Identification of natural and technogenic seismic events by energy characteristics

dc.citation.epage105
dc.citation.issue2 (35)
dc.citation.journalTitleГеодинаміка
dc.citation.spage99
dc.contributor.affiliationГоловний центр спеціального контролю НЦУВКЗ ДКА України
dc.contributor.affiliationMain Center for Special Control NSMC SSA of Ukraine
dc.contributor.authorОсадчий, Володимир
dc.contributor.authorАндрущенко, Юрій
dc.contributor.authorЛящук, Олександр
dc.contributor.authorOsadchii, V.
dc.contributor.authorAndrushchenko, Yu.
dc.contributor.authorLiashchuk, O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-11T07:07:05Z
dc.date.available2024-04-11T07:07:05Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОднією з ключових проблем сейсмічного моніторингу є ідентифікація землетрусів і сигналів від джерел техногенного походження, виявлених мережею сейсмічних станцій. У мирний час техногенні події пов’язані в основному із промисловими гірничими розробками, однак з початком повномасштабної агресії росії проти суверенної України сейсмологічною мережею Головного центру спеціального контролю Державного космічного агентства України зареєстровано тисячі сейсмічних сигналів від вибухів у результаті ракетних, авіаційних, артилерійських ударів, що значно ускладнює процес оцінки сейсмічності та робить надзвичайно актуальним питання визначення природи зареєстрованих подій. На основі аналізу сейсмічних сигналів визначені співвідношення між енергетичними класами (K), магнітудами (mb), максимальними амплітудами поздовжніх об’ємних фаз , і потужностями (Y) вибухів в тротиловому еквіваленті у Київській, Житомирській, Вінницькій, Хмельницькій, Чернігівській областях. Енергетичні характеристики можуть бути використані для ідентифікації природи сейсмічних подій, а результати аналізу співвідношень , , дозволяють здійснювати оцінки потужностей вибухів в тротиловому еквіваленті і визначати за отриманими даними ймовірні типи боєприпасів. Енергія від джерела сигналу у випадку вибухової події може бути визначена додатково за інфразвуковими даними, наявність акустичної хвилі слугує додатковим критерієм для ідентифікації події. Разом з тим енергетичні характеристики дозволяють ідентифікувати і природні джерела, прикладом якого є тектонічний землетрус 26.05.2023 року в Полтавській області.
dc.description.abstractOne of the key problems of seismic monitoring is the identification of earthquakes and signals from technogenic sources detected by a network of seismic stations. In peacetime, technogenic events are mainly associated with industrial mining developments, however, with the beginning of russia's full-scale aggression against sovereign Ukraine, thousands of seismic signals from explosions as a result of missile, aircraft, artillery strikes were registered by the seismological network of the Main Center of Special Monitoring of the State Space Agency of Ukraine. This significantly complicates the process of assessing seismicity and makes the question of determining the nature of registered events extremely relevant. Based on the analysis of seismic signals, the relationships between energy classes (K), magnitudes (mb), maximum amplitudes of longitudinal volumetric phases , and yields (Y) of explosions in TNT equivalent in Kyiv, Zhytomyr, Vinnytsia, Khmelnytsky, Chernihiv regions. Energy characteristics can be used to identify the nature of seismic events, and the results of the analysis of the ratios , , make it possible to yield estimate of explosions in TNT equivalent and determine the probable types of ammunition based on the received data. The energy from the signal source in the case of an explosive event can be determined additionally by infrasound data, the presence of an acoustic wave serves as an additional criterion for identifying the event. At the same time, energy characteristics make it possible to identify natural sources, an example of which is the tectonic earthquake of May 26, 2023 in the Poltava region.One of the key problems of seismic monitoring is the identification of earthquakes and signals from technogenic sources detected by a network of seismic stations. In peacetime, technogenic events are mainly associated with industrial mining developments, however, with the beginning of russia's full-scale aggression against sovereign Ukraine, thousands of seismic signals from explosions as a result of missile, aircraft, artillery strikes were registered by the seismological network of the Main Center of Special Monitoring of the State Space Agency of Ukraine. This significantly complicates the process of assessing seismicity and makes the question of determining the nature of registered events extremely relevant. Based on the analysis of seismic signals, the relationships between energy classes (K), magnitudes (mb), maximum amplitudes of longitudinal volumetric phases , and yields (Y) of explosions in TNT equivalent in Kyiv, Zhytomyr, Vinnytsia, Khmelnytsky, Chernihiv regions. Energy characteristics can be used to identify the nature of seismic events, and the results of the analysis of the ratios , , make it possible to yield estimate of explosions in TNT equivalent and determine the probable types of ammunition based on the received data. The energy from the signal source in the case of an explosive event can be determined additionally by infrasound data, the presence of an acoustic wave serves as an additional criterion for identifying the event. At the same time, energy characteristics make it possible to identify natural sources, an example of which is the tectonic earthquake of May 26, 2023 in the Poltava region.
dc.format.extent99-105
dc.format.pages7
dc.identifier.citationOsadchii V. Identification of natural and technogenic seismic events by energy characteristics / V. Osadchii, Yu. Andrushchenko, O. Liashchuk // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2023. — No 2 (35). — P. 99–105.
dc.identifier.citationenOsadchii V. Identification of natural and technogenic seismic events by energy characteristics / V. Osadchii, Yu. Andrushchenko, O. Liashchuk // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2023. — No 2 (35). — P. 99–105.
dc.identifier.doidoi.org/10.23939/jgd2023.02.099
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61685
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 2 (35), 2023
dc.relation.ispartofGeodynamics, 2 (35), 2023
dc.relation.referencesAnderson, J., & Wood, O. (1925). Description and theory of the tor:sion seismometer. Bull. Seism. Soc. Am. 15, 1–72.
dc.relation.referencesAndrushchenko, Yu. A., & Gordienko, Yu. O. (2009). Analysis of the effectiveness of the application of criteria for the identification of explosions and earthquakes for local and regional events in the conditions of the platform part of Ukraine. Geofizicheskiy Zhurnal. 31, 3, 121-129. http://www.igph.kiev.ua/ukr/journal.html#
dc.relation.referencesAndrushchenko, Yu. A., & Gordienko, Yu. O. (2009). The method of identifying the nature of seismic sources based on the spectral-temporal analysis of oscillations. Geofizicheskiy Zhurnal. 31, 6, 140–146. http://dspace.nbuv.gov.ua/handle/123456789/12491
dc.relation.referencesAndrushchenko, Yu. A., Osadchiy, V. I., Lyashchuk, O. I., Kovtun, O. M. (2018). Dependence of magnitude estimates on the power of chemical explosions at industrial quarries within the Ukrainian Shield // Geophys. Jornal, 40, 3, 157-164 https://doi.org/10.24028/gzh.0203-3100.v40i3.2018.137196
dc.relation.referencesAndruschenko, Y., Liaschuk, O., Farfuliak, L., Amashukeli, T., Haniiev, O., Osadchyi, V., Petrenko, K., & Verbytskyi, S. (2023). National seismological bulletin of Ukraine for 2021. Geofizicheskiy Zhurnal, 44(6), 162–180. https://doi.org/10.24028/gj.v44i6.273649
dc.relation.referencesBratt, S. R., & Nagy, W. (1991). The LocSAT Program. Science Applications International Corporation, San Diego.
dc.relation.referencesCansi, Y. (1995). An automated seismic event processing for detection andlocation: the P.M.C.C. method. Geo­phys. Res. Lett., 22, 1021–1024. https://doi.org/10.1029/95GL00468
dc.relation.referencesDando, B.D.E., Goertz-Allmann, B.P., Brissaud, Q. Köhler A., Schweitzer J., Kværna T., Liashchuk (2023). Identifying attacks in the Russia-Ukraine conflict using seismic array data. Nature 621, 767-772 (2023). https://doi.org/10.1038/s41586-023-06416-7
dc.relation.referencesGolden, Paul, Petru Negraru, and Jesse Howard. (1998). "Infrasound studies for yield estimation of HE explosions." Technical Rept. AFRL‐RV‐PS‐TR‐2012‐0084 (2012). https://doi.org/10.21236/ADA564065
dc.relation.referencesHaskell, N. A. (1967). Analytic approximation for the elastic radiation from a contained underground explosion. Journal of Geophysical Research, 72(10), 2583-2587. https://doi.org/10.1029/JZ072i010p02583
dc.relation.referencesHutton, L. K., & Boore D. M. (1987). The ML scale in Southern California . Bull. Seism. Soc. Am. 77, 6, 2074-2094. https://doi.org/10.1785/BSSA0770062074
dc.relation.referencesKhalturin, V. I., Rautian, T. G., & Richards, P. G. (1998). The seismic signal stregth of chemical explosions. Bull. Seis. Soc. Am. 88(6), 1511 -1524. https://doi.org/10.1785/BSSA0880061511
dc.relation.referencesKim, K., & Pasyanos, M. E. (2022). Yield estimation of the August 2020 beirut explosion by using physics‐based propagation simulations of regional infrasound. Geophysical Research Letters, 49(23), e2022GL101118. https://doi.org/10.1029/2022GL101118 .
dc.relation.referencesKedrov, O. K. (2005). Seismic methods of monitoring nuclear tests. Institute of Earth Physics, Russian Academy of Sciences, P. 41.
dc.relation.referencesKomashko, O. V. (2004). Applied econometrics. Teacher manual. K.: KNU, 55 p.
dc.relation.referencesKutas, V. V., Andrushchenko, Yu. A., Omelchenko, V. D., Lyashchuk, A. I., & Kalytova I. I. (2015). Earthquakes in the Dnipro-Donetsk avlakogen. Geofizicheskiy Zhurnal, 37, 5. 114–127. https://journals.uran.ua/geofizicheskiy/article/view/111156/106023. https://doi.org/10.24028/gzh.0203-3100.v37i5.2015.111156
dc.relation.referencesLyashchuk O. I. (2015). Use of infrasound measurement data in Ukraine to identify explosions and earthquakes. Geodynamics. 1(18), 36-44. https://doi.org/10.23939/jgd2015.01.036
dc.relation.referencesLyashchuk, O. I., Andrushchenko, Yu. A., Gordienko, Yu. O., Karyagin, E. V., & Kornienko, I. V. (2015). The possibility of using infrasound monitoring data during the identification of the nature of seismic events. Geofizicheskiy Zhurnal, 37, 6, 105-114.
dc.relation.referencesMărmureanu, A., Ionescu, C., Grecu, B., Toma-Danila, D., Tiganescu, A., Dragomir, C.S., Toader, V.E., Craifaleanu, I.G., Neagoe, C., Mei, V., Liashchuk, O., & Dimitrova, L. (2021). From National to Transnational Seismic Monitoring Products and Services in the Republic of Bulgaria, Republic of Moldova, Romania, and Ukraine. Seismological Research Letters, 3(92), 1703-2021. https://doi.org/10.1785/0220200393
dc.relation.referencesPilger, C., Gaebler, P., Hupe, P., Kalia, A. C., Schneider, F. M., Steinberg, A., ... & Ceranna, L. (2021). Yield estimation of the 2020 Beirut explosion using open access waveform and remote sensing data. Scientific reports, 11(1), 14144. https://doi.org/10.24028/gzh.0203-3100.v37i6.2015.111177 https://doi.org/10.1038/s41598-021-93690-y
dc.relation.referencesRautian, T. G. About determining the energy of earthquakes at distances of 3000 km. Proceedings of the Institute of Social Sciences of the Academy of Sciences of the USSR. 32 (199), 72-98.
dc.relation.referencesReVelle, D. O. (1997). Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann. N. Y. Acad. Sci. 822, 284-302. https://doi.org/10.1111/j.1749-6632.1997.tb48347.x
dc.relation.referencesRichter, C. (1958). Elementary Seismology. W.H. Freeman, San Francisco, Calf.,. 578 р.
dc.relation.referencesRodionov, V. N., Adushkin, V. V., Kostyuchenko, V. N. etc. (1971). Mechanical effect of an underground explosion. M.: Nadra. 224 p.
dc.relation.referencesSeismic Network Main Center of Special Monitoring. (2010). International Federation of Digital Seismograph etworks. https://doi.org/10.7914/SN/UD.
dc.relation.referencesShagov, Yu. V. (1976). Explosives and gunpowder. M., Voenizdat, 120 p.
dc.relation.referencesSharov, N. V., Malovichko, A. A., & Shchukin, Yu. K. (2007). Earthquakes and microseismicity in the problems of modern geodynamics of the Eastern European platform. Book 2: Microseismicity. Petrozavodsk: Karelian Scientific Center of the Russian Academy of Sciences, P. 19.
dc.relation.referencesVasylchenko, O. V., Kvitkovskyi ,Yu. V., & Stelmakh, O. A. (2015). Building structures and their behavior in emergency situations. Kharkiv: Khnadu, 485 p.
dc.relation.referencesVergoz, J., Hupe, P., Listowski, C., Le Pichon, A., Garcés, M. A., Marchetti, E., ... & Mialle, P. (2022). IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis. Earth and Planetary Science Letters, 591, 117639.
dc.relation.referencesenAnderson, J., & Wood, O. (1925). Description and theory of the tor:sion seismometer. Bull. Seism. Soc. Am. 15, 1–72.
dc.relation.referencesenAndrushchenko, Yu. A., & Gordienko, Yu. O. (2009). Analysis of the effectiveness of the application of criteria for the identification of explosions and earthquakes for local and regional events in the conditions of the platform part of Ukraine. Geofizicheskiy Zhurnal. 31, 3, 121-129. http://www.igph.kiev.ua/ukr/journal.html#
dc.relation.referencesenAndrushchenko, Yu. A., & Gordienko, Yu. O. (2009). The method of identifying the nature of seismic sources based on the spectral-temporal analysis of oscillations. Geofizicheskiy Zhurnal. 31, 6, 140–146. http://dspace.nbuv.gov.ua/handle/123456789/12491
dc.relation.referencesenAndrushchenko, Yu. A., Osadchiy, V. I., Lyashchuk, O. I., Kovtun, O. M. (2018). Dependence of magnitude estimates on the power of chemical explosions at industrial quarries within the Ukrainian Shield, Geophys. Jornal, 40, 3, 157-164 https://doi.org/10.24028/gzh.0203-3100.v40i3.2018.137196
dc.relation.referencesenAndruschenko, Y., Liaschuk, O., Farfuliak, L., Amashukeli, T., Haniiev, O., Osadchyi, V., Petrenko, K., & Verbytskyi, S. (2023). National seismological bulletin of Ukraine for 2021. Geofizicheskiy Zhurnal, 44(6), 162–180. https://doi.org/10.24028/gj.v44i6.273649
dc.relation.referencesenBratt, S. R., & Nagy, W. (1991). The LocSAT Program. Science Applications International Corporation, San Diego.
dc.relation.referencesenCansi, Y. (1995). An automated seismic event processing for detection andlocation: the P.M.C.C. method. Geo­phys. Res. Lett., 22, 1021–1024. https://doi.org/10.1029/95GL00468
dc.relation.referencesenDando, B.D.E., Goertz-Allmann, B.P., Brissaud, Q. Köhler A., Schweitzer J., Kværna T., Liashchuk (2023). Identifying attacks in the Russia-Ukraine conflict using seismic array data. Nature 621, 767-772 (2023). https://doi.org/10.1038/s41586-023-06416-7
dc.relation.referencesenGolden, Paul, Petru Negraru, and Jesse Howard. (1998). "Infrasound studies for yield estimation of HE explosions." Technical Rept. AFRL‐RV‐PS‐TR‐2012‐0084 (2012). https://doi.org/10.21236/ADA564065
dc.relation.referencesenHaskell, N. A. (1967). Analytic approximation for the elastic radiation from a contained underground explosion. Journal of Geophysical Research, 72(10), 2583-2587. https://doi.org/10.1029/JZ072i010p02583
dc.relation.referencesenHutton, L. K., & Boore D. M. (1987). The ML scale in Southern California . Bull. Seism. Soc. Am. 77, 6, 2074-2094. https://doi.org/10.1785/BSSA0770062074
dc.relation.referencesenKhalturin, V. I., Rautian, T. G., & Richards, P. G. (1998). The seismic signal stregth of chemical explosions. Bull. Seis. Soc. Am. 88(6), 1511 -1524. https://doi.org/10.1785/BSSA0880061511
dc.relation.referencesenKim, K., & Pasyanos, M. E. (2022). Yield estimation of the August 2020 beirut explosion by using physics‐based propagation simulations of regional infrasound. Geophysical Research Letters, 49(23), e2022GL101118. https://doi.org/10.1029/2022GL101118 .
dc.relation.referencesenKedrov, O. K. (2005). Seismic methods of monitoring nuclear tests. Institute of Earth Physics, Russian Academy of Sciences, P. 41.
dc.relation.referencesenKomashko, O. V. (2004). Applied econometrics. Teacher manual. K., KNU, 55 p.
dc.relation.referencesenKutas, V. V., Andrushchenko, Yu. A., Omelchenko, V. D., Lyashchuk, A. I., & Kalytova I. I. (2015). Earthquakes in the Dnipro-Donetsk avlakogen. Geofizicheskiy Zhurnal, 37, 5. 114–127. https://journals.uran.ua/geofizicheskiy/article/view/111156/106023. https://doi.org/10.24028/gzh.0203-3100.v37i5.2015.111156
dc.relation.referencesenLyashchuk O. I. (2015). Use of infrasound measurement data in Ukraine to identify explosions and earthquakes. Geodynamics. 1(18), 36-44. https://doi.org/10.23939/jgd2015.01.036
dc.relation.referencesenLyashchuk, O. I., Andrushchenko, Yu. A., Gordienko, Yu. O., Karyagin, E. V., & Kornienko, I. V. (2015). The possibility of using infrasound monitoring data during the identification of the nature of seismic events. Geofizicheskiy Zhurnal, 37, 6, 105-114.
dc.relation.referencesenMărmureanu, A., Ionescu, C., Grecu, B., Toma-Danila, D., Tiganescu, A., Dragomir, C.S., Toader, V.E., Craifaleanu, I.G., Neagoe, C., Mei, V., Liashchuk, O., & Dimitrova, L. (2021). From National to Transnational Seismic Monitoring Products and Services in the Republic of Bulgaria, Republic of Moldova, Romania, and Ukraine. Seismological Research Letters, 3(92), 1703-2021. https://doi.org/10.1785/0220200393
dc.relation.referencesenPilger, C., Gaebler, P., Hupe, P., Kalia, A. C., Schneider, F. M., Steinberg, A., ... & Ceranna, L. (2021). Yield estimation of the 2020 Beirut explosion using open access waveform and remote sensing data. Scientific reports, 11(1), 14144. https://doi.org/10.24028/gzh.0203-3100.v37i6.2015.111177 https://doi.org/10.1038/s41598-021-93690-y
dc.relation.referencesenRautian, T. G. About determining the energy of earthquakes at distances of 3000 km. Proceedings of the Institute of Social Sciences of the Academy of Sciences of the USSR. 32 (199), 72-98.
dc.relation.referencesenReVelle, D. O. (1997). Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann. N. Y. Acad. Sci. 822, 284-302. https://doi.org/10.1111/j.1749-6632.1997.tb48347.x
dc.relation.referencesenRichter, C. (1958). Elementary Seismology. W.H. Freeman, San Francisco, Calf.,. 578 r.
dc.relation.referencesenRodionov, V. N., Adushkin, V. V., Kostyuchenko, V. N. etc. (1971). Mechanical effect of an underground explosion. M., Nadra. 224 p.
dc.relation.referencesenSeismic Network Main Center of Special Monitoring. (2010). International Federation of Digital Seismograph etworks. https://doi.org/10.7914/SN/UD.
dc.relation.referencesenShagov, Yu. V. (1976). Explosives and gunpowder. M., Voenizdat, 120 p.
dc.relation.referencesenSharov, N. V., Malovichko, A. A., & Shchukin, Yu. K. (2007). Earthquakes and microseismicity in the problems of modern geodynamics of the Eastern European platform. Book 2: Microseismicity. Petrozavodsk: Karelian Scientific Center of the Russian Academy of Sciences, P. 19.
dc.relation.referencesenVasylchenko, O. V., Kvitkovskyi ,Yu. V., & Stelmakh, O. A. (2015). Building structures and their behavior in emergency situations. Kharkiv: Khnadu, 485 p.
dc.relation.referencesenVergoz, J., Hupe, P., Listowski, C., Le Pichon, A., Garcés, M. A., Marchetti, E., ... & Mialle, P. (2022). IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis. Earth and Planetary Science Letters, 591, 117639.
dc.relation.urihttp://www.igph.kiev.ua/ukr/journal.html#
dc.relation.urihttp://dspace.nbuv.gov.ua/handle/123456789/12491
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v40i3.2018.137196
dc.relation.urihttps://doi.org/10.24028/gj.v44i6.273649
dc.relation.urihttps://doi.org/10.1029/95GL00468
dc.relation.urihttps://doi.org/10.1038/s41586-023-06416-7
dc.relation.urihttps://doi.org/10.21236/ADA564065
dc.relation.urihttps://doi.org/10.1029/JZ072i010p02583
dc.relation.urihttps://doi.org/10.1785/BSSA0770062074
dc.relation.urihttps://doi.org/10.1785/BSSA0880061511
dc.relation.urihttps://doi.org/10.1029/2022GL101118
dc.relation.urihttps://journals.uran.ua/geofizicheskiy/article/view/111156/106023
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v37i5.2015.111156
dc.relation.urihttps://doi.org/10.23939/jgd2015.01.036
dc.relation.urihttps://doi.org/10.1785/0220200393
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v37i6.2015.111177
dc.relation.urihttps://doi.org/10.1038/s41598-021-93690-y
dc.relation.urihttps://doi.org/10.1111/j.1749-6632.1997.tb48347.x
dc.relation.urihttps://doi.org/10.7914/SN/UD
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© V. Osadchii, Yu. Andrushchenko, O. Liashchuk
dc.subjectсейсмічна станція
dc.subjectсейсмічний сигнал
dc.subjectсейсмічна хвиля
dc.subjectвибух
dc.subjectбоєприпас
dc.subjectпотужність в тротиловому еквіваленті
dc.subjectмагнітуда
dc.subjectенергетичний клас
dc.subjectмаксимальна амплітуда
dc.subjectземлетрус
dc.subjectінфразвук
dc.subjectідентифікація
dc.subjectseismic station
dc.subjectseismic signal
dc.subjectseismic wave
dc.subjectexplosion
dc.subjectammunition
dc.subjectpower in TNT equivalent
dc.subjectmagnitude
dc.subjectenergy class
dc.subjectmaximum amplitude
dc.subjectearthquake
dc.subjectinfrasound
dc.subjectidentification
dc.subject.udc550.34.
dc.subject.udc551.24
dc.titleIdentification of natural and technogenic seismic events by energy characteristics
dc.title.alternativeІдентифікація природних та техногенних сейсмічних подій за енергетичними характеристиками
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023n2_Osadchii_V-Identification_of_natural_99-105.pdf
Size:
814.14 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023n2_Osadchii_V-Identification_of_natural_99-105__COVER.png
Size:
548.01 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: