Minimization of public transport delays at arterial streets with coordinated motion

dc.citation.epage29
dc.citation.issue1
dc.citation.spage14
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorRoyko, Yuriy
dc.contributor.authorYevchuk, Yurii
dc.contributor.authorBura, Romana
dc.contributor.authorVelhan, Andrii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2022-06-15T07:17:28Z
dc.date.available2022-06-15T07:17:28Z
dc.date.created2022-03-01
dc.date.issued2022-03-01
dc.description.abstractУ роботі наведено результати досліджень, за допомогою яких удосконалено метод мінімізації затримки громадського транспорту на перехрестях, де діє система координованого управління рухом. Такі транспортні дослідження проводились із одночасним застосуванням натурних вимірювань із вивчення показників транспортного потоку та імітаційного моделювання у PTV VISSIM для перевірки рівня ефективності роботи координованого управління та достовірності отриманих результатів. Суть методу полягає в тому, що досягається зменшення затримки в русі із розрахунку на одного користувача транспортної системи під час його переміщення регульованою ділянкою вулично-дорожньої мережі. Ефективність цього методу досягається за умови значної інтенсивності громадського транспорту, якому забезпечується просторовий пріоритет у вигляді виділеної смуги. Обов’язковими показниками та параметрами є незмінність кількості смуг руху на ділянці, де відбувається координація, а також високий рівень транзитності (понад 70 %) прямих транспортних потоків. Результат досягається за існування таких фаз на напрямку координованого управління, частка дозвільного сигналу у яких становить понад 45 % від тривалості циклу з обмеженнями тривалості 90–125 с. За таких параметрів мінімізуються стартові затримки загального транспортного потоку на стоп-лініях і досягаються максимальні значення потоку насичення. До того ж, встановлюється достатня ширина стрічки часу для проїзду громадським транспортом регульованих ділянок. Певна затримка громадського транспорту у такій системі управління все ж виникає, проте вона пов’язана із його затримками на зупинкових пунктах. Упровадження таких систем координованого управління рухом рекомендується на магістральних вулицях загальноміського значення регульованого руху з відстанню між суміжними стоп-лініями не більше 800 м. Таке обмеження дозволяє уникнути розпаду груп транспортних засобів
dc.description.abstractResearch results, using which the method of minimization of public transport delay is improved at intersections with the system of coordinated motion control, are given in this paper. Such transport research was carried out with simultaneous application of field measurements of the study of traffic flow indicators and computer simulation in PTV VISSIM to check the level of efficiency of coordinated control and the reliability of the results. The essence of the method is that it reduces the delay in traffic per user of the transport system during his movement through a signalized section of the road network. The effectiveness of this method is achieved under condition of significant intensity of public transport, which is provided with spatial priority in the form of the allocated lane. Invariability of the number of lanes in the area where coordination takes place, and a high level of transit (above 70 %) of straight traffic flows are compulsory indicators and parameters. The result is achieved with such phases in the direction of coordinated control, the share of the permissive signal in which is more than 45 % of the cycle duration with a duration limit of 90–125 s. With such parameters, the starting delays of the general traffic flow at the stop-lines are minimized, and the maximum values of the saturation flow are achieved. In addition, a sufficient width of the time lane is established for the passage of signalized areas by public transport. There is still some delay in public transport in such a control system, but it is connected with delays at bus stops. The introduction of such systems of coordinated traffic control is recommended on the arterial streets of citywide importance of controlled motion with a distance between adjacent stop-lines of not more than 800 m. This restriction allows avoiding the dissipation of groups of vehicles
dc.format.extent14-29
dc.format.pages16
dc.identifier.citationMinimization of public transport delays at arterial streets with coordinated motion / Yuriy Royko, Yurii Yevchuk, Romana Bura, Andrii Velhan // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 3. — No 1. — P. 14–29.
dc.identifier.citationenMinimization of public transport delays at arterial streets with coordinated motion / Yuriy Royko, Yurii Yevchuk, Romana Bura, Andrii Velhan // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 3. — No 1. — P. 14–29.
dc.identifier.doidoi.org/10.23939/tt2022.01.014
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56930
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTransport Technologies, 1 (3), 2022
dc.relation.references1. Fornalchyk, Y., Kernytskyy, I., Hrytsun, O., & Royko, Y. (2021). Choice of the rational regimes of traffic light control for traffic and pedestrian flows. Scientific Review Engineering and Environmental Studies (SREES), 30(1), 38–50. doi: 10.22630/PNIKS.2021.30.1.4 (in English).
dc.relation.references2. Gong, Q., Liang, X., & Xu, M. (2019). Pedestrian violations crossing behavior at signal intersections: A case study in Anning District of Lanzhou. IOP Conf. Series: Materials Science and Engineering (pp. 1–9). doi: 10.1088/1757-899X/688/4/044006 (in English).
dc.relation.references3. Iryo-Asano, M., & Alhajyaseen, W. (2017). Consideration of a Pedestrian Speed Change Model in the Pedestrian-Vehicle Safety Assessment of Signalized Crosswalks. Transportation Research Procedia, 21. 87–97. doi: 10.1016/j.trpro.2017.03.080 (in English).
dc.relation.references4. Currie, G., Sarvi, M., & Young, W. (2007). Balanced Road Space Allocation: A Comprehensive Approach. ITE Journal on the Web (pp. 75–83). (in English).
dc.relation.references5. Abramova, L. (2019). Osoblyvosti modelyuvannya hrupovoho rukhu transportnykh zasobiv u mistakh [Features of modeling of vehicles` group movement in cities]. International scientific and practical conference “Scientific achievements of modern society” (pp. 8–17). Liverpool: Cognum Publishing House (in Ukrainian).
dc.relation.references6. Krystopchuk, M., Khitrov, I., Tson, O., & Pochuzhevskyy, O. (2021). Doslidzhennya koordynovanoho upravlinnya transportnymy potokamy v tsentralniy chastyni mista [Research of coordinated management of transport flows in the central part of the city]. Suchasni tekhnolohiyi v mashynobuduvanni ta transporti [Advances in mechanical engineering and transport], 1(16), 82–90. doi : 10.36910/automash.v1i16.511 (in Ukrainian).
dc.relation.references7. Kulyk, M., & Shyrin, V. (2019). Zabezpechennya staloyi shvydkosti transportnykh potokiv v rezhymi koordynovanoho upravlinni na miskykh mahistralyakh [Ensuring a constant speed of traffic flows in the mode of coordinated management on urban highways]. IV Mizhnarodna naukovo-praktychna konferentsiia “Bezpeka na transporti – osnova efektyvnoi infrastruktury: problemy ta perspektyvy” [IV International scientific-practical conference “Transport safety – the basis of efficient infrastructure: problems and perspectives”] (pp. 238–242). Kharkiv, Ukraine: KhNADU, (in Ukrainian).
dc.relation.references8. Fornalchyk, Y., Vikovych, I., Royko, Y., & Hrytsun, O. (2021). Improvement of methods for assessing the effectiveness of dedicated lanes for public transport, Eastern-European Journal of Enterprise Technologies, 1(3) (109), 29–37. doi: 10.15587/1729-4061.2021.225397 (in English).
dc.relation.references9. Chen, C., Che, X., Huang, W., & Li, K. (2019). A two-way progression model for arterial signal coordination considering side-street turning traffic. Transportmetrica B: Transport Dynamics, 7(1), 1627–1650. doi: 10.1080/21680566.2019.1672590 (in English).
dc.relation.references10. Canadian Capacity Guide for Signalized Intersections. (2008). Retrieved from: https://trid.trb.org/view/925696 (in English).
dc.relation.references11. Signal Timing Manual. Second Edition. NCHRP Report 812. National Cooperative Highway Research Program. (2015). U.S. Department of Transportation Federal Highway Administration (in English).
dc.relation.references12. Gartner, N., Pooran, F., & Andrews, C. (2002). Implementation and Field Testing of the OPAC Adaptive Control Strategy in RT-TRACS, Proc. Of 81st Annual Meeting of the TRB. Oakland, CA, USA: IEEE, (pp. 148–156). (in English).
dc.relation.references13. Vikovich, I., & Zubachyk, R. (2015). Bus lane within the area of intersection” method for buses priority on the intersections. Transport and Telecommunication Journal, 16(4), 20–30. doi: 10.1515/ttj-2015-0024 (in English).
dc.relation.references14. Shaaban, K., & Ghanim, M. (2018). Evaluation of Transit Signal Priority Implementation for Bus Transit along a Major Arterial Using Microsimulation. The 9th International Conference on Ambient Systems, Networks and Technologies, Procedia Computer Science 130, 82–89. doi: 10.1016/j.procs.2018.04.015 (in English).
dc.relation.references15. Furth, P.G., & Muller, T.H. (2000). Conditional Bus Priority at Signalized Intersections: Better Service Quality with Less Traffic Disruption. Transportation research record, 1731(1). 23–30. doi: 10.3141/1731-04 (in English).
dc.relation.references16. Anderson, P., & Daganzo, C. F. (2019). Effect of Transit Signal Priority on Bus Service Reliability. Transportation Research Procedia 38, 2–19. doi: 10.1016/j.trpro.2019.05.002 (in English).
dc.relation.references17. Ryabushenko, O., Nagluk, I., & Shevtsov, D. (2019). Doslidzhennya rezhymu rukhu avtomobilya v umovakh mista za danymy GPS treku [Research of the mode of the car`s movement in the conditions of the city according to GPS track data]. Visnyk KhNADU [Bulletin of KHNADU], 198, 448–456 (in Ukrainian).
dc.relation.references18. Ji, Y., Tang, Y., Wang, W., & Du, Y. (2018). Tram-Oriented Traffic Signal Timing Resynchronization. Journal of Advanced Transportation, 2018(6). 1–13. doi: 10.1155/2018/8796250 (in English).
dc.relation.references19. Shi, J., Sun, Y., Schonfeld, P., & Qi, J. (2017). Joint optimization of tram timetables and signal timing adjustments at intersections. Transportation Research Part C: Emerging Technologies, 83, 104–119. doi: 10.1016/j.trc.2017.07.014 (in English).
dc.relation.references20. Zhou, L., Wang, Yi., & Liu, Ya. (2017). Active signal priority control method for bus rapid transit based on Vehicle Infrastructure Integration. International Journal of Transportation Science and Technology, 6(2), 99–109. doi: 10.1016/j.ijtst.2017.06.001 (in English).
dc.relation.references21. Scheffler, R., & Strehler, M. (2017). Optimizing traffic signal settings for public transport priority. 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, (рр. 9:1–9:15). doi: 10.4230/OASIcs.ATMOS.2017.9 (in English).
dc.relation.referencesen1. Fornalchyk, Y., Kernytskyy, I., Hrytsun, O., & Royko, Y. (2021). Choice of the rational regimes of traffic light control for traffic and pedestrian flows. Scientific Review Engineering and Environmental Studies (SREES), 30(1), 38–50. doi: 10.22630/PNIKS.2021.30.1.4 (in English).
dc.relation.referencesen2. Gong, Q., Liang, X., & Xu, M. (2019). Pedestrian violations crossing behavior at signal intersections: A case study in Anning District of Lanzhou. IOP Conf. Series: Materials Science and Engineering (pp. 1–9). doi: 10.1088/1757-899X/688/4/044006 (in English).
dc.relation.referencesen3. Iryo-Asano, M., & Alhajyaseen, W. (2017). Consideration of a Pedestrian Speed Change Model in the Pedestrian-Vehicle Safety Assessment of Signalized Crosswalks. Transportation Research Procedia, 21. 87–97. doi: 10.1016/j.trpro.2017.03.080 (in English).
dc.relation.referencesen4. Currie, G., Sarvi, M., & Young, W. (2007). Balanced Road Space Allocation: A Comprehensive Approach. ITE Journal on the Web (pp. 75–83). (in English).
dc.relation.referencesen5. Abramova, L. (2019). Osoblyvosti modelyuvannya hrupovoho rukhu transportnykh zasobiv u mistakh [Features of modeling of vehicles` group movement in cities]. International scientific and practical conference "Scientific achievements of modern society" (pp. 8–17). Liverpool: Cognum Publishing House (in Ukrainian).
dc.relation.referencesen6. Krystopchuk, M., Khitrov, I., Tson, O., & Pochuzhevskyy, O. (2021). Doslidzhennya koordynovanoho upravlinnya transportnymy potokamy v tsentralniy chastyni mista [Research of coordinated management of transport flows in the central part of the city]. Suchasni tekhnolohiyi v mashynobuduvanni ta transporti [Advances in mechanical engineering and transport], 1(16), 82–90. doi : 10.36910/automash.v1i16.511 (in Ukrainian).
dc.relation.referencesen7. Kulyk, M., & Shyrin, V. (2019). Zabezpechennya staloyi shvydkosti transportnykh potokiv v rezhymi koordynovanoho upravlinni na miskykh mahistralyakh [Ensuring a constant speed of traffic flows in the mode of coordinated management on urban highways]. IV Mizhnarodna naukovo-praktychna konferentsiia "Bezpeka na transporti – osnova efektyvnoi infrastruktury: problemy ta perspektyvy" [IV International scientific-practical conference "Transport safety – the basis of efficient infrastructure: problems and perspectives"] (pp. 238–242). Kharkiv, Ukraine: KhNADU, (in Ukrainian).
dc.relation.referencesen8. Fornalchyk, Y., Vikovych, I., Royko, Y., & Hrytsun, O. (2021). Improvement of methods for assessing the effectiveness of dedicated lanes for public transport, Eastern-European Journal of Enterprise Technologies, 1(3) (109), 29–37. doi: 10.15587/1729-4061.2021.225397 (in English).
dc.relation.referencesen9. Chen, C., Che, X., Huang, W., & Li, K. (2019). A two-way progression model for arterial signal coordination considering side-street turning traffic. Transportmetrica B: Transport Dynamics, 7(1), 1627–1650. doi: 10.1080/21680566.2019.1672590 (in English).
dc.relation.referencesen10. Canadian Capacity Guide for Signalized Intersections. (2008). Retrieved from: https://trid.trb.org/view/925696 (in English).
dc.relation.referencesen11. Signal Timing Manual. Second Edition. NCHRP Report 812. National Cooperative Highway Research Program. (2015). U.S. Department of Transportation Federal Highway Administration (in English).
dc.relation.referencesen12. Gartner, N., Pooran, F., & Andrews, C. (2002). Implementation and Field Testing of the OPAC Adaptive Control Strategy in RT-TRACS, Proc. Of 81st Annual Meeting of the TRB. Oakland, CA, USA: IEEE, (pp. 148–156). (in English).
dc.relation.referencesen13. Vikovich, I., & Zubachyk, R. (2015). Bus lane within the area of intersection" method for buses priority on the intersections. Transport and Telecommunication Journal, 16(4), 20–30. doi: 10.1515/ttj-2015-0024 (in English).
dc.relation.referencesen14. Shaaban, K., & Ghanim, M. (2018). Evaluation of Transit Signal Priority Implementation for Bus Transit along a Major Arterial Using Microsimulation. The 9th International Conference on Ambient Systems, Networks and Technologies, Procedia Computer Science 130, 82–89. doi: 10.1016/j.procs.2018.04.015 (in English).
dc.relation.referencesen15. Furth, P.G., & Muller, T.H. (2000). Conditional Bus Priority at Signalized Intersections: Better Service Quality with Less Traffic Disruption. Transportation research record, 1731(1). 23–30. doi: 10.3141/1731-04 (in English).
dc.relation.referencesen16. Anderson, P., & Daganzo, C. F. (2019). Effect of Transit Signal Priority on Bus Service Reliability. Transportation Research Procedia 38, 2–19. doi: 10.1016/j.trpro.2019.05.002 (in English).
dc.relation.referencesen17. Ryabushenko, O., Nagluk, I., & Shevtsov, D. (2019). Doslidzhennya rezhymu rukhu avtomobilya v umovakh mista za danymy GPS treku [Research of the mode of the car`s movement in the conditions of the city according to GPS track data]. Visnyk KhNADU [Bulletin of KHNADU], 198, 448–456 (in Ukrainian).
dc.relation.referencesen18. Ji, Y., Tang, Y., Wang, W., & Du, Y. (2018). Tram-Oriented Traffic Signal Timing Resynchronization. Journal of Advanced Transportation, 2018(6). 1–13. doi: 10.1155/2018/8796250 (in English).
dc.relation.referencesen19. Shi, J., Sun, Y., Schonfeld, P., & Qi, J. (2017). Joint optimization of tram timetables and signal timing adjustments at intersections. Transportation Research Part C: Emerging Technologies, 83, 104–119. doi: 10.1016/j.trc.2017.07.014 (in English).
dc.relation.referencesen20. Zhou, L., Wang, Yi., & Liu, Ya. (2017). Active signal priority control method for bus rapid transit based on Vehicle Infrastructure Integration. International Journal of Transportation Science and Technology, 6(2), 99–109. doi: 10.1016/j.ijtst.2017.06.001 (in English).
dc.relation.referencesen21. Scheffler, R., & Strehler, M. (2017). Optimizing traffic signal settings for public transport priority. 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, (rr. 9:1–9:15). doi: 10.4230/OASIcs.ATMOS.2017.9 (in English).
dc.relation.urihttps://trid.trb.org/view/925696
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Yu. Royko, Yu. Yevchuk, R. Bura, A. Velhan, 2022
dc.subjectкоординоване управління рухом
dc.subjectжорстке програмне управління
dc.subjectмагістральна вулиця
dc.subjectтранспортні дослідження
dc.subjectтранспортний потік
dc.subjectгромадський транспорт
dc.subjectтривалість світлофорного циклу
dc.subjectімітаційне моделювання
dc.subjectінтенсивність руху
dc.subjectсклад транспортного потоку
dc.subjectcoordinated traffic control
dc.subjectfixed-time program control
dc.subjectarterial steer
dc.subjecttransport research
dc.subjecttraffic flow
dc.subjectpublic transport
dc.subjecttraffic light cycle duration
dc.subjectsimulation modeling
dc.subjecttraffic intensity
dc.subjecttraffic flow composition
dc.titleMinimization of public transport delays at arterial streets with coordinated motion
dc.title.alternativeМінімізація затримок громадського транспорту на магістральних вулицях з координованим рухом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v3n1_Royko_Y-Minimization_of_public_transport_14-29.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v3n1_Royko_Y-Minimization_of_public_transport_14-29__COVER.png
Size:
466.04 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: