Solving a class of nonlinear delay Fredholm integro-differential equations with convergence analysis

dc.citation.epage384
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage375
dc.contributor.affiliationШахрудський технологічний університет
dc.contributor.affiliationShahrood University of Technology
dc.contributor.authorМахмуді, М.
dc.contributor.authorГоватманд, М.
dc.contributor.authorМ. Х. Нурі Скандарі
dc.contributor.authorMahmoudi, M.
dc.contributor.authorGhovatmand, M.
dc.contributor.authorM. H. Noori Skandari
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:14:23Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractОсновна ідея, запропонована в цій статті, — ефективний зміщений псевдоспектральний метод Лежандра для розв’язування класу нелінійних інтегро-диференціальних рівнянь Фредгольма зі затримкою. У цьому методі спочатку перетворюється вихідна задача в еквівалентну задачу оптимізації з неперервним часом, а потім використовується зміщений псевдоспектральний метод для дискретизації задачі. Цим методом отримано задачу нелінійного програмування. Розв’язавши її, можна отримати наближений розв’язок вихідного інтегро-диференціального рівняння Фредгольма зі затримкою. Тут подано збіжність методу за деяких м’яких умов. Наведено ілюстративні приклади для демонстрації ефективності та застосовності запропонованого методу.
dc.description.abstractThe main idea proposed in this article is an efficient shifted Legendre pseudospectral method for solving a class of nonlinear delay Fredholm integro-differential equations. In this method, first we transform the problem into an equivalent continuous-time optimization problem and then utilize a shifted pseudospectral method to discrete the problem. By this method, we obtained a nonlinear programming problem. Having solved the last problem, we can obtain an approximate solution for the original delay Fredholm integro-differential equation. Here, the convergence of the method is presented under some mild conditions. Illustrative examples are included to demonstrate the efficiency and applicability of the presented technique.
dc.format.extent375-384
dc.format.pages10
dc.identifier.citationMahmoudi M. Solving a class of nonlinear delay Fredholm integro-differential equations with convergence analysis / M. Mahmoudi, M. Ghovatmand, M. H. Noori Skandari // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 375–384.
dc.identifier.citationenMahmoudi M. Solving a class of nonlinear delay Fredholm integro-differential equations with convergence analysis / M. Mahmoudi, M. Ghovatmand, M. H. Noori Skandari // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 375–384.
dc.identifier.doidoi.org/10.23939/mmc2022.02.375
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63438
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 2 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 2 (9), 2022
dc.relation.references[1] Dehghan M., Saadatmandi A. Chebyshev finite difference method for Fredholm integro-differential equation. International Journal of Computer Mathematics. 85 (1), 123–130 (2008).
dc.relation.references[2] Lakestani M., Razzaghi M., Dehghan M. Semiorthogonal wavelets approximation for Fredholm integrodifferential equations. Mathematical Problems in Engineering. 2006, Article ID 096184 (2006).
dc.relation.references[3] Jackiewicz Z., Rahman M., Welfert B. D. Numerical solution of a Fredholm integro-differential equation modelling neural networks. Applied Numerical Mathematics. 56 (3–4), 423–432 (2006).
dc.relation.references[4] Wazwaz A. M. A First Course in Integral Equations. World Scientific, River Edge (1997).
dc.relation.references[5] Mahmoudi M., Ghovatmand M., Noori Skandari M. H. A novel numerical method and its convergence for nonlinear delay Voltrra integro-differential equations. Mathematical Methods in the Applied Sciences. 43 (5), 2357–2368 (2020).
dc.relation.references[6] Mahmoudi M., Ghovatmand M., Noori Skandari M. H. A New Convergent Pseudospectral Method for Delay Differential Equations. Iranian Journal of Science and Technology, Transactions A: Science. 44, 203–211 (2020).
dc.relation.references[7] Belloura A., Bousselsal M. Numerical solution of delay integro-differential equations by using Taylor collocation method. Mathematical Methods in the Applied Sciences. 37 (10), 1491–1506 (2013).
dc.relation.references[8] Wu S., Gan S. Analytical and numerical stability of neutral delay integro-differential equations and neutral delay partial differential equations. Computers & Mathematics with Applications. 55 (11), 2426–2443 (2008).
dc.relation.references[9] Y¨uzbasi S. Shifted Legendre method with residual error estimation for delay linear Fredholm integrodifferential equations. Journal of Taibah University for Science. 11 (2), 344–352 (2017).
dc.relation.references[10] Saadatmandi A., Dehghan M. Numerical solution of the higher-order linear Fredholm integro-differentialdifference equation with variable coefficients. Computers and Mathematics with Applications. 59 (8), 2996–3004 (2010).
dc.relation.references[11] Kucche K. D., Shikhare P. U. Ulam stabilities for nonlinear Volterra–Fredholm delay integro-differential equations. International Journal of Nonlinear Analysis and Applications. 9 (2), 145–159 (2018).
dc.relation.references[12] G¨ulsu M., Sezer M. Approximations to the solution of linear Fredholm integro-differential-difference equation of high order. Journal of the Franklin Institute. 343 (7), 720–737 (2006).
dc.relation.references[13] Issa K., Biazar J., Yisa B. M. Shifted Chebyshev Approach for the Solution of Delay Fredholm and Volterra Integro-Differential Equations via Perturbed Galerkin Method. Iranian Journal of Optimization. 11 (2), 149–159 (2019).
dc.relation.references[14] Boichuk A. A., Medved M., Zhuravliov V. P. Fredholm boundary-value problems for linear delay systems defined by pairwise permutable matrices. Electronic Journal of Qualitative Theory of Differential Equations. 23 (1), 1–9 (2015).
dc.relation.references[15] ¸Sahin N., Y¨uzba¸si S., Sezer M. A Bessel polynomial approach for solving general linear Fredholm integrodifferential-difference equations. International Journal of Computer Mathematics. 88 (14), 3093–3111 (2011).
dc.relation.references[16] Sezer M., G¨ulsu M. Polynomial solution of the most general linear Fredholm–Volterra integro-differentialdifference equations by means of Taylor collocation method. Applied Mathematics and Computation. 185 (1), 646–657 (2007).
dc.relation.references[17] Ordokhani Y., Mohtashami M. J. Approximate solution of nonlinear Fredholm integro-differential equations with time delay by using Taylor method. J. Sci. Tarbiat Moallem University. 9 (1), 73–84 (2010).
dc.relation.references[18] Shen J., Tang T., Wang L.-L. Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011).
dc.relation.references[19] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A. Spectral method in Fluid Dynamics. Springer, New York (1988).
dc.relation.references[20] Freud G. Orthogonal Polynomials. Pergamom Press, Elmsford (1971).
dc.relation.referencesen[1] Dehghan M., Saadatmandi A. Chebyshev finite difference method for Fredholm integro-differential equation. International Journal of Computer Mathematics. 85 (1), 123–130 (2008).
dc.relation.referencesen[2] Lakestani M., Razzaghi M., Dehghan M. Semiorthogonal wavelets approximation for Fredholm integrodifferential equations. Mathematical Problems in Engineering. 2006, Article ID 096184 (2006).
dc.relation.referencesen[3] Jackiewicz Z., Rahman M., Welfert B. D. Numerical solution of a Fredholm integro-differential equation modelling neural networks. Applied Numerical Mathematics. 56 (3–4), 423–432 (2006).
dc.relation.referencesen[4] Wazwaz A. M. A First Course in Integral Equations. World Scientific, River Edge (1997).
dc.relation.referencesen[5] Mahmoudi M., Ghovatmand M., Noori Skandari M. H. A novel numerical method and its convergence for nonlinear delay Voltrra integro-differential equations. Mathematical Methods in the Applied Sciences. 43 (5), 2357–2368 (2020).
dc.relation.referencesen[6] Mahmoudi M., Ghovatmand M., Noori Skandari M. H. A New Convergent Pseudospectral Method for Delay Differential Equations. Iranian Journal of Science and Technology, Transactions A: Science. 44, 203–211 (2020).
dc.relation.referencesen[7] Belloura A., Bousselsal M. Numerical solution of delay integro-differential equations by using Taylor collocation method. Mathematical Methods in the Applied Sciences. 37 (10), 1491–1506 (2013).
dc.relation.referencesen[8] Wu S., Gan S. Analytical and numerical stability of neutral delay integro-differential equations and neutral delay partial differential equations. Computers & Mathematics with Applications. 55 (11), 2426–2443 (2008).
dc.relation.referencesen[9] Y¨uzbasi S. Shifted Legendre method with residual error estimation for delay linear Fredholm integrodifferential equations. Journal of Taibah University for Science. 11 (2), 344–352 (2017).
dc.relation.referencesen[10] Saadatmandi A., Dehghan M. Numerical solution of the higher-order linear Fredholm integro-differentialdifference equation with variable coefficients. Computers and Mathematics with Applications. 59 (8), 2996–3004 (2010).
dc.relation.referencesen[11] Kucche K. D., Shikhare P. U. Ulam stabilities for nonlinear Volterra–Fredholm delay integro-differential equations. International Journal of Nonlinear Analysis and Applications. 9 (2), 145–159 (2018).
dc.relation.referencesen[12] G¨ulsu M., Sezer M. Approximations to the solution of linear Fredholm integro-differential-difference equation of high order. Journal of the Franklin Institute. 343 (7), 720–737 (2006).
dc.relation.referencesen[13] Issa K., Biazar J., Yisa B. M. Shifted Chebyshev Approach for the Solution of Delay Fredholm and Volterra Integro-Differential Equations via Perturbed Galerkin Method. Iranian Journal of Optimization. 11 (2), 149–159 (2019).
dc.relation.referencesen[14] Boichuk A. A., Medved M., Zhuravliov V. P. Fredholm boundary-value problems for linear delay systems defined by pairwise permutable matrices. Electronic Journal of Qualitative Theory of Differential Equations. 23 (1), 1–9 (2015).
dc.relation.referencesen[15] ¸Sahin N., Y¨uzba¸si S., Sezer M. A Bessel polynomial approach for solving general linear Fredholm integrodifferential-difference equations. International Journal of Computer Mathematics. 88 (14), 3093–3111 (2011).
dc.relation.referencesen[16] Sezer M., G¨ulsu M. Polynomial solution of the most general linear Fredholm–Volterra integro-differentialdifference equations by means of Taylor collocation method. Applied Mathematics and Computation. 185 (1), 646–657 (2007).
dc.relation.referencesen[17] Ordokhani Y., Mohtashami M. J. Approximate solution of nonlinear Fredholm integro-differential equations with time delay by using Taylor method. J. Sci. Tarbiat Moallem University. 9 (1), 73–84 (2010).
dc.relation.referencesen[18] Shen J., Tang T., Wang L.-L. Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011).
dc.relation.referencesen[19] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A. Spectral method in Fluid Dynamics. Springer, New York (1988).
dc.relation.referencesen[20] Freud G. Orthogonal Polynomials. Pergamom Press, Elmsford (1971).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectінтегро-диференціальні рівняння Фредгольма зі затримкою
dc.subjectпсевдоспектральний метод
dc.subjectнелінійне програмування
dc.subjectdelay Fredholm integro-differential equations
dc.subjectpseudospectral method
dc.subjectnonlinear programming
dc.titleSolving a class of nonlinear delay Fredholm integro-differential equations with convergence analysis
dc.title.alternativeРозв’язування класу нелінійних інтегро-диференціальних рівнянь Фредгольма зі затримкою з аналізом збіжності
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n2_Mahmoudi_M-Solving_a_class_of_nonlinear_375-384.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n2_Mahmoudi_M-Solving_a_class_of_nonlinear_375-384__COVER.png
Size:
450.47 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: