Penalty method for pricing American-style Asian option with jumps diffusion process

dc.citation.epage1221
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage1215
dc.contributor.affiliationУніверситет Путра Малайзія
dc.contributor.affiliationUniversiti Putra Malaysia
dc.contributor.authorЛахам, М. Ф.
dc.contributor.authorІбрагім, С. Н. І.
dc.contributor.authorLaham, M. F.
dc.contributor.authorIbrahim, S. N. I.
dc.coverage.placenameЛьвів
dc.date.accessioned2025-03-10T09:21:58Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОпціони в американському стилі є важливими похідними контрактами на сучасних світових фінансових ринках. Вони торгують великими обсягами різних базових активів, включаючи акції, індекси, курси іноземної валюти та ф’ючерси. У цій роботі виведено та досліджено підхід штрафу для використання в ціноутворенні азіатського опціону в американському стилі за моделлю Мертона. Рівняння Блека–Шоулза містить невеликий нелінійний штрафний коефіцієнт. У цьому підході вільна та рухома межа, накладена функцією раннього виконання контракту, видаляється, щоб створити стійку область розв’язку. Включивши в моделі стрибкоподібну дифузію, вони можуть вловити особливості асиметрії та ексцесу розподілу прибутку, які часто спостерігаються в декількох активах на ринку. Ефективність схем досліджується за допомогою серiї чисельних експериментів.
dc.description.abstractAmerican-style options are important derivative contracts in today's worldwide financial markets. They trade large volumes on various underlying assets, including stocks, indices, foreign exchange rates, and futures. In this work, a penalty approach is derived and examined for use in pricing the American style of Asian option under the Merton model. The Black–Scholes equation incorporates a small non-linear penalty factor. In this approach, the free and moving boundary imposed by the contract's early exercise feature is removed in order to create a stable solution domain. By including Jump-diffusion in the models, they are able to capture the skewness and kurtosis features of return distributions often observed in several assets in the market. The performance of the schemes is investigated through a series of numerical experiments.
dc.format.extent1215-1221
dc.format.pages7
dc.identifier.citationLaham M. F. Penalty method for pricing American-style Asian option with jumps diffusion process / M. F. Laham, S. N. I. Ibrahim // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1215–1221.
dc.identifier.citationenLaham M. F. Penalty method for pricing American-style Asian option with jumps diffusion process / M. F. Laham, S. N. I. Ibrahim // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1215–1221.
dc.identifier.doidoi.org/10.23939/mmc2023.04.1215
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64074
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 4 (10), 2023
dc.relation.references[1] Amin K. I. Jump diffusion option valuation in discrete time. The Journal of Finance. 48 (5), 1833–1863 (1993).
dc.relation.references[2] Zhang X. L. Numerical analysis of American option pricing in a jump-diffusion model. Mathematics of Operations Research. 22 (3), 668–690 (1997).
dc.relation.references[3] Andersen L., Andreasen J. Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Review of Derivatives Research. 4, 231–262 (2000).
dc.relation.references[4] Nielsen B. F., Skavhaug O., Tveito A. A penalty scheme for solving American option problems. Progress in Industrial Mathematics at ECMI 2000. 608–612 (2002).
dc.relation.references[5] d’Halluin Y., Forsyth P. A., Labahn G. A penalty method for American options with jump diffusion processes. Numerische Mathematik. 97, 321–352 (2004).
dc.relation.references[6] Eraker B., Johannes M., Polson N. The impact of jumps in volatility and returns. The Journal of Finance. 58 (3), 1269–1300 (2003).
dc.relation.references[7] Merton R. C. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics. 3 (1–2), 125–144 (1976).
dc.relation.references[8] Ikonen S., Toivanen J. Efficient numerical methods for pricing American options under stochastic volatility. Numerical Methods for Partial Differential Equations: An International Journal. 24 (1), 104–126 (2008).
dc.relation.references[9] Lesmana D. C., Wang S. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial and Management Optimization. 13 (4), 1793–1813 (2016).
dc.relation.references[10] Laham M. F., Ibrahim S. N. I., Kilicman A. Pricing Arithmetic Asian Put Option with Early Exercise Boundary under Jump-Diffusion Process. Malaysian Journal of Mathematical Sciences. 14 (1), 1–15 (2020).
dc.relation.references[11] Parrott A. K., Rout S. Semi-Lagrange time integration for PDE models of Asian options. Progress in Industrial Mathematics at ECMI 2004. 432–436, (2006).
dc.relation.references[12] Aatif E., El Mouatasim A. European option pricing under model involving slow growth volatility with jump. Mathematical Modeling and Computing. 10 (3), 889–898 (2023).
dc.relation.references[13] Ibrahim S. N. I., Laham M. F. Call warrants pricing formula under mixed-fractional Brownian motion with Merton jump-diffusion. Mathematical Modeling and Computing. 9 (4), 892–897 (2022).
dc.relation.references[14] Sawal A. S., Ibrahim S. N. I., Roslan T. R. N. Pricing equity warrants with jumps, stochastic volatility, and stochastic interest rates. Mathematical Modeling and Computing. 9 (4), 882–891 (2022).
dc.relation.referencesen[1] Amin K. I. Jump diffusion option valuation in discrete time. The Journal of Finance. 48 (5), 1833–1863 (1993).
dc.relation.referencesen[2] Zhang X. L. Numerical analysis of American option pricing in a jump-diffusion model. Mathematics of Operations Research. 22 (3), 668–690 (1997).
dc.relation.referencesen[3] Andersen L., Andreasen J. Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Review of Derivatives Research. 4, 231–262 (2000).
dc.relation.referencesen[4] Nielsen B. F., Skavhaug O., Tveito A. A penalty scheme for solving American option problems. Progress in Industrial Mathematics at ECMI 2000. 608–612 (2002).
dc.relation.referencesen[5] d’Halluin Y., Forsyth P. A., Labahn G. A penalty method for American options with jump diffusion processes. Numerische Mathematik. 97, 321–352 (2004).
dc.relation.referencesen[6] Eraker B., Johannes M., Polson N. The impact of jumps in volatility and returns. The Journal of Finance. 58 (3), 1269–1300 (2003).
dc.relation.referencesen[7] Merton R. C. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics. 3 (1–2), 125–144 (1976).
dc.relation.referencesen[8] Ikonen S., Toivanen J. Efficient numerical methods for pricing American options under stochastic volatility. Numerical Methods for Partial Differential Equations: An International Journal. 24 (1), 104–126 (2008).
dc.relation.referencesen[9] Lesmana D. C., Wang S. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial and Management Optimization. 13 (4), 1793–1813 (2016).
dc.relation.referencesen[10] Laham M. F., Ibrahim S. N. I., Kilicman A. Pricing Arithmetic Asian Put Option with Early Exercise Boundary under Jump-Diffusion Process. Malaysian Journal of Mathematical Sciences. 14 (1), 1–15 (2020).
dc.relation.referencesen[11] Parrott A. K., Rout S. Semi-Lagrange time integration for PDE models of Asian options. Progress in Industrial Mathematics at ECMI 2004. 432–436, (2006).
dc.relation.referencesen[12] Aatif E., El Mouatasim A. European option pricing under model involving slow growth volatility with jump. Mathematical Modeling and Computing. 10 (3), 889–898 (2023).
dc.relation.referencesen[13] Ibrahim S. N. I., Laham M. F. Call warrants pricing formula under mixed-fractional Brownian motion with Merton jump-diffusion. Mathematical Modeling and Computing. 9 (4), 892–897 (2022).
dc.relation.referencesen[14] Sawal A. S., Ibrahim S. N. I., Roslan T. R. N. Pricing equity warrants with jumps, stochastic volatility, and stochastic interest rates. Mathematical Modeling and Computing. 9 (4), 882–891 (2022).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectамериканський варіант
dc.subjectазіатський варіант
dc.subjectстрибкоподібнодифузійний процес
dc.subjectметод штрафу
dc.subjectAmerican option
dc.subjectAsian option
dc.subjectjumps-diffusion process
dc.subjectpenalty method
dc.titlePenalty method for pricing American-style Asian option with jumps diffusion process
dc.title.alternativeМетод штрафу для ціноутворення в американському стилі азіатського опціону з процесом дифузії стрибків
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n4_Laham_M_F-Penalty_method_for_pricing_1215-1221.pdf
Size:
876.91 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n4_Laham_M_F-Penalty_method_for_pricing_1215-1221__COVER.png
Size:
444.17 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: