dc.relation.references | 9. Corke, T., Jumper, E., Post, M., Orlov, D. (2002). Application of weakly ionized plasmas as wing flow control devices. AIAA Paper No 350, 9. | |
dc.relation.references | 10. Enloe, C., McHarg, M., Font, G. I., McLaughlin, T. (2009). Plasma-induced force and self-induced drag in the dielectric barrier discharge aerodynamic plasma actuator. AIAA Paper No, 1622. 1–8. doi.org/10.2514/6.2009-1622 | |
dc.relation.references | 11. Enloe, C., McLaughlin, T., VanDyken, R., Fischer, J. (2004). Plasma structure in the aerodynamic plasma actuator. AIAA Paper No 844, 1–8. | |
dc.relation.references | 12. Font, G. (2006). Boundary Layer Control with Atmospheric Plasma Discharges. AIAA Journal, 44, 7, 121–131. | |
dc.relation.references | 13. Likhanskii, A., Shneider, M., Macheret, S., Miles, R. (2006). Modeling of interaction between weakly ionized near-surface plasmas and gas flow. AIAA Paper No. 1204, 12. doi.org/10.2514/6.2006-1204 | |
dc.relation.references | 14. Forte, M., Jolibois, J., Moreau, E., Touchardm G., Cazalens M. (2006). Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity–application to airflow control. AIAA Paper, No. 2863, 9. doi.org/10.2514/6.2006-2863 | |
dc.relation.references | 15. Massines, F., Rabehi, A., Decomps, P. (1998). Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. Journal of Applied Physics, 83, 2950–2957. doi.org/10.1063/1.367051 | |
dc.relation.references | 16. Matveyev, A. A., Silakov, V. P. (1999). Theoretical study of the role of ultraviolet radiation of the nonequilibrium plasma in the dynamics of the microwave discharge in molecular nitrogen. Plasma Sources Science and Technology, 8, 1, 162–178. | |
dc.relation.references | 17. Javorsk, V., Znak, Z. (2009). Hydrogen sulphide decomposition in ultrahigh-frequency plasma. Chemistry & chemical technology, 3, 4, 309–314. | |
dc.relation.referencesen | 1. Yavorskyi, V., Znak, Z. (2011). Plazmokhimichna tekhnolohiia spetsialnykh vydiv sirky ta vodniu. Nauka zakhidnoho rehionu Ukrainy (1990–2010), 274–287. | |
dc.relation.referencesen | 2. Hydrogen Energy and Fuel Cells. A vision of our future (2003). Final report of the High Level Group (EUR 20719 EN). European Commission, 36. | |
dc.relation.referencesen | 3. Ramachandran, R., Menon, R. K. (1998). An overview of industrial uses of hydrogen. Int. J. Hydrogen Energy, 23, 7, 593–598. doi.org/10.1016/S0360-3199(97) 00112-2 | |
dc.relation.referencesen | 4. Znak, Z. O., Olenych, R. R. (2015). Otrymannia stabilizovanoi polimernoi sirky plazmokhimichnym sposobom. Perspektyvni polimerni materialy ta tekhnolohii: monohrafiia, 70–84. | |
dc.relation.referencesen | 5. Nishida, H., Abe, T. (2011). Validation study of numerical simulation of discharge plasma on DBD plasma actuator. AIAA Paper No, 3913, 12. Google Scholar | |
dc.relation.referencesen | 6. Bogdanov, E. A., Kolobov, V. I., Kudryavtsev, A. A., Tsendin, L. D. (2002). Scaling laws for oxygen discharge plasmas. Technical Physics, 47, 8, 946–954. doi.org/10.1134/1.1501672 | |
dc.relation.referencesen | 7. Bogdanov, E. A., Kudryavtsev, A. A., Kuranov, A. I., Kozlov, I. A., Tkachenko, T. V. (2008). 2D Simulation of DBD Plasma Actuator in Air. AIAA Paper No, 1377, 16. | |
dc.relation.referencesen | 8. Bogdanov, E. A., Kudryavtsev, A. A., Tsendin, L. D., Arslanbekov, R. R., Kolobov, V. I., Kudryavtsev, V. V. (2003). Substantiation of the two-temperature kinetic model by comparing calculations within the kinetic and fluid models of the positive column plasma of a dc oxygen discharge. Technical Physics, 48, 8, 983–994. doi.org/10.1134/1.1608559 | |
dc.relation.referencesen | 9. Corke, T., Jumper, E., Post, M., Orlov, D. (2002). Application of weakly ionized plasmas as wing flow control devices. AIAA Paper No 350, 9. | |
dc.relation.referencesen | 10. Enloe, C., McHarg, M., Font, G. I., McLaughlin, T. (2009). Plasma-induced force and self-induced drag in the dielectric barrier discharge aerodynamic plasma actuator. AIAA Paper No, 1622. 1–8. doi.org/10.2514/6.2009-1622 | |
dc.relation.referencesen | 11. Enloe, C., McLaughlin, T., VanDyken, R., Fischer, J. (2004). Plasma structure in the aerodynamic plasma actuator. AIAA Paper No 844, 1–8. | |
dc.relation.referencesen | 12. Font, G. (2006). Boundary Layer Control with Atmospheric Plasma Discharges. AIAA Journal, 44, 7, 121–131. | |
dc.relation.referencesen | 13. Likhanskii, A., Shneider, M., Macheret, S., Miles, R. (2006). Modeling of interaction between weakly ionized near-surface plasmas and gas flow. AIAA Paper No. 1204, 12. doi.org/10.2514/6.2006-1204 | |
dc.relation.referencesen | 14. Forte, M., Jolibois, J., Moreau, E., Touchardm G., Cazalens M. (2006). Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity–application to airflow control. AIAA Paper, No. 2863, 9. doi.org/10.2514/6.2006-2863 | |
dc.relation.referencesen | 15. Massines, F., Rabehi, A., Decomps, P. (1998). Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. Journal of Applied Physics, 83, 2950–2957. doi.org/10.1063/1.367051 | |
dc.relation.referencesen | 16. Matveyev, A. A., Silakov, V. P. (1999). Theoretical study of the role of ultraviolet radiation of the nonequilibrium plasma in the dynamics of the microwave discharge in molecular nitrogen. Plasma Sources Science and Technology, 8, 1, 162–178. | |
dc.relation.referencesen | 17. Javorsk, V., Znak, Z. (2009). Hydrogen sulphide decomposition in ultrahigh-frequency plasma. Chemistry & chemical technology, 3, 4, 309–314. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | надвисокочастотна плазма | |
dc.subject | плазмовий розряд | |
dc.subject | плазмохімічний реактор | |
dc.subject | хвилевід | |
dc.subject | сірководень | |
dc.subject | розклад | |
dc.subject | дисоціація | |
dc.subject | водень | |
dc.subject | сір | |
dc.subject | superhigh-frequency plasma | |
dc.subject | plasma discharge | |
dc.subject | plasma chemical reactor | |
dc.subject | waveguide | |
dc.subject | hydrogen sulphide | |
dc.subject | decomposition | |
dc.subject | dissociation | |
dc.subject | hydrogen | |
dc.subject | sulphur | |
dc.title | Theoretical analysis and experimental study of H2S dissociation processes in ultrahigh-frequency plasmotron | |
dc.title.alternative | Теоретичний аналіз та експериментальне дослідження процесів дисоціації H2S у надвисокочастотному плазмотроні | |
dc.type | Article |
Files
License bundle
1 - 1 of 1