Macromodeling of electrical grids with renewable energy sources for assessing their energy efficiency

dc.citation.epage20
dc.citation.issue1
dc.citation.spage14
dc.contributor.affiliationVinnitsa National Technical University
dc.contributor.authorЛежнюк, Петро
dc.contributor.authorКомар, В’ячеслав
dc.contributor.authorКравчук, Сергій
dc.contributor.authorLezhniuk, Petro
dc.contributor.authorKomar, Vyacheslav
dc.contributor.authorKravchuk, Serhii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-26T11:48:13Z
dc.date.available2020-02-26T11:48:13Z
dc.date.created2019-02-26
dc.date.issued2019-02-26
dc.description.abstractВ роботі на основі аналізу проблем забезпечення якісного електропостачання в умовах інтенсивної розбудови відновлюваних джерел енергії (ВДЕ) та визначених засобами кваліметрії характеристик електричних мереж, які є істотними для забезпечення якісного електропостачання, запропоновано застосовувати макромоделювання електричних мереж для оцінювання якості їх функціонування у вигляді інтегральної характеристики готовності електричної мережі з ВДЕ. Це сприятиме розробленню узагальнених рішень та стратегії розвитку мереж, особливо коли йдеться про розбудову ВДЕ. Складові інтегрального показника визначаються як імовірність відповідності фактичного режиму “ідеальному”. “Ідеальний” режим визначається, виходячи з принципу найменшої дії і відповідає заступній схемі мережі, сформованій за r-схемою. Визначений таким чином базис дає змогу знизити суб’єктивність і оцінки, і прийнятих на основі неї рішень.
dc.description.abstractIn the article it is proposed to use macro-modeling of electrical grids for assessing the quality of their operation in the form of an integrated readiness characteristic of electrical grids with RES. It has been done on the basis of the analysis of the problems of providing high-quality electrical supply under conditions of the intensive development of renewable energy sources (RES) and characteristics of electrical grids determined by means of qualimetry that are essential for providing high-quality electricity. This will contribute to the development of generalized solutions and grid development strategies, especially when it comes to RES development. The components of the integral index are determined as the probability of matching the actual mode to the “ideal” one. The “ideal” mode is determined by the principle of least action and corresponds to the circuit diagram of the grid formed by the r-scheme. The basis determined in this way reduces the subjectivity of both evaluations and decisions taken on their basis.
dc.format.extent14-20
dc.format.pages7
dc.identifier.citationLezhniuk P. Macromodeling of electrical grids with renewable energy sources for assessing their energy efficiency / Petro Lezhniuk, Vyacheslav Komar, Serhii Kravchuk // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 1. — P. 14–20.
dc.identifier.citationenLezhniuk P. Macromodeling of electrical grids with renewable energy sources for assessing their energy efficiency / Petro Lezhniuk, Vyacheslav Komar, Serhii Kravchuk // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 1. — P. 14–20.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46083
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Problems of Electrical Engineering, 1 (9), 2019
dc.relation.references1. M. Kane, B. Ivanov, and V. Koreshkov, Skhirtladze AG Systems, methods and tools of quality management, SPb, Russia, 2008.
dc.relation.references2. I. Kuzmin, “Criteria for assessing the efficiency, quality and optimality of complex systems”, Bulletin of the Vinnytsia Polytechnic Institute, no. 1, pp. 5–9, 1994.
dc.relation.references3. Y. Matviychuk, “Mathematical Modeling of Dynamic Systems: Theory and Practice”, Scientific publication, Lviv, Ukraine: LNU them. Ivan Franko, pp. 236, 2000.
dc.relation.references4. P. Stakhiv, Yu. Kozak, and O. Hoholyuk, Discrete macromodeling in electrical engineering and related fields, Lviv, Ukraine: Lviv Polytechnic Publishing House, 2014.
dc.relation.references5. G. Druzhinin, Reliability of automated production systems. Мoscow, Russia: Energoatomizdat, 1986.
dc.relation.references6. I. Ushakov, “Reliability. Past, Present, Future”, Methods of Quality Management, no. 5, pp. 21–25, 2001.
dc.relation.references7. V. Venikov, Theory of similarity and modeling. Moscow: Higher school, 1976.
dc.relation.references8. Yu. Astakhov and P. Lezhnyuk, Application of the criterion method in the electric power industry. Kyiv, Ukraine: UMK VO, p. 140, 1989.
dc.relation.references9. P. Lezhniuk and V. Komar, Evaluation of the quality of optimal control by the criterion method. Monograph. Vinnitsa, Ukraine: UNIVERSUM, 2006.
dc.relation.references10. V. Kholmsky, Calculation and optimization of modes of electric networks. Мoscow, Russia: Higher school, 1975.
dc.relation.references11. P. Lezhniuk, V. Kulik, V.Netrebsky, and V. Teptya, Principle of the smallest action in electrical engineering and power engineering: Monograph. Vinnitsa, Ukraine: VNTU, 2014.
dc.relation.references12. P. Lezhniuk, V. Kulik, and D.Obolonskiy, “Modeling and compensation of the influence of heterogeneity of electric networks on the economics of their regimes”, Electricity, no. 11, pp. 2–8, 2007.
dc.relation.references13. V. Korolev, Probabilistic-statistical analysis of chaotic processes using mixed Gaussian models. Decomposition of Volatility of Financial Indices and Turbulent Plasma. Мoscow, Russia: Publisher IPI RAS, 2008.
dc.relation.references14. V. Kuznetsov, O. Shpolyansky, N. Yaremchuk, “Generalized index of energy quality in electric networks and systems”, Technical electrodynamics, no. 3, pp. 46–52, 2011.
dc.relation.referencesen1. M. Kane, B. Ivanov, and V. Koreshkov, Skhirtladze AG Systems, methods and tools of quality management, SPb, Russia, 2008.
dc.relation.referencesen2. I. Kuzmin, "Criteria for assessing the efficiency, quality and optimality of complex systems", Bulletin of the Vinnytsia Polytechnic Institute, no. 1, pp. 5–9, 1994.
dc.relation.referencesen3. Y. Matviychuk, "Mathematical Modeling of Dynamic Systems: Theory and Practice", Scientific publication, Lviv, Ukraine: LNU them. Ivan Franko, pp. 236, 2000.
dc.relation.referencesen4. P. Stakhiv, Yu. Kozak, and O. Hoholyuk, Discrete macromodeling in electrical engineering and related fields, Lviv, Ukraine: Lviv Polytechnic Publishing House, 2014.
dc.relation.referencesen5. G. Druzhinin, Reliability of automated production systems. Moscow, Russia: Energoatomizdat, 1986.
dc.relation.referencesen6. I. Ushakov, "Reliability. Past, Present, Future", Methods of Quality Management, no. 5, pp. 21–25, 2001.
dc.relation.referencesen7. V. Venikov, Theory of similarity and modeling. Moscow: Higher school, 1976.
dc.relation.referencesen8. Yu. Astakhov and P. Lezhnyuk, Application of the criterion method in the electric power industry. Kyiv, Ukraine: UMK VO, p. 140, 1989.
dc.relation.referencesen9. P. Lezhniuk and V. Komar, Evaluation of the quality of optimal control by the criterion method. Monograph. Vinnitsa, Ukraine: UNIVERSUM, 2006.
dc.relation.referencesen10. V. Kholmsky, Calculation and optimization of modes of electric networks. Moscow, Russia: Higher school, 1975.
dc.relation.referencesen11. P. Lezhniuk, V. Kulik, V.Netrebsky, and V. Teptya, Principle of the smallest action in electrical engineering and power engineering: Monograph. Vinnitsa, Ukraine: VNTU, 2014.
dc.relation.referencesen12. P. Lezhniuk, V. Kulik, and D.Obolonskiy, "Modeling and compensation of the influence of heterogeneity of electric networks on the economics of their regimes", Electricity, no. 11, pp. 2–8, 2007.
dc.relation.referencesen13. V. Korolev, Probabilistic-statistical analysis of chaotic processes using mixed Gaussian models. Decomposition of Volatility of Financial Indices and Turbulent Plasma. Moscow, Russia: Publisher IPI RAS, 2008.
dc.relation.referencesen14. V. Kuznetsov, O. Shpolyansky, N. Yaremchuk, "Generalized index of energy quality in electric networks and systems", Technical electrodynamics, no. 3, pp. 46–52, 2011.
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.subjectelectrical grids
dc.subjectrenewable energy sources
dc.subjectreliability of electricity supply
dc.subjectlosses of electric energy
dc.subjectelectricity quality
dc.subjectenergy efficiency
dc.titleMacromodeling of electrical grids with renewable energy sources for assessing their energy efficiency
dc.title.alternativeМакромоделювання електричних мереж з відновлюваними джерелами енергії для оцінювання їхньої енергоефективності
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v9n1_Lezhniuk_P-Macromodeling_of_electrical_14-20.pdf
Size:
365.69 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v9n1_Lezhniuk_P-Macromodeling_of_electrical_14-20__COVER.png
Size:
540.96 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.06 KB
Format:
Plain Text
Description: