Universal dependence for determining exergetic output-input ratio of air split-conditioner heat pump

dc.citation.epage949
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage945
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЛабай, В. Й.
dc.contributor.authorКлименко, Г. М.
dc.contributor.authorГенсецький, М. П.
dc.contributor.authorLabay, V. Yo.
dc.contributor.authorKlymenko, H. M.
dc.contributor.authorGensetskyi, M. P.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-24T09:14:08Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractСьогодні у системах кондиціювання та опалення невеликих приміщень промислових, громадських та житлових об’єктів використання теплових помп (ТП) повітряних split-кондиціонерів стає все розповсюдженішим. Але теплові помпи повітряних split-кондиціонерів належать до енергоємного обладнання, а тому потребують підвищення їх енергоефективності. Тому стає актуальним зменшення енергозатрат під час експлуатації холодильних машин, які працюють в режимі теплової помпи в split-кондиціонерах, що можливе з використанням сучасного методу термодинаміки — ексергетичного. Ексергетичний аналіз дозволяє встановити максимальні термодинамічні можливості системи, визначити втрати ексергії в ній та обґрунтувати рекомендації з вдосконалення окремих її елементів. Для цієї статті використано розроблений авторами ексергетичний метод аналізу роботи одноступеневих хладонових теплових помп split-кондиціонерів. У результаті встановлено універсальну залежність для визначення ексергетичного ККД теплової помпи split-кондиціонера фірми “Mitsubishi Electric” теплопродуктивністю 3200 Вт, яка дає можливість підібрати параметри її роботи з максимальним ексергетичним ККД. Описаний алгоритм отримання такої універсальної залежності можна використати для теплової помпи split-кондиціонера будь-якої фірми та будь-якої теплопродуктивності.
dc.description.abstractToday, in air conditioning and heating systems for small rooms of industrial, public, and residential buildings, the use of heat pumps of air split-conditioners is becoming more common. However, heat pumps of air split-conditioners are energy-intensive equipment, and, therefore, the need to increase their energy efficiency arises. It is important to reduce energy consumption during the refrigeration machines operating in the mode of heat pump in air split-conditioners, which is possible using a modern method of thermodynamics — an exergetic one. Exergetic analysis allows for establishing the maximum thermodynamic capabilities of the system, determining the losses of exergy in it, and substantiating recommendations for improving some of its elements. The exergetic method of analysis of the operation of one-stage steam-compressor freon heat pumps of air split-conditioners developed by the authors is used in this article. As a result, the universal dependence for determining the exergetic output-input ratio (OIR) for the air split-conditioner heat pump by "Mitsubishi Electric" with a heating capacity of 3200 W has been established, which makes it possible to select the parameters of its operation with the maximum exergetic OIR. The described algorithm for obtaining such a universal dependence can be used for heat pump air split-conditioner of any firm and any heating capacity.
dc.format.extent945-949
dc.format.pages5
dc.identifier.citationLabay V. Yo. Universal dependence for determining exergetic output-input ratio of air split-conditioner heat pump / V. Yo. Labay, H. M. Klymenko, M. P. Gensetskyi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 4. — P. 945–949.
dc.identifier.citationenLabay V. Yo. Universal dependence for determining exergetic output-input ratio of air split-conditioner heat pump / V. Yo. Labay, H. M. Klymenko, M. P. Gensetskyi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 4. — P. 945–949.
dc.identifier.doidoi.org/10.23939/mmc2022.04.945
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64231
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 4 (9), 2022
dc.relation.references[1] Szargut J., Petela R. Exergy. Moscow, Energy (1968), (in Russian).
dc.relation.references[2] Sokolov E. Y., Brodyansky V. M. Energy Basis of Transformation of Heat and Cooling Processes. Moscow, Energoizdat (1981), (in Russian).
dc.relation.references[3] Silvio de Oliveira Junior. Exergy. Production, Cost and Renewability. Springer (2013).
dc.relation.references[4] Sazhin B. S., Bulekov A. P., Sazhin B. S. Exergy Analysis of Work of Industrial Plants: Monograph, Moscow (2000), (in Russian).
dc.relation.references[5] Bejan A. Advanced Engineering Thermodynamics. New York, John Wiley & Sons (1988).
dc.relation.references[6] Bejan A., Tsatsaronis G., Moran M. Thermal Design and Optimization. New York, J. Wiley (1996).
dc.relation.references[7] Morosuk T., Nikulshin R., Morosuk L. Entropy-Cycle Method for Analysis of Refrigeration Machine and Heat Pump Cycles. Thermal Science. 10 (1), 111–124 (2006).
dc.relation.references[8] Morozyuk T. V. Theory of Refrigeration Machines and Heat Pumps. Odessa, Studio “Negotsiant” (2006), (in Russian).
dc.relation.references[9] Morosuk T. V. New step in the development of exergy analysis. Refrigeration Engineering and Technology. 4 (150), 13–17 (2014).
dc.relation.references[10] Tsatsaronis J. The Interaction of Thermodynamics and Economy to Minimize Cost of Energy Conversion Systems. Odessa, Studio “Negotsiant” (2002), (in Russian).
dc.relation.references[11] Labay V. Yo., Khanyk Ya. M. Application of R407C and R410A refrigerants in air split-conditioners. Refrigeration Engineering and Technology. 3 (113), 13–17 (2008), (in Ukrainian).
dc.relation.references[12] Labay V., Dovbush O., Yaroslav V., Klymenko H. Mathematical Modeling of a Split-conditioner Operation for Evaluation of Exergy Efficiency of the R600A Refrigerant Application. Scientific. Mathematical Modeling and Computing. 5 (2), 169–177 (2018).
dc.relation.references[13] Labay V. Yo., Yaroslav V. Yu., Dovbush O. M., Tsizda A. Ye. Mathematical Modeling of an Air SplitConditioner Heat Pump Operation for Investigation its Exergetic Efficiency. Mathematical Modeling and Computing. 7 (1), 169–178 (2020).
dc.relation.references[14] Labay V., Yaroslav V., Dovbush O., Piznak B. Dependence of Evaporation Temperature and Exergetic Efficiency of Air Split-Conditioners Heat Pumps from the External Air Temperature. In: Blikharskyy Z. (eds) Proceedings of EcoComfort 2020. EcoComfort 2020. Lecture Notes in Civil Engineering. 100, 253–259 (2021).
dc.relation.references[15] Labay V. Yo., Yaroslav V. Yu., Dovbush O. M., Tsizda A. Ye. Mathematical modeling bringing the operation of air split-conditioners heat pumps to the same internal temperature conditions. Mathematical Modeling and Computing. 8 (3), 509–514 (2021).
dc.relation.references[16] Jakobsen A., Rassmussen B.-D., Skovrup M.-J., Andersen S.-E. CoolPack — a collection of simulation tools for refrigeration — Tutorial — Version 1.46. Department of Energy Engineering Technical University of Denmark (2001).
dc.relation.references[17] Mitsubishi Electric Catalogs Split (2021).
dc.relation.referencesen[1] Szargut J., Petela R. Exergy. Moscow, Energy (1968), (in Russian).
dc.relation.referencesen[2] Sokolov E. Y., Brodyansky V. M. Energy Basis of Transformation of Heat and Cooling Processes. Moscow, Energoizdat (1981), (in Russian).
dc.relation.referencesen[3] Silvio de Oliveira Junior. Exergy. Production, Cost and Renewability. Springer (2013).
dc.relation.referencesen[4] Sazhin B. S., Bulekov A. P., Sazhin B. S. Exergy Analysis of Work of Industrial Plants: Monograph, Moscow (2000), (in Russian).
dc.relation.referencesen[5] Bejan A. Advanced Engineering Thermodynamics. New York, John Wiley & Sons (1988).
dc.relation.referencesen[6] Bejan A., Tsatsaronis G., Moran M. Thermal Design and Optimization. New York, J. Wiley (1996).
dc.relation.referencesen[7] Morosuk T., Nikulshin R., Morosuk L. Entropy-Cycle Method for Analysis of Refrigeration Machine and Heat Pump Cycles. Thermal Science. 10 (1), 111–124 (2006).
dc.relation.referencesen[8] Morozyuk T. V. Theory of Refrigeration Machines and Heat Pumps. Odessa, Studio "Negotsiant" (2006), (in Russian).
dc.relation.referencesen[9] Morosuk T. V. New step in the development of exergy analysis. Refrigeration Engineering and Technology. 4 (150), 13–17 (2014).
dc.relation.referencesen[10] Tsatsaronis J. The Interaction of Thermodynamics and Economy to Minimize Cost of Energy Conversion Systems. Odessa, Studio "Negotsiant" (2002), (in Russian).
dc.relation.referencesen[11] Labay V. Yo., Khanyk Ya. M. Application of R407C and R410A refrigerants in air split-conditioners. Refrigeration Engineering and Technology. 3 (113), 13–17 (2008), (in Ukrainian).
dc.relation.referencesen[12] Labay V., Dovbush O., Yaroslav V., Klymenko H. Mathematical Modeling of a Split-conditioner Operation for Evaluation of Exergy Efficiency of the R600A Refrigerant Application. Scientific. Mathematical Modeling and Computing. 5 (2), 169–177 (2018).
dc.relation.referencesen[13] Labay V. Yo., Yaroslav V. Yu., Dovbush O. M., Tsizda A. Ye. Mathematical Modeling of an Air SplitConditioner Heat Pump Operation for Investigation its Exergetic Efficiency. Mathematical Modeling and Computing. 7 (1), 169–178 (2020).
dc.relation.referencesen[14] Labay V., Yaroslav V., Dovbush O., Piznak B. Dependence of Evaporation Temperature and Exergetic Efficiency of Air Split-Conditioners Heat Pumps from the External Air Temperature. In: Blikharskyy Z. (eds) Proceedings of EcoComfort 2020. EcoComfort 2020. Lecture Notes in Civil Engineering. 100, 253–259 (2021).
dc.relation.referencesen[15] Labay V. Yo., Yaroslav V. Yu., Dovbush O. M., Tsizda A. Ye. Mathematical modeling bringing the operation of air split-conditioners heat pumps to the same internal temperature conditions. Mathematical Modeling and Computing. 8 (3), 509–514 (2021).
dc.relation.referencesen[16] Jakobsen A., Rassmussen B.-D., Skovrup M.-J., Andersen S.-E. CoolPack - a collection of simulation tools for refrigeration - Tutorial - Version 1.46. Department of Energy Engineering Technical University of Denmark (2001).
dc.relation.referencesen[17] Mitsubishi Electric Catalogs Split (2021).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectтеплова помпа
dc.subjectsplit-кондиціонер
dc.subjectексергетичний баланс
dc.subjectексергетична ефективність
dc.subjectуніверсальна залежність для ексергетичного ККД
dc.subjectheat pump of air split-conditioner
dc.subjectexergy balance
dc.subjectexergy efficiency
dc.subjectsame internal temperature conditions
dc.subjectuniversal dependence for exergetic output-input ratio
dc.titleUniversal dependence for determining exergetic output-input ratio of air split-conditioner heat pump
dc.title.alternativeУніверсальна залежність для визначення ексергетичного ККД теплової помпи split-кондиціонера
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n4_Labay_V_Yo-Universal_dependence_for_945-949.pdf
Size:
695.58 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n4_Labay_V_Yo-Universal_dependence_for_945-949__COVER.png
Size:
414.39 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: