Air quality monitoring in a selected classroom

dc.citation.epage79
dc.citation.issue1
dc.citation.spage71
dc.contributor.affiliationТехнічний університет Кошице
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationTechnical University of Kosice
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКапало, П.
dc.contributor.authorВозняк, О. Т.
dc.contributor.authorЖелих, В. М.
dc.contributor.authorКлименко, Г. М.
dc.contributor.authorМиронюк, Х. В.
dc.contributor.authorKapalo, Peter
dc.contributor.authorVoznyak, Orest
dc.contributor.authorZhelykh, Vasyl
dc.contributor.authorKlymenko, Hanna
dc.contributor.authorMyroniuk, Khrystyna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-24T08:12:00Z
dc.date.available2023-04-24T08:12:00Z
dc.date.created2022-03-03
dc.date.issued2022-03-03
dc.description.abstractПід час дослідження “Експериментальне визначення оптимальної кількості повітря у вибраному приміщенні в Україні на основі вимірювань концентрації вуглекислого газу” було проведено експериментальне вимірювання у вибраній навчальній аудиторії України. Мета експериментального вимірювання – визначити зміну температури повітря, відносної вологості та концентрації вуглекислого газу під час навчального процесу. Потім за кривими концентрації вуглекислого газу можна розрахувати необхідну інтенсивність вентиляції у приміщенні. У статті викладено результати вимірювання температури повітря та концентрації вуглекислого газу в приміщенні, а також визначення реакції людей у приміщенні на якість повітря. Низка досліджень підтверджують, що якість повітря у навчальних аудиторіях істотно впливає на здоров’я та успішність учнів і вчителів. Відповідно до Указу 527/2007 [1], приміщення, які використовують для навчання дітей та молоді, повинні опалюватися так, щоб забезпечити температуру не менше ніж 20 °С у приміщеннях, де учні працюють чотири години і більше. Для забезпечення повітрообміну від 20 до 30 м3/год на учня необхідна вентиляція. Згідно з українським стандартом ДБН V.2.2-3: 2018, мінімальна температура повітря – 18 °С і повітрообмін 20 м3/год на одну людину. Можна припустити, що якби в класі був прилад для вимірювання концентрації вуглекислого газу, який би подавав акустичний сигнал після досягнення значення 1000 ppm, то приміщення почали би провітрювати. Однак часто люди в класі настільки зайняті навчальним процесом, що помічають погіршення якості повітря лише після того, як покинуть кімнату, вийдуть у коридор.
dc.description.abstractAs part of the research entitled “Experimental determination of the optimal amount of air in a selected room in Ukraine based on measurements of carbon dioxide concentration”, an experimental measurement was performed in a selected school room in Ukraine. The aim of the experimental measurement was to determine the course of air temperature, relative humidity and carbon dioxide concentration during the teaching process. From the carbon dioxide concentration curves, it is possible to calculate the required ventilation intensity in the room. This article documents the results of measuring the air temperature and the carbon dioxide concentration in the room, as well as the reactions of people in the room to the air quality.
dc.format.extent71-79
dc.format.pages9
dc.identifier.citationAir quality monitoring in a selected classroom / Peter Kapalo, Orest Voznyak, Vasyl Zhelykh, Hanna Klymenko, Khrystyna Myroniuk // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 71–79.
dc.identifier.citationenAir quality monitoring in a selected classroom / Peter Kapalo, Orest Voznyak, Vasyl Zhelykh, Hanna Klymenko, Khrystyna Myroniuk // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 71–79.
dc.identifier.doidoi.org/10.23939/jtbp2022.01.071
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57987
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (4), 2022
dc.relation.referencesBatterman S. (2017). Review and Extension of CO2-Based Methods to Determine Ventilation Rates with
dc.relation.referencesApplication to School Classrooms. International journal of environmental research and public health, 14(2), 145.
dc.relation.referenceshttps://doi.org/10.3390/ijerph14020145.
dc.relation.referencesZemouri C, Awad SF, Volgenant CMC, Crielaard W, Laheij AMGA, & de Soet JJ. (2020). Modeling of the
dc.relation.referencestransmission of coronaviruses, measles virus, influenza virus, Mycobacterium tuberculosis, and Legionella
dc.relation.referencespneumophila in dental clinics. J. Dent Res., 99(10), 1192–1198. DOI: 10.1177/0022034520940288.
dc.relation.referencesRichardson, E. T., Morrow, C. D., Kalil, D. B., Ginsberg, S., Bekker, L. G., & Wood, R. (2014). Shared air: a
dc.relation.referencesrenewed focus on ventilation for the prevention of tuberculosis transmission. PloS one, 9(5), e96334. https://doi.org/10.1371/ journal.pone.0096334.
dc.relation.referencesWood, R., Morrow, C., Ginsberg, S., Piccoli, E., Kalil, D., Sassi, A., Walensky, R. P., & Andrews, J. R.
dc.relation.references(2014). Quantification of shared air: a social and environmental determinant of airborne disease transmission. PloS
dc.relation.referencesone, 9(9), e106622. https://doi.org/10.1371/journal.pone.0106622.
dc.relation.referencesHuang Q., Marzouk T., Cirligeanu R., Malmstrom H., Eliav E., & Ren Y.-F. (2021). Ventilation Assessment
dc.relation.referencesby Carbon Dioxide Levels in Dental Treatment Rooms. Journal of Dental Research, Vol. 100(8), 810–816,
dc.relation.referencesInternational & American Associations for Dental Research 2021. 2021-05-11. DOI: 10.1177/00220345211014441.
dc.relation.referencesDBN B.2.2-3: 2018 (2018). Educational institutions. Buildings and structures. Kyiv. Ministry of Regional
dc.relation.referencesDevelopment, Construction and Housing and Communal Services of Ukraine. Information bulletin of the Ministry of
dc.relation.referencesRegional Development of Ukraine No. 5, 1–57. http://kbu.org.ua/assets/app/documents/53(1).
dc.relation.referencesAdamski Mariusz (2015). MathModelica in Modeling of Countercurrent Heat Exchangers. 2013 8th
dc.relation.referencesEUROSIM Congress on Modelling and Simulation, 439–442. January 2015. DOI: 10.1109/EUROSIM.2013.81
dc.relation.referencesKapalo, P., Domnita, F., Bacotiu, C., & Spodyniuk, N. (2018). The impact of carbon dioxide concentration on
dc.relation.referencesthe human health – case study, Journal of Applied Engineering Sciences, Vol. 8, No. 1, 61–66. ISSN 2284-7197,
dc.relation.referencesDOI: 10.2478/jaes-2018-0008.
dc.relation.referencesKapalo P., Klymenko H., Zhelykh V., Adamski M. Investigation of Indoor Air Quality in the Selected Ukraine
dc.relation.referencesClassroom – Case Study. Lecture Notes in Civil Engineering 2020; 47: 168–173. https://doi.org/10.1007/978-3-030-27011-7_21.
dc.relation.referencesKapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019).
dc.relation.referencesInvestigation of CO2 production depending on physical activity of students. International Journal of Environmental
dc.relation.referencesHealth Research, Vol. 29, Is. 1, 31–44. ISSN: 09603123. DOI:10.1080/09603123.2018.1506570
dc.relation.referencesKapalo, P., Klymenko, H., Zhelykh, V., Adamski, M. (2020). Investigation of Indoor Air Quality in the
dc.relation.referencesSelected Ukraine Classroom – Case Study. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds) Proceedings of CEE 2019. CEE 2019. Lecture Notes in Civil Engineering, vol. 47. Springer, Cham.
dc.relation.referenceshttps://doi.org/10.1007/978-3-030-27011-7_21
dc.relation.referencesKapalo, P., Vilcekova, S., & Voznyak, O. (2014). Using experimental measurements the concentrations of
dc.relation.referencescarbon dioxide for determining the intensity of ventilation in the rooms, Chemical Engineering Transactions, Vol. 39, 1789–1794. ISBN 978-88-95608-30-3; ISSN 2283-9216. DOI: 10.3303/CET1439299.
dc.relation.referencesKapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate
dc.relation.referencesinside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations - Case Study, The 10th
dc.relation.referencesInternational Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30–35. https://doi.org/10.3846/enviro.2017.262.
dc.relation.referencesKapalo, P., Domnita, F., Bacotiu, & C., Podolak, M. (2018). The influence of occupants’ body mass on carbon
dc.relation.referencesdioxide mass flow rate inside a university classroom – case study, Int. J. Environ. Health Res. 28(4):432–447.
dc.relation.referenceshttps://doi.org/10.1080/09603123.2018.1483010
dc.relation.referencesKapalo, P., Voznyak, O., Yurkevych, Y., Myroniuk, K., & Sukholova, I. (2018). Ensuring comfort microclimate in the classrooms under condition of the required air exchange. Eastern-European Journal of
dc.relation.referencesEnterprise
dc.relation.referencesTechnologies, 5(10 (95), 6–14. https://doi.org/10.15587/1729-4061.2018.143945.
dc.relation.referencesLee Y., Kim Y. (2022). Analysis of indoor air pollutants and guidelines for space and physical activities in
dc.relation.referencesmulti-purpose activity space of elementary schools. Energies; 15(1): 220. https://doi.org/10.3390/en15010220.
dc.relation.referencesLis A., Spodyniuk N. (2019). The quality of the microclimate in educational buildings subjected to thermal
dc.relation.referencesmodernization. 11th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKODOK, E3S Web of Conferences 2019; 100(1): 00048.
dc.relation.referenceshttps://doi.org/10.1051/e3sconf/201910000048.
dc.relation.referencesPietrucha T. (2017). Ability to determine the quality of indoor air in classrooms without sensors. E3S Web of
dc.relation.referencesConferences; 17: 00073. https://doi.org/10.1051/e3sconf/20171700073.
dc.relation.referencesShapoval S., Shapoval P., Zhelykh V., Pona O., Spodyniuk N., Gulai B., Savchenko O., Myroniuk K. (2017).
dc.relation.referencesEcological and energy aspects of using the combined solar collectors for low-energy houses. Chemistry & chemical
dc.relation.referencestechnology; 11(4): 503–508. https://doi.org/10.23939/chcht11.04.503.
dc.relation.referencesZhelykh V., Yurkevych Yu., Voznyak O., Sukholova I., Dovbush O. (2021). Enhancing of energetic and
dc.relation.referenceseconomic efficiency of air distribution by swirled-compact air jets. Production Engineering Archives; 27(3): 171–175. https://doi.org/10.30657/pea.2021.27.22.
dc.relation.referencesenBatterman S. (2017). Review and Extension of CO2-Based Methods to Determine Ventilation Rates with
dc.relation.referencesenApplication to School Classrooms. International journal of environmental research and public health, 14(2), 145.
dc.relation.referencesenhttps://doi.org/10.3390/ijerph14020145.
dc.relation.referencesenZemouri C, Awad SF, Volgenant CMC, Crielaard W, Laheij AMGA, & de Soet JJ. (2020). Modeling of the
dc.relation.referencesentransmission of coronaviruses, measles virus, influenza virus, Mycobacterium tuberculosis, and Legionella
dc.relation.referencesenpneumophila in dental clinics. J. Dent Res., 99(10), 1192–1198. DOI: 10.1177/0022034520940288.
dc.relation.referencesenRichardson, E. T., Morrow, C. D., Kalil, D. B., Ginsberg, S., Bekker, L. G., & Wood, R. (2014). Shared air: a
dc.relation.referencesenrenewed focus on ventilation for the prevention of tuberculosis transmission. PloS one, 9(5), e96334. https://doi.org/10.1371/ journal.pone.0096334.
dc.relation.referencesenWood, R., Morrow, C., Ginsberg, S., Piccoli, E., Kalil, D., Sassi, A., Walensky, R. P., & Andrews, J. R.
dc.relation.referencesen(2014). Quantification of shared air: a social and environmental determinant of airborne disease transmission. PloS
dc.relation.referencesenone, 9(9), e106622. https://doi.org/10.1371/journal.pone.0106622.
dc.relation.referencesenHuang Q., Marzouk T., Cirligeanu R., Malmstrom H., Eliav E., & Ren Y.-F. (2021). Ventilation Assessment
dc.relation.referencesenby Carbon Dioxide Levels in Dental Treatment Rooms. Journal of Dental Research, Vol. 100(8), 810–816,
dc.relation.referencesenInternational & American Associations for Dental Research 2021. 2021-05-11. DOI: 10.1177/00220345211014441.
dc.relation.referencesenDBN B.2.2-3: 2018 (2018). Educational institutions. Buildings and structures. Kyiv. Ministry of Regional
dc.relation.referencesenDevelopment, Construction and Housing and Communal Services of Ukraine. Information bulletin of the Ministry of
dc.relation.referencesenRegional Development of Ukraine No. 5, 1–57. http://kbu.org.ua/assets/app/documents/53(1).
dc.relation.referencesenAdamski Mariusz (2015). MathModelica in Modeling of Countercurrent Heat Exchangers. 2013 8th
dc.relation.referencesenEUROSIM Congress on Modelling and Simulation, 439–442. January 2015. DOI: 10.1109/EUROSIM.2013.81
dc.relation.referencesenKapalo, P., Domnita, F., Bacotiu, C., & Spodyniuk, N. (2018). The impact of carbon dioxide concentration on
dc.relation.referencesenthe human health – case study, Journal of Applied Engineering Sciences, Vol. 8, No. 1, 61–66. ISSN 2284-7197,
dc.relation.referencesenDOI: 10.2478/jaes-2018-0008.
dc.relation.referencesenKapalo P., Klymenko H., Zhelykh V., Adamski M. Investigation of Indoor Air Quality in the Selected Ukraine
dc.relation.referencesenClassroom – Case Study. Lecture Notes in Civil Engineering 2020; 47: 168–173. https://doi.org/10.1007/978-3-030-27011-7_21.
dc.relation.referencesenKapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019).
dc.relation.referencesenInvestigation of CO2 production depending on physical activity of students. International Journal of Environmental
dc.relation.referencesenHealth Research, Vol. 29, Is. 1, 31–44. ISSN: 09603123. DOI:10.1080/09603123.2018.1506570
dc.relation.referencesenKapalo, P., Klymenko, H., Zhelykh, V., Adamski, M. (2020). Investigation of Indoor Air Quality in the
dc.relation.referencesenSelected Ukraine Classroom – Case Study. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds) Proceedings of CEE 2019. CEE 2019. Lecture Notes in Civil Engineering, vol. 47. Springer, Cham.
dc.relation.referencesenhttps://doi.org/10.1007/978-3-030-27011-7_21
dc.relation.referencesenKapalo, P., Vilcekova, S., & Voznyak, O. (2014). Using experimental measurements the concentrations of
dc.relation.referencesencarbon dioxide for determining the intensity of ventilation in the rooms, Chemical Engineering Transactions, Vol. 39, 1789–1794. ISBN 978-88-95608-30-3; ISSN 2283-9216. DOI: 10.3303/CET1439299.
dc.relation.referencesenKapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate
dc.relation.referenceseninside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations - Case Study, The 10th
dc.relation.referencesenInternational Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30–35. https://doi.org/10.3846/enviro.2017.262.
dc.relation.referencesenKapalo, P., Domnita, F., Bacotiu, & C., Podolak, M. (2018). The influence of occupants’ body mass on carbon
dc.relation.referencesendioxide mass flow rate inside a university classroom – case study, Int. J. Environ. Health Res. 28(4):432–447.
dc.relation.referencesenhttps://doi.org/10.1080/09603123.2018.1483010
dc.relation.referencesenKapalo, P., Voznyak, O., Yurkevych, Y., Myroniuk, K., & Sukholova, I. (2018). Ensuring comfort microclimate in the classrooms under condition of the required air exchange. Eastern-European Journal of
dc.relation.referencesenEnterprise
dc.relation.referencesenTechnologies, 5(10 (95), 6–14. https://doi.org/10.15587/1729-4061.2018.143945.
dc.relation.referencesenLee Y., Kim Y. (2022). Analysis of indoor air pollutants and guidelines for space and physical activities in
dc.relation.referencesenmulti-purpose activity space of elementary schools. Energies; 15(1): 220. https://doi.org/10.3390/en15010220.
dc.relation.referencesenLis A., Spodyniuk N. (2019). The quality of the microclimate in educational buildings subjected to thermal
dc.relation.referencesenmodernization. 11th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKODOK, E3S Web of Conferences 2019; 100(1): 00048.
dc.relation.referencesenhttps://doi.org/10.1051/e3sconf/201910000048.
dc.relation.referencesenPietrucha T. (2017). Ability to determine the quality of indoor air in classrooms without sensors. E3S Web of
dc.relation.referencesenConferences; 17: 00073. https://doi.org/10.1051/e3sconf/20171700073.
dc.relation.referencesenShapoval S., Shapoval P., Zhelykh V., Pona O., Spodyniuk N., Gulai B., Savchenko O., Myroniuk K. (2017).
dc.relation.referencesenEcological and energy aspects of using the combined solar collectors for low-energy houses. Chemistry & chemical
dc.relation.referencesentechnology; 11(4): 503–508. https://doi.org/10.23939/chcht11.04.503.
dc.relation.referencesenZhelykh V., Yurkevych Yu., Voznyak O., Sukholova I., Dovbush O. (2021). Enhancing of energetic and
dc.relation.referenceseneconomic efficiency of air distribution by swirled-compact air jets. Production Engineering Archives; 27(3): 171–175. https://doi.org/10.30657/pea.2021.27.22.
dc.relation.urihttps://doi.org/10.3390/ijerph14020145
dc.relation.urihttps://doi.org/10.1371/
dc.relation.urihttps://doi.org/10.1371/journal.pone.0106622
dc.relation.urihttp://kbu.org.ua/assets/app/documents/53(1
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_21
dc.relation.urihttps://doi.org/10.3846/enviro.2017.262
dc.relation.urihttps://doi.org/10.1080/09603123.2018.1483010
dc.relation.urihttps://doi.org/10.15587/1729-4061.2018.143945
dc.relation.urihttps://doi.org/10.3390/en15010220
dc.relation.urihttps://doi.org/10.1051/e3sconf/201910000048
dc.relation.urihttps://doi.org/10.1051/e3sconf/20171700073
dc.relation.urihttps://doi.org/10.23939/chcht11.04.503
dc.relation.urihttps://doi.org/10.30657/pea.2021.27.22
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Kapalo P., Voznyak O., Zhelykh V., Klymenko H., Myroniuk Kh., 2022
dc.subjectконцентрація вуглекислого газу
dc.subjectвідносна вологість повітря
dc.subjectтемпература повітря
dc.subjectшвидкість повітря
dc.subjectякість повітря
dc.subjectмоніторинг
dc.subjectcarbon dioxide concentration
dc.subjectrelative humidity
dc.subjectair temperature
dc.subjectair velocity
dc.subjectair quality
dc.subjectmonitoring
dc.titleAir quality monitoring in a selected classroom
dc.title.alternativeМоніторинг якості повітря у вибраному класі
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v4n1_Kapalo_P-Air_quality_monitoring_in_71-79.pdf
Size:
632.7 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v4n1_Kapalo_P-Air_quality_monitoring_in_71-79__COVER.png
Size:
372.08 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: