Freshwater ecosystem macrophytes and microphytes: development, environmental problems, usage as raw material. Review
dc.citation.epage | 124 | |
dc.citation.issue | 3 | |
dc.citation.spage | 115 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Soloviy, Khrystyna | |
dc.contributor.author | Malovanyy, Myroslav | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-02-25T12:53:49Z | |
dc.date.available | 2020-02-25T12:53:49Z | |
dc.date.created | 2019-02-26 | |
dc.date.issued | 2019-02-26 | |
dc.description.abstract | Classification of macrophytes and microphytes in the system of hydrobionts is presented, individual characteristics of each macrophyte and microphyte type according to the given classification are presented, environmental problems concerning uncontrolled development of macrophytes and microphytes in water media are considered and several biotechnologies of application of their sustainable development are characterized. | |
dc.format.extent | 115-124 | |
dc.format.pages | 10 | |
dc.identifier.citation | Soloviy K. Freshwater ecosystem macrophytes and microphytes: development, environmental problems, usage as raw material. Review / Khrystyna Soloviy, Myroslav Malovanyy // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 3. — P. 115–124. | |
dc.identifier.citationen | Soloviy K. Freshwater ecosystem macrophytes and microphytes: development, environmental problems, usage as raw material. Review / Khrystyna Soloviy, Myroslav Malovanyy // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 3. — P. 115–124. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46038 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Environmental Problems, 3 (4), 2019 | |
dc.relation.references | 1. Abdulrashid Muhammad Haidara, Ibrahim Muhammad Magami, Aminu Sanda. Bioremediation of Aquacultural Effluents Using Hydrophytes. Bioprocess Engineering. Vol. 2, No. 4, 2018, pp. 33–37. doi: 10.11648/j.be.20180204.11 | |
dc.relation.references | 2. Brogan W. R. III, Relyea R. A. A new mechanism of macrophyte mitigation: How submerged plants reduce malathion’s acute toxicity to aquatic animals. Chemosphere 2014;108: 405–410. pmid: 24630450 | |
dc.relation.references | 3. Brogan W. R. III, Relyea R. A. (2015) Submerged Macrophytes Mitigate Direct and Indirect Insecticide Effects in Freshwater Communities. PLoS ONE 10(5): e0126677. https://doi.org/10.1371/journal.pone.0126677 | |
dc.relation.references | 4. Characteristics of Hydrophytes with PPT (Classification and Adaptations). https://www.easybiologyclass.com/characteristics-of-hydrophytes-with-ppt-classificationand-adaptations/. Last accessed 11.06.2019 | |
dc.relation.references | 5. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306. | |
dc.relation.references | 6. CyanoHABs Newsletters 2018. https://www.epa.gov/cyanohabs/cyanohabs-newsletters-2018. Last accessed 11.06.2019 | |
dc.relation.references | 7. Daneshian, M., A roadmap for hazard monitoring and risk assessment of marine biotoxins on the basis of chemical and biological test systems. Altex, 2013. 30(4): 487–545 | |
dc.relation.references | 8. Eliška Rejmánková. The role of macrophytes in wetland ecosystems. J. Ecol. Field Biol. 34(4): 333–345, 2011. DOI: 10.5141/JEFB.2011.044 | |
dc.relation.references | 9. Euglenoids. https://www.landcareresearch.co.nz/resources/identification/algae/identification-guide/identify/guide/descriptions/euglenoids. Last accessed 11.06.2019 | |
dc.relation.references | 10. Freshwater Harmful Algal Blooms: Causes, Challenges, and Policy Considerations, 20.09.2018. Congressional Research Service. https://crsreports.congress.gov | |
dc.relation.references | 11. Guil-Guerrero J. L., Navarro-Juarez R., Lopez- Martinez J. C., Campra-Madrid P., Rebolloso-Fuentes M. M. Functionnal properties of the biomass of three microalgal species. J Food Eng. 2004;65:511–517 | |
dc.relation.references | 12. Hilt S., Gross E. M. Can allelopathically active submerged macrophyte stabilize clear-water states in shallow lakes. Basic Appl Ecol 2008;9: 422–432 | |
dc.relation.references | 13. Ho S. H., Chen C. Y., Chang J. S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalgae Scenedesmus obliquus CNW-N. Bioresour Technol. 2012;113:244–252 | |
dc.relation.references | 14. Hydrophytes And Classification of Hydrophytes. https://www.brainkart.com/article/Hydrophytes-And-Classification-of-Hydrophytes_978/. Last accessed 11.06.2019 | |
dc.relation.references | 15. Introduction to the Xanthophyta. https://ucmp.berkeley.edu/chromista/xanthophyta.html. Last accessed 11.06.2019 | |
dc.relation.references | 16. J. L. Graham, N. M. Dubrovsky, and S. M. Eberts, Cyanobacterial Harmful Algal Blooms and U.S. Geological Survey Science Capabilities, U.S. Geological Survey Report 2016-1174, 2016, pp. 1–2 | |
dc.relation.references | 17. Isabella Sanseverino, Diana Conduto, Luca Pozzoli, Srdan Dobricic and Teresa Lettieri. Algal bloom and its economic impact. JRC Technical Reports, 2016 | |
dc.relation.references | 18. José Miguel Fariña; Andrés Camaño. The ecology and natural history of Chilean saltmarshes. Cham : Springer, 2017 | |
dc.relation.references | 19. Juan Rocha et al. Freshwater Eutrophication. https://regimeshifts.org/item/55-freshwatereutrophication. Last accessed 11.06.2019 | |
dc.relation.references | 20. L. Naselli-Flores, R. Barone. Green Algae. Encyclopedia of Inland Waters, 2009/ | |
dc.relation.references | 21. Lefebvre, K. A. and A. Robertson, Domoic acid and human exposure risks: a review. Toxicon, 2010. 56(2): p. 218–30 | |
dc.relation.references | 22] Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin. J Oleo Sci. 2007;56(12):615–621 | |
dc.relation.references | 23. Main aquatic weed problems in Africa. http://www.fao.org/3/y4270e/y4270e03.htm. Last accessed 11.06.2019 | |
dc.relation.references | 24. Michael F. Chislock et al. Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. https://www.nature.com/scitable/knowledge/library/eutrophication-causes-consequences-and-controls-inaquatic-102364466. Last accessed 11.06.2019 | |
dc.relation.references | 25. Monia Renzi et al. Biofuel Production from the Orbetello Lagoon Macrophytes: Efficiency of Lipid Extraction Using Accelerate Solvent Extraction Technique. Journal of Environmental Protection Vol.4 No.11(2013), Article ID:39246,6 pages | |
dc.relation.references | 26. Muhammad Imran Khan et al. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018; 17: 36 | |
dc.relation.references | 27. Plant Adaptations: Introduction and Ecological Classification of Plants. http://www.biologydiscussion.com/plants/plant-adaptations-introduction-and-ecologicalclassification-of-plants/6902. Last accessed 11.06.2019 | |
dc.relation.references | 28. Said M. Badr El-Din, Reda A. Abdel-Aziz. Potential uses of aquatic plants for wastewater treatment. Microbiol Biotechnol Rep Vol 2 No 3 December 2018 | |
dc.relation.references | 29. Sand-Jensen J., Borum J. Interactions among phytoplankton, periphyton, and macrophytes in temperature freshwaters and estuaries. Aquat Bot 1991;41: 137–175 | |
dc.relation.references | 30. Slembrouck J., Samsudin R., Pantjara B., Sihabuddin A., Legendre M., Caruso D. 2018. Choosing floating macrophytes for ecological intensification of small-scale fish farming in tropical areas: a methodological approach. Aquat. Living Resour. 31: 30 | |
dc.relation.references | 31. Stabenau, N., Zehnsdorf, A., Rönicke, H. et al. Energ Sustain Soc (2018) 8: 16. https://doi.org/10.1186/s13705-018-0155-2 | |
dc.relation.references | 32. Teygeler, R. (2000) Waterhyacintpapier. Bijdrage aan een duurzame toekomst /Water hyacinth paper. Contribution to a sustainable future [bi-lingual].. In (Torley and Gentenaar (eds.): Papier en Water/Paper and Water. Rijswijk, Gentenaar & Torley Publishers, pp.168-188 | |
dc.relation.references | 33. What Is Brown Algae? https://www.thoughtco.com/brown-algae-phaeophyta-2291972. Last accessed 11.06.2019 | |
dc.relation.references | 34. Wetzel R. G. Limnology: Lake and River ecosystems. Third edition. Academic Press, New York, USA; 2001 | |
dc.relation.references | 35. Yilmaz, Dilek & Aksoy, Ahmet. (2006). Common hydrophytes as bioindicators of iron and manganese pollutions. Ecological Indicators – ECOL INDIC. 6. 10.1016/j.ecolind.2005.04.004 | |
dc.relation.referencesen | 1. Abdulrashid Muhammad Haidara, Ibrahim Muhammad Magami, Aminu Sanda. Bioremediation of Aquacultural Effluents Using Hydrophytes. Bioprocess Engineering. Vol. 2, No. 4, 2018, pp. 33–37. doi: 10.11648/j.be.20180204.11 | |
dc.relation.referencesen | 2. Brogan W. R. III, Relyea R. A. A new mechanism of macrophyte mitigation: How submerged plants reduce malathion’s acute toxicity to aquatic animals. Chemosphere 2014;108: 405–410. pmid: 24630450 | |
dc.relation.referencesen | 3. Brogan W. R. III, Relyea R. A. (2015) Submerged Macrophytes Mitigate Direct and Indirect Insecticide Effects in Freshwater Communities. PLoS ONE 10(5): e0126677. https://doi.org/10.1371/journal.pone.0126677 | |
dc.relation.referencesen | 4. Characteristics of Hydrophytes with PPT (Classification and Adaptations). https://www.easybiologyclass.com/characteristics-of-hydrophytes-with-ppt-classificationand-adaptations/. Last accessed 11.06.2019 | |
dc.relation.referencesen | 5. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306. | |
dc.relation.referencesen | 6. CyanoHABs Newsletters 2018. https://www.epa.gov/cyanohabs/cyanohabs-newsletters-2018. Last accessed 11.06.2019 | |
dc.relation.referencesen | 7. Daneshian, M., A roadmap for hazard monitoring and risk assessment of marine biotoxins on the basis of chemical and biological test systems. Altex, 2013. 30(4): 487–545 | |
dc.relation.referencesen | 8. Eliška Rejmánková. The role of macrophytes in wetland ecosystems. J. Ecol. Field Biol. 34(4): 333–345, 2011. DOI: 10.5141/JEFB.2011.044 | |
dc.relation.referencesen | 9. Euglenoids. https://www.landcareresearch.co.nz/resources/identification/algae/identification-guide/identify/guide/descriptions/euglenoids. Last accessed 11.06.2019 | |
dc.relation.referencesen | 10. Freshwater Harmful Algal Blooms: Causes, Challenges, and Policy Considerations, 20.09.2018. Congressional Research Service. https://crsreports.congress.gov | |
dc.relation.referencesen | 11. Guil-Guerrero J. L., Navarro-Juarez R., Lopez- Martinez J. C., Campra-Madrid P., Rebolloso-Fuentes M. M. Functionnal properties of the biomass of three microalgal species. J Food Eng. 2004;65:511–517 | |
dc.relation.referencesen | 12. Hilt S., Gross E. M. Can allelopathically active submerged macrophyte stabilize clear-water states in shallow lakes. Basic Appl Ecol 2008;9: 422–432 | |
dc.relation.referencesen | 13. Ho S. H., Chen C. Y., Chang J. S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalgae Scenedesmus obliquus CNW-N. Bioresour Technol. 2012;113:244–252 | |
dc.relation.referencesen | 14. Hydrophytes And Classification of Hydrophytes. https://www.brainkart.com/article/Hydrophytes-And-Classification-of-Hydrophytes_978/. Last accessed 11.06.2019 | |
dc.relation.referencesen | 15. Introduction to the Xanthophyta. https://ucmp.berkeley.edu/chromista/xanthophyta.html. Last accessed 11.06.2019 | |
dc.relation.referencesen | 16. J. L. Graham, N. M. Dubrovsky, and S. M. Eberts, Cyanobacterial Harmful Algal Blooms and U.S. Geological Survey Science Capabilities, U.S. Geological Survey Report 2016-1174, 2016, pp. 1–2 | |
dc.relation.referencesen | 17. Isabella Sanseverino, Diana Conduto, Luca Pozzoli, Srdan Dobricic and Teresa Lettieri. Algal bloom and its economic impact. JRC Technical Reports, 2016 | |
dc.relation.referencesen | 18. José Miguel Fariña; Andrés Camaño. The ecology and natural history of Chilean saltmarshes. Cham : Springer, 2017 | |
dc.relation.referencesen | 19. Juan Rocha et al. Freshwater Eutrophication. https://regimeshifts.org/item/55-freshwatereutrophication. Last accessed 11.06.2019 | |
dc.relation.referencesen | 20. L. Naselli-Flores, R. Barone. Green Algae. Encyclopedia of Inland Waters, 2009/ | |
dc.relation.referencesen | 21. Lefebvre, K. A. and A. Robertson, Domoic acid and human exposure risks: a review. Toxicon, 2010. 56(2): p. 218–30 | |
dc.relation.referencesen | 22] Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin. J Oleo Sci. 2007;56(12):615–621 | |
dc.relation.referencesen | 23. Main aquatic weed problems in Africa. http://www.fao.org/3/y4270e/y4270e03.htm. Last accessed 11.06.2019 | |
dc.relation.referencesen | 24. Michael F. Chislock et al. Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. https://www.nature.com/scitable/knowledge/library/eutrophication-causes-consequences-and-controls-inaquatic-102364466. Last accessed 11.06.2019 | |
dc.relation.referencesen | 25. Monia Renzi et al. Biofuel Production from the Orbetello Lagoon Macrophytes: Efficiency of Lipid Extraction Using Accelerate Solvent Extraction Technique. Journal of Environmental Protection Vol.4 No.11(2013), Article ID:39246,6 pages | |
dc.relation.referencesen | 26. Muhammad Imran Khan et al. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018; 17: 36 | |
dc.relation.referencesen | 27. Plant Adaptations: Introduction and Ecological Classification of Plants. http://www.biologydiscussion.com/plants/plant-adaptations-introduction-and-ecologicalclassification-of-plants/6902. Last accessed 11.06.2019 | |
dc.relation.referencesen | 28. Said M. Badr El-Din, Reda A. Abdel-Aziz. Potential uses of aquatic plants for wastewater treatment. Microbiol Biotechnol Rep Vol 2 No 3 December 2018 | |
dc.relation.referencesen | 29. Sand-Jensen J., Borum J. Interactions among phytoplankton, periphyton, and macrophytes in temperature freshwaters and estuaries. Aquat Bot 1991;41: 137–175 | |
dc.relation.referencesen | 30. Slembrouck J., Samsudin R., Pantjara B., Sihabuddin A., Legendre M., Caruso D. 2018. Choosing floating macrophytes for ecological intensification of small-scale fish farming in tropical areas: a methodological approach. Aquat. Living Resour. 31: 30 | |
dc.relation.referencesen | 31. Stabenau, N., Zehnsdorf, A., Rönicke, H. et al. Energ Sustain Soc (2018) 8: 16. https://doi.org/10.1186/s13705-018-0155-2 | |
dc.relation.referencesen | 32. Teygeler, R. (2000) Waterhyacintpapier. Bijdrage aan een duurzame toekomst /Water hyacinth paper. Contribution to a sustainable future [bi-lingual].. In (Torley and Gentenaar (eds.): Papier en Water/Paper and Water. Rijswijk, Gentenaar & Torley Publishers, pp.168-188 | |
dc.relation.referencesen | 33. What Is Brown Algae? https://www.thoughtco.com/brown-algae-phaeophyta-2291972. Last accessed 11.06.2019 | |
dc.relation.referencesen | 34. Wetzel R. G. Limnology: Lake and River ecosystems. Third edition. Academic Press, New York, USA; 2001 | |
dc.relation.referencesen | 35. Yilmaz, Dilek & Aksoy, Ahmet. (2006). Common hydrophytes as bioindicators of iron and manganese pollutions. Ecological Indicators – ECOL INDIC. 6. 10.1016/j.ecolind.2005.04.004 | |
dc.relation.uri | https://doi.org/10.1371/journal.pone.0126677 | |
dc.relation.uri | https://www.easybiologyclass.com/characteristics-of-hydrophytes-with-ppt-classificationand-adaptations/ | |
dc.relation.uri | https://www.epa.gov/cyanohabs/cyanohabs-newsletters-2018 | |
dc.relation.uri | https://www.landcareresearch.co.nz/resources/identification/algae/identification-guide/identify/guide/descriptions/euglenoids | |
dc.relation.uri | https://crsreports.congress.gov | |
dc.relation.uri | https://www.brainkart.com/article/Hydrophytes-And-Classification-of-Hydrophytes_978/ | |
dc.relation.uri | https://ucmp.berkeley.edu/chromista/xanthophyta.html | |
dc.relation.uri | https://regimeshifts.org/item/55-freshwatereutrophication | |
dc.relation.uri | http://www.fao.org/3/y4270e/y4270e03.htm | |
dc.relation.uri | https://www.nature.com/scitable/knowledge/library/eutrophication-causes-consequences-and-controls-inaquatic-102364466 | |
dc.relation.uri | http://www.biologydiscussion.com/plants/plant-adaptations-introduction-and-ecologicalclassification-of-plants/6902 | |
dc.relation.uri | https://doi.org/10.1186/s13705-018-0155-2 | |
dc.relation.uri | https://www.thoughtco.com/brown-algae-phaeophyta-2291972 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2019 | |
dc.rights.holder | © Soloviy K., Malovanyy M., 2019 | |
dc.subject | macrophytes | |
dc.subject | microphytes | |
dc.subject | uncontrolled development | |
dc.subject | biomass | |
dc.subject | biotechnologies | |
dc.title | Freshwater ecosystem macrophytes and microphytes: development, environmental problems, usage as raw material. Review | |
dc.type | Article |
Files
License bundle
1 - 1 of 1