Магнітоопір та намагніченість кремнієвих мікроструктур за низьких температур

dc.citation.epage102
dc.citation.issue915
dc.citation.journalTitleВісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації
dc.citation.spage96
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorДружинін, А. О.
dc.contributor.authorОстровський, І. П.
dc.contributor.authorХоверко, Ю. М.
dc.contributor.authorКучерепа, Н. І.
dc.contributor.authorDruzhinin, A. A.
dc.contributor.authorOstrovskii, I. P.
dc.contributor.authorKhoverko, Yu. M.
dc.contributor.authorKucherepa, N. I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2021-12-21T12:29:40Z
dc.date.available2021-12-21T12:29:40Z
dc.date.created2020-02-20
dc.date.issued2020-02-20
dc.description.abstractДосліджено особливості перенесення носіїв заряду мікрокристалів кремнію, легованих бором, до концентрацій, які відповідають переходу метал–діелектрик, та нікелем, що міститься у приповерхневій області кристала. Досліджено магнітні властивості до 4 кОЕ та магнітоопір ниткоподібних мікрокристалів кремнію під дією магнітних полів до 14 Тл за температур 4,2 К. Виконано детальний аналіз результатів теоретичних досліджень магнітних та магнітотранспортних властивостей Si<B, Ni>. Встановлено квадратичний характер залежності коефіцієнта від’ємного магнітоопору від намагніченості в ниткоподібних мікрокристалах кремнію.
dc.description.abstractInvestigation of diluted semiconductors in the field of magnetoelectronics opens a possibility to design high sensitive sensors of a magnetic field. On the other hand, study of device performances in hard conditions, namely at cryogenic temperatures, including the temperatures of liquid helium, is an important problem. In this work, considerable attention is paid to establishing the relationship between magnetic and magneto-trasport properties of silicon microcrystals doped with nickel and boron to concentrations in the vicinity of the metaldielectric phase transition, which is important in the development of magnetic field sensors, spin valves, etc. The peculiarities of charge carrier’s transfer in silicon microcrystals doped with nickel impurities, located in the near-surface area of the crystal, are investigated. The magnetization of up to 0.4 Т and the magnetoresistance of silicon microcrystals under the action of magnetic fields up to 14 T in the low temperature range down to 4.2 K were studied. A detailed analysis of the results of theoretical studies of magnetic and magnetic transport properties of Si<B, Ni> whiskers was carried out. The quadratic nature of the dependence of the negative magnetoresistance on the magnetization in silicon microcrystals is established for the magnetization exceeding 5∙105 A/m. However, for small values of magnetization up to 5∙105 A/m, the quadratic dependence of the magnetoresistance on the magnetization is violated, which is connected with the hopping mechanism of carrier transport over one occupied impurity levels. The coefficient of proportionality between the magnetoresistance and the magnetization of the crystals increases if the impurity concentration increases, approaching the metal-dielectric transition, and at temperature decrease. The maximum value of the negative magnetoresistance coefficient for the investigated Si<B, Ni> samples is about 10 %, corresponding to the magnetization of the sample, equal to 6.53∙105 A/m. It was established that the reason of the low-temperature transfer of charge carriers for silicon microcrystals doped by a boron and nickel impurities to the concentration corresponding to the metaldielectric transition is the polarization hopping conductivity in the field of magnetic impurity. The large magnitudes of the negative magnetoresistance correspond to the hopping conductivity of charge carriers by twice occupied admixture states. It was established that the introduction of a magnetic impurity could affect the electromagnetic properties of the crystal associated with the transport of charge carriers by hopping tunneling in the near-surface zone. The results of lowtemperature properties of silicon microcrystals doped with boron and nickel can form the basis of the development of sensitive sensors of a magnetic field with a magnetoresistive principle of operation, including multifunctional sensors.
dc.format.extent96-102
dc.format.pages7
dc.identifier.citationМагнітоопір та намагніченість кремнієвих мікроструктур за низьких температур / А. О. Дружинін, І. П. Островський, Ю. М. Ховерко, Н. І. Кучерепа // Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації. — Львів : Видавництво Львівської політехніки, 2020. — № 915. — С. 96–102.
dc.identifier.citationenMagnetoresistance andmagnetization of silicon microstructures at lowtemperatures / A. A. Druzhinin, I. P. Ostrovskii, Yu. M. Khoverko, N. I. Kucherepa // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Radioelektronika ta telekomunikatsii. — Lviv : Lviv Politechnic Publishing House, 2020. — No 915. — P. 96–102.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56561
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації, 915, 2020
dc.relation.references1. Fert A. The present and the future of spintronics, Thin Solid Films, 517(2008).
dc.relation.references2. Zutic I., Fabian J. and Das Sarma S. Spintronics: Fundamentals and applications. Rev. Mod. Phys., 76(2004).
dc.relation.references3. Wu M. W., Jiang J. H., and Weng M. Q. Spin dynamics in semiconductors. Physics Reports, 493(2010).
dc.relation.references4. Kamra A., Ghosh B. and Ghosh T. K. Spin relaxation due to electron-electron magnetic interaction in high Lande g-factor semiconductors. J. Appl. Phys., 108(2010).
dc.relation.references5. Sanchez D., Gould C., Schmidt G. and Molenkamp L. W. Spin-tunneling devices. IEEE Trans. Electron Devices, 54(2007).
dc.relation.references6. Wu H. W., C Tsai. J. and Chen L. J. Room temperature ferromagnetism in Mn+-implanted Si nanowires. Appl. Phys. Let., 90 (2007).
dc.relation.references7. Druzhinin A. A., Ostrovskii I. P., Khoverko Yu. M., Kogut Iu. R., Nichkalo S I., Warchulska J. K. Magnetic susceptibility of doped Si nanowhiskers. Journal of Nanoscience and Nanotechnology, 2012, Vol. 12, P. 8690–8693.
dc.relation.references8. Druzhinin A. A., Ostrovskii I. P., Khoverko Yu. M., Rogacki K., Litovchenko P. G., Pavlovska N. T., Pavlovskyy Yu. V., Ugrin Yu. O. Magnetic susceptibility and magnetoresistance of neutronirradiated doped SI whiskers. Journal of Magnetism and Magnetic Materials, 2015, Vol. 393, P. 310–315.
dc.relation.references9. Durgun E., D. Cakir, N. Akman, and S. Ciraci. Half-metallic silicon nanowires: First- Principles Calculations. Phys. Rev. Lett., 99 (2007).
dc.relation.references10. Druzhinin Anatoly, Ostrovskii Igor, Khoverko Yuriy, Yatsukhnenko Sergij. Magnetic properties of doped Si<B, Ni> whiskers for spintronics. Journal of Nano Research, 2016, Vol. 39, P. 43–54.
dc.relation.references11. Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long, First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Phys. Sin., Vol. 59(2010).
dc.relation.references12. Yatsukhnenko S., Druzhinin A., Ostrovskii I., Khoverko Yu., Chernetskiy M. Nanoscale conductive channels in silicon whiskers with nickel impurity. Nanoscale Research Letters, 2017, Vol. 12:78.
dc.relation.references13. Ohno H., Munekata H., Penney T., Moln'ar S. von, and Chang L. L. Magnetotransport properties of p-type (In, Mn) as diluted magnetic III-V semiconductors, Phys. Rev. Lett., 68(1992).
dc.relation.references14. Ferrand D., Cibert J., Wasiela A., Bourgognon C., Tatarenko S., Fishman G., Andrearczyk T., Jaroszyski J., Kole'snik S., Dietl T., et al., Manipulation with spin ordering in ferromagnetic semiconductors. Phys. Rev. B, 63(2001).
dc.relation.references15. Patibandla S., Pramanik S., Bandyopadhyay S. and Tepper G. C. Spin relaxation in a germanium nanowire. J. Appl. Phys., 100(2006).
dc.relation.references16. Tahan C., Joynt R. Rashba spin-orbit coupling and spin relaxation in silicon quantum wells, Phys. Rev. B, 71 (2005).
dc.relation.references17. Saroj P. Dash, Sandeep Sharma, Ram S. Patel, Michel P. de Jong & Ron Jansen, Electrical creation of spin polarization in silicon at room temperature. Nature, 462 (2009).
dc.relation.references18. Druzhinin А., Ostrovskii I., Khoverko Y., Koretskii R.. Strain-induced effects in p-type Si whiskers at low temperatures. Materials Science in Semicon. Proc, 2015,Vol. 40, P. 766–771.
dc.relation.references19. Druzhinin А., Ostrovskii I., Khoverko Yu., Nichkalo S., Koretskyy R., Kogut Iu. Variable-range hopping conductance in Si whiskers. Phys. Status Solidi A, Vol. 211, No. 2, 2014, P. 504–508.
dc.relation.references20. Druzhinin A. A., Ostrovskii I. P., Khoverko Yu. M., Liakh-Kaguj N. S. and Kogut Iu. R. Train effect on magnetoresistance of SiGe solid solution whiskers at low temperatures. Materials Science in Semiconductor Processing, 2011, Vol. 14, No. 1, P. 18–22.
dc.relation.references21. Toyozawa Y. J. Phys. Soc. Japan. 17, (1962) 986.
dc.relation.references22. Sasaki W. Negative Magnetoresistance in the Impurity Conduction of n-type Germanium. Journal of Physical Societty of Japan, 1965, Vol. 30, P. 825–833.
dc.relation.references23. Matsubara T. and Y. Toyozawa: Prog. Theoret. Phys., 26 (1961) 739.
dc.relation.references24. Дружинін А. О., Ховерко Ю. М., Кутраков О. П., Корецький Р. М., Яцухненко С. Ю. Чутливий елемент двофункційного сенсора магнітного поля та деформації на основі мікрокристалів Si<B, Ni>. Технология и конструирование в электронной аппаратуре, 2017, №3, С. 24–29.
dc.relation.references25. Yatsukhnenko S., Druzhinin A., Ostrovskii I., Khoverko Yu., Koreckii R. Impedance of boron and nickel doped silicon whiskers. https://doi.org//10.1080/15421406.2018.1460233 (2018).
dc.relation.referencesen1. Fert A., The present and the future of spintronics, Thin Solid Films 517 (2008).
dc.relation.referencesen2. Zutic I., J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76 (2004).
dc.relation.referencesen3. Wu M. W., J. H. Jiang, and M. Q. Weng, Spin dynamics in semiconductors, Physics Reports 493(2010).
dc.relation.referencesen4. Kamra A., B. Ghosh and T. K. Ghosh, Spin relaxation due to electron-electron magnetic interaction in high Lande g-factor semiconductors, J. Appl. Phys., 108(2010).
dc.relation.referencesen5. Sanchez D., C. Gould, G. Schmidt and L. W. Molenkamp, Spin-tunneling devices, IEEE Trans. Electron Devices, 54(2007).
dc.relation.referencesen6. Wu H. W., C. J. Tsai, and L. J. Chen. Room temperature ferromagnetism in Mn+-implanted Si nanowires. Appl. Phys. Let., 90 (2007).
dc.relation.referencesen7. Druzhinin A. A., Ostrovskii I. P., Khoverko Yu. M., Kogut Iu. R., Nichkalo S. I., Warchulska J. K. Magnetic susceptibility of doped Si nanowhiskers, Journal of Nanoscience and Nanotechnology, 2012, Vol. 12, 8690–8693.
dc.relation.referencesen8. Druzhinin A. A., I. P. Ostrovskii, Yu. M. Khoverko, K. Rogacki, P. G. Litovchenko, N. T. Pavlovska, Yu. V. Pavlovskyy, Yu. O. Ugrin. Magnetic susceptibility and magnetoresistance of neutron-irradiated doped SI whiskers, Journal of Magnetism and Magnetic Materials, 2015, Vol. 393, 310–315.
dc.relation.referencesen9. Durgun E., D. Cakir, N. Akman, and S. Ciraci. Half-metallic silicon nanowires: First-Principles Calculations. Phys. Rev. Lett., 99 (2007).
dc.relation.referencesen10. Druzhinin Anatoly, Igor Ostrovskii, Yuriy Khoverko, Sergij Yatsukhnenko Magnetic properties of doped Si<B, Ni> whiskers for spintronics, Journal of Nano Research, 2016, Vol. 39, 43–54.
dc.relation.referencesen11. Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long, First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Phys. Sin., Vol. 592010.
dc.relation.referencesen12. Yatsukhnenko S., Druzhinin A., Ostrovskii I., Khoverko Yu., Chernetskiy M. Nanoscale conductive channels in silicon whiskers with nickel impurity, Nanoscale Research Letters, 2017, Vol. 12:78.
dc.relation.referencesen13. Ohno H., H. Munekata, T. Penney, S. von Moln'ar, and L. L. Chang, Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors, Phys. Rev. Lett., 68(1992).
dc.relation.referencesen14. Ferrand D., J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyski, S. Kole'snik, T. Dietl, et al., Manipulation with spin ordering in ferromagnetic semiconductors Phys. Rev. B, 63(2001).
dc.relation.referencesen15. Patibandla S., S. Pramanik, S. Bandyopadhyay and G. C. Tepper, Spin relaxation in a germanium nanowire, J. Appl. Phys., 100(2006).
dc.relation.referencesen16. Tahan C., R. Joynt. Rashba spin-orbit coupling and spin relaxation in silicon quantum wells, Phys. Rev. B, 71 (2005).
dc.relation.referencesen17. Saroj P. Dash, Sandeep Sharma, Ram S. Patel, Michel P. de Jong & Ron Jansen, Electrical creation of spin polarization in silicon at room temperature, Nature, 462 (2009).
dc.relation.referencesen18. Druzhinin А., I. Ostrovskii, Y. Khoverko, R. Koretskii. Strain-induced effects in p-type Si whiskers at low temperatures, Materials Science in Semicon. Proc., Vol. 40, 2015, 766–771.
dc.relation.referencesen19. Druzhinin А., I. Ostrovskii, Yu. Khoverko, S. Nichkalo, R. Koretskyy, Iu. Kogut, Variable-range hopping conductance in Si whiskers, Phys. Status Solidi A, Vol. 211, No. 2, 2014, 504–508.
dc.relation.referencesen20. Druzhinin A. A., I. P. Ostrovskii, Yu. M. Khoverko, N. S. Liakh-Kaguj and Iu. R. Kogut, Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures, Materials Science in Semiconductor Processing, Vol. 14, No. 1, 2011, 18–22.
dc.relation.referencesen21. Toyozawa Y.: J. Phys. Soc. Japan 17 (1962) 986.
dc.relation.referencesen22. Sasaki W. Negative Magnetoresistance in the Impurity Conduction of n-type Germanium, Journal of Physical Society of Japan, 1965, Vol. 30, 825–833.
dc.relation.referencesen23. Matsubara T. and Y. Toyozawa: Prog. Theoret. Phys., 26 (1961) 739.
dc.relation.referencesen24. Druzhinin A. O., Hoverko Y. M., Kutrakov O. P., Koretsky R. M., Yatsukhnenko S. Yu. Sensitive element of a dual-function magnetic field and deformation sensor based on Si<B, Ni> microcrystals, Technology and design in electronic equipment, 2017, No. 3, 24–29.
dc.relation.referencesen25. Yatsukhnenko S., A. Druzhinin, I. Ostrovskii, Yu. Khoverko, R. Koreckii. Impedance of boron and nickel doped silicon whiskers. https://doi.org//10.1080/15421406.2018.1460233 (2018).
dc.relation.urihttps://doi.org//10.1080/15421406.2018.1460233
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Дружинін А. О., Островський І. П., Ховерко Ю. М., Кучерепа Н. І., 2020
dc.subjectниткоподібні мікрокристали кремнію
dc.subjectмагнітоопір
dc.subjectнамагніченість
dc.subjectнизькі температури
dc.subjectfilamentous silicon microcrystals
dc.subjectmagnetoresistance
dc.subjectmagnetization
dc.subjectlow temperatures
dc.subject.udc621.315.592
dc.titleМагнітоопір та намагніченість кремнієвих мікроструктур за низьких температур
dc.title.alternativeMagnetoresistance andmagnetization of silicon microstructures at lowtemperatures
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020n915_Druzhinin_A_A-Magnetoresistance_andmagnetization_96-102.pdf
Size:
685.11 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020n915_Druzhinin_A_A-Magnetoresistance_andmagnetization_96-102__COVER.png
Size:
516.25 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.1 KB
Format:
Plain Text
Description: