Solving a class of nonlinear delay Fredholm integro-differential equations with convergence analysis
dc.citation.epage | 384 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 375 | |
dc.contributor.affiliation | Шахрудський технологічний університет | |
dc.contributor.affiliation | Shahrood University of Technology | |
dc.contributor.author | Махмуді, М. | |
dc.contributor.author | Говатманд, М. | |
dc.contributor.author | М. Х. Нурі Скандарі | |
dc.contributor.author | Mahmoudi, M. | |
dc.contributor.author | Ghovatmand, M. | |
dc.contributor.author | M. H. Noori Skandari | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T11:14:23Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | Основна ідея, запропонована в цій статті, — ефективний зміщений псевдоспектральний метод Лежандра для розв’язування класу нелінійних інтегро-диференціальних рівнянь Фредгольма зі затримкою. У цьому методі спочатку перетворюється вихідна задача в еквівалентну задачу оптимізації з неперервним часом, а потім використовується зміщений псевдоспектральний метод для дискретизації задачі. Цим методом отримано задачу нелінійного програмування. Розв’язавши її, можна отримати наближений розв’язок вихідного інтегро-диференціального рівняння Фредгольма зі затримкою. Тут подано збіжність методу за деяких м’яких умов. Наведено ілюстративні приклади для демонстрації ефективності та застосовності запропонованого методу. | |
dc.description.abstract | The main idea proposed in this article is an efficient shifted Legendre pseudospectral method for solving a class of nonlinear delay Fredholm integro-differential equations. In this method, first we transform the problem into an equivalent continuous-time optimization problem and then utilize a shifted pseudospectral method to discrete the problem. By this method, we obtained a nonlinear programming problem. Having solved the last problem, we can obtain an approximate solution for the original delay Fredholm integro-differential equation. Here, the convergence of the method is presented under some mild conditions. Illustrative examples are included to demonstrate the efficiency and applicability of the presented technique. | |
dc.format.extent | 375-384 | |
dc.format.pages | 10 | |
dc.identifier.citation | Mahmoudi M. Solving a class of nonlinear delay Fredholm integro-differential equations with convergence analysis / M. Mahmoudi, M. Ghovatmand, M. H. Noori Skandari // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 375–384. | |
dc.identifier.citationen | Mahmoudi M. Solving a class of nonlinear delay Fredholm integro-differential equations with convergence analysis / M. Mahmoudi, M. Ghovatmand, M. H. Noori Skandari // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 375–384. | |
dc.identifier.doi | doi.org/10.23939/mmc2022.02.375 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63438 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 2 (9), 2022 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (9), 2022 | |
dc.relation.references | [1] Dehghan M., Saadatmandi A. Chebyshev finite difference method for Fredholm integro-differential equation. International Journal of Computer Mathematics. 85 (1), 123–130 (2008). | |
dc.relation.references | [2] Lakestani M., Razzaghi M., Dehghan M. Semiorthogonal wavelets approximation for Fredholm integrodifferential equations. Mathematical Problems in Engineering. 2006, Article ID 096184 (2006). | |
dc.relation.references | [3] Jackiewicz Z., Rahman M., Welfert B. D. Numerical solution of a Fredholm integro-differential equation modelling neural networks. Applied Numerical Mathematics. 56 (3–4), 423–432 (2006). | |
dc.relation.references | [4] Wazwaz A. M. A First Course in Integral Equations. World Scientific, River Edge (1997). | |
dc.relation.references | [5] Mahmoudi M., Ghovatmand M., Noori Skandari M. H. A novel numerical method and its convergence for nonlinear delay Voltrra integro-differential equations. Mathematical Methods in the Applied Sciences. 43 (5), 2357–2368 (2020). | |
dc.relation.references | [6] Mahmoudi M., Ghovatmand M., Noori Skandari M. H. A New Convergent Pseudospectral Method for Delay Differential Equations. Iranian Journal of Science and Technology, Transactions A: Science. 44, 203–211 (2020). | |
dc.relation.references | [7] Belloura A., Bousselsal M. Numerical solution of delay integro-differential equations by using Taylor collocation method. Mathematical Methods in the Applied Sciences. 37 (10), 1491–1506 (2013). | |
dc.relation.references | [8] Wu S., Gan S. Analytical and numerical stability of neutral delay integro-differential equations and neutral delay partial differential equations. Computers & Mathematics with Applications. 55 (11), 2426–2443 (2008). | |
dc.relation.references | [9] Y¨uzbasi S. Shifted Legendre method with residual error estimation for delay linear Fredholm integrodifferential equations. Journal of Taibah University for Science. 11 (2), 344–352 (2017). | |
dc.relation.references | [10] Saadatmandi A., Dehghan M. Numerical solution of the higher-order linear Fredholm integro-differentialdifference equation with variable coefficients. Computers and Mathematics with Applications. 59 (8), 2996–3004 (2010). | |
dc.relation.references | [11] Kucche K. D., Shikhare P. U. Ulam stabilities for nonlinear Volterra–Fredholm delay integro-differential equations. International Journal of Nonlinear Analysis and Applications. 9 (2), 145–159 (2018). | |
dc.relation.references | [12] G¨ulsu M., Sezer M. Approximations to the solution of linear Fredholm integro-differential-difference equation of high order. Journal of the Franklin Institute. 343 (7), 720–737 (2006). | |
dc.relation.references | [13] Issa K., Biazar J., Yisa B. M. Shifted Chebyshev Approach for the Solution of Delay Fredholm and Volterra Integro-Differential Equations via Perturbed Galerkin Method. Iranian Journal of Optimization. 11 (2), 149–159 (2019). | |
dc.relation.references | [14] Boichuk A. A., Medved M., Zhuravliov V. P. Fredholm boundary-value problems for linear delay systems defined by pairwise permutable matrices. Electronic Journal of Qualitative Theory of Differential Equations. 23 (1), 1–9 (2015). | |
dc.relation.references | [15] ¸Sahin N., Y¨uzba¸si S., Sezer M. A Bessel polynomial approach for solving general linear Fredholm integrodifferential-difference equations. International Journal of Computer Mathematics. 88 (14), 3093–3111 (2011). | |
dc.relation.references | [16] Sezer M., G¨ulsu M. Polynomial solution of the most general linear Fredholm–Volterra integro-differentialdifference equations by means of Taylor collocation method. Applied Mathematics and Computation. 185 (1), 646–657 (2007). | |
dc.relation.references | [17] Ordokhani Y., Mohtashami M. J. Approximate solution of nonlinear Fredholm integro-differential equations with time delay by using Taylor method. J. Sci. Tarbiat Moallem University. 9 (1), 73–84 (2010). | |
dc.relation.references | [18] Shen J., Tang T., Wang L.-L. Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011). | |
dc.relation.references | [19] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A. Spectral method in Fluid Dynamics. Springer, New York (1988). | |
dc.relation.references | [20] Freud G. Orthogonal Polynomials. Pergamom Press, Elmsford (1971). | |
dc.relation.referencesen | [1] Dehghan M., Saadatmandi A. Chebyshev finite difference method for Fredholm integro-differential equation. International Journal of Computer Mathematics. 85 (1), 123–130 (2008). | |
dc.relation.referencesen | [2] Lakestani M., Razzaghi M., Dehghan M. Semiorthogonal wavelets approximation for Fredholm integrodifferential equations. Mathematical Problems in Engineering. 2006, Article ID 096184 (2006). | |
dc.relation.referencesen | [3] Jackiewicz Z., Rahman M., Welfert B. D. Numerical solution of a Fredholm integro-differential equation modelling neural networks. Applied Numerical Mathematics. 56 (3–4), 423–432 (2006). | |
dc.relation.referencesen | [4] Wazwaz A. M. A First Course in Integral Equations. World Scientific, River Edge (1997). | |
dc.relation.referencesen | [5] Mahmoudi M., Ghovatmand M., Noori Skandari M. H. A novel numerical method and its convergence for nonlinear delay Voltrra integro-differential equations. Mathematical Methods in the Applied Sciences. 43 (5), 2357–2368 (2020). | |
dc.relation.referencesen | [6] Mahmoudi M., Ghovatmand M., Noori Skandari M. H. A New Convergent Pseudospectral Method for Delay Differential Equations. Iranian Journal of Science and Technology, Transactions A: Science. 44, 203–211 (2020). | |
dc.relation.referencesen | [7] Belloura A., Bousselsal M. Numerical solution of delay integro-differential equations by using Taylor collocation method. Mathematical Methods in the Applied Sciences. 37 (10), 1491–1506 (2013). | |
dc.relation.referencesen | [8] Wu S., Gan S. Analytical and numerical stability of neutral delay integro-differential equations and neutral delay partial differential equations. Computers & Mathematics with Applications. 55 (11), 2426–2443 (2008). | |
dc.relation.referencesen | [9] Y¨uzbasi S. Shifted Legendre method with residual error estimation for delay linear Fredholm integrodifferential equations. Journal of Taibah University for Science. 11 (2), 344–352 (2017). | |
dc.relation.referencesen | [10] Saadatmandi A., Dehghan M. Numerical solution of the higher-order linear Fredholm integro-differentialdifference equation with variable coefficients. Computers and Mathematics with Applications. 59 (8), 2996–3004 (2010). | |
dc.relation.referencesen | [11] Kucche K. D., Shikhare P. U. Ulam stabilities for nonlinear Volterra–Fredholm delay integro-differential equations. International Journal of Nonlinear Analysis and Applications. 9 (2), 145–159 (2018). | |
dc.relation.referencesen | [12] G¨ulsu M., Sezer M. Approximations to the solution of linear Fredholm integro-differential-difference equation of high order. Journal of the Franklin Institute. 343 (7), 720–737 (2006). | |
dc.relation.referencesen | [13] Issa K., Biazar J., Yisa B. M. Shifted Chebyshev Approach for the Solution of Delay Fredholm and Volterra Integro-Differential Equations via Perturbed Galerkin Method. Iranian Journal of Optimization. 11 (2), 149–159 (2019). | |
dc.relation.referencesen | [14] Boichuk A. A., Medved M., Zhuravliov V. P. Fredholm boundary-value problems for linear delay systems defined by pairwise permutable matrices. Electronic Journal of Qualitative Theory of Differential Equations. 23 (1), 1–9 (2015). | |
dc.relation.referencesen | [15] ¸Sahin N., Y¨uzba¸si S., Sezer M. A Bessel polynomial approach for solving general linear Fredholm integrodifferential-difference equations. International Journal of Computer Mathematics. 88 (14), 3093–3111 (2011). | |
dc.relation.referencesen | [16] Sezer M., G¨ulsu M. Polynomial solution of the most general linear Fredholm–Volterra integro-differentialdifference equations by means of Taylor collocation method. Applied Mathematics and Computation. 185 (1), 646–657 (2007). | |
dc.relation.referencesen | [17] Ordokhani Y., Mohtashami M. J. Approximate solution of nonlinear Fredholm integro-differential equations with time delay by using Taylor method. J. Sci. Tarbiat Moallem University. 9 (1), 73–84 (2010). | |
dc.relation.referencesen | [18] Shen J., Tang T., Wang L.-L. Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011). | |
dc.relation.referencesen | [19] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A. Spectral method in Fluid Dynamics. Springer, New York (1988). | |
dc.relation.referencesen | [20] Freud G. Orthogonal Polynomials. Pergamom Press, Elmsford (1971). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | інтегро-диференціальні рівняння Фредгольма зі затримкою | |
dc.subject | псевдоспектральний метод | |
dc.subject | нелінійне програмування | |
dc.subject | delay Fredholm integro-differential equations | |
dc.subject | pseudospectral method | |
dc.subject | nonlinear programming | |
dc.title | Solving a class of nonlinear delay Fredholm integro-differential equations with convergence analysis | |
dc.title.alternative | Розв’язування класу нелінійних інтегро-диференціальних рівнянь Фредгольма зі затримкою з аналізом збіжності | |
dc.type | Article |
Files
License bundle
1 - 1 of 1