Synthesized Copolymer Derivative of Poly(Styrene-alt-Maleic Anhydride) as a New Chelating Resin to Remove Heavy Metal Ions from Aqueous Solution

dc.citation.epage211
dc.citation.issue2
dc.citation.spage203
dc.contributor.affiliationUniversity of Tabriz
dc.contributor.affiliationIslamic Azad University
dc.contributor.authorHosseinzadeh, Mehdi
dc.contributor.authorMirzaei, Mortaza
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:13:05Z
dc.date.available2024-01-22T11:13:05Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractХелатовусмолуякновий кополімер для видалення йонівметалів готували з використанням 3- (4-гідроксифеніл)циклопропан-1,1,2,2-тетракарбонової кислоти, 1,2-діаміноетану таполі(стирен-альт-малеїновогоангідриду). Параметри сорбційної поведінки досліджувались в різних умовах. Дослідження кінетики показали, що процес адсорбції підтвердив кінетику псевдо другого порядку, і дані адсорбції добре відповідали ізотермі Ленгмюра.
dc.description.abstractChelating resin as a new copolymer for metal ions removal was prepared using 3-(4-hydroxyphenyl) cyclopropane-1,1,2,2-tetracarboxylic acid and 1,2-diaminoethane on the poly(styrene-alt-maleic anhydride). Parameters of sorption behavior were investigated under various conditions. Kinetics studies revealed that the adsorption process confirmed the pseudo-second-order kinetics and adsorption data were well fitted to Langmuir isotherm.
dc.format.extent203-211
dc.format.pages9
dc.identifier.citationHosseinzadeh M. Synthesized Copolymer Derivative of Poly(Styrene-alt-Maleic Anhydride) as a New Chelating Resin to Remove Heavy Metal Ions from Aqueous Solution / Mehdi Hosseinzadeh, Mortaza Mirzaei // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 203–211.
dc.identifier.citationenHosseinzadeh M. Synthesized Copolymer Derivative of Poly(Styrene-alt-Maleic Anhydride) as a New Chelating Resin to Remove Heavy Metal Ions from Aqueous Solution / Mehdi Hosseinzadeh, Mortaza Mirzaei // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 203–211.
dc.identifier.doidoi.org/10.23939/chcht16.02.203
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60980
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Isobe, N.; Chen, X.; Kim,U.-J.;Kimura, S.;Wada, M.;Saito, T.;Isogai, A.TEMPO-Oxidized Cellulose Hydrogel as a High-Capacity and Reusable Heavy Metal Ion Adsorbent. J. Hazard. Mater.2013, 260,195-201. https://doi.org/10.1016/j.jhazmat.2013.05.024
dc.relation.references[2] Chibuike, G.U.;Obiora, S.C.Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods.Appl. Environ. Soil. Sci. 2014,2014, 1. https://doi.org/10.1155/2014/752708
dc.relation.references[3] Sharma, S.; Sharma, S.;Upreti,N.; Sharma, K.P.Monitoring Toxicity of an Azo Dye Methyl Red and a Heavy Metal Cu, Using Plant and Animal Bioassays.Toxicol. Environ. Chem.2009, 91, 109-120. https://doi.org/10.1080/02772240802010987
dc.relation.references[4] Brieger, G.; Wells, J.R.; Hunter, R.D. Plant and Animal Species Composition and Heavy Metal Content in Fly Ash Ecosystems.Water Air Soil Poll. 1992, 63, 87-103. https://doi.org/10.1007/BF00475624
dc.relation.references[5] Oehmen, A.; Vergel, D.; Fradinho, J.;Reis, M.A.M.;Crespo, J.G.;Velizarov, S.Mercury Removal from Water Streams Through the Ion Exchange Membrane Bioreactor Concept.J. Hazard. Mater.2014, 264, 65-70. https://doi.org/10.1016/j.jhazmat.2013.10.067
dc.relation.references[6] Zou, W.;Filatov, M.; Atwood, D.; Cremer, D.Removal of Mercury from the Environment: A Quantum-Chemical Study with the Normalized Elimination of the Small Component Method.Inorg. Chem.2013, 52, 2497-2504. https://doi.org/10.1021/ic302444b
dc.relation.references[7] Fu, F.;Wang, Q.RemovalofHeavy MetalIons fromWastewaters: A review.J. Environ. Manage. 2011, 92,407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
dc.relation.references[8] Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.-H.; Babel, S.Physico–Chemical Treatment TechniquesforWastewater Laden with Heavy Metals.Chem. Eng. J.2006, 118, 83-98. https://doi.org/10.1016/j.cej.2006.01.015
dc.relation.references[9] Luo, S.; Xu, X.; Zhou, G.; Liu, C.; Tang, Y.; Liu, Y. Amino Siloxane Oligomer-Linked Graphene Oxide as an Efficient Adsorbent for Removal of Pb(II) from Wastewater.J. Hazard. Mater. 2014, 274, 145-155. https://doi.org/10.1016/j.jhazmat.2014.03.062
dc.relation.references[10] Zhao, F.;Tang, W.Z.; Zhao, D.; Meng, Y.; Yin, D.;Sillanpää, M.Adsorption Kinetics, Isotherms and Mechanisms of Cd(II), Pb(II), Co(II) and Ni(II) by a Modified Magnetic Polyacrylamide MicrocompositeAdsorbent.J. Water. Process. Eng.2014, 4, 47-57. https://doi.org/10.1016/j.jwpe.2014.09.003
dc.relation.references[11] Tripathi, K.M.; Tyagi, A.; Ashfaq, M.; Gupta, R.K. Temperature Dependent, Shape Variant Synthesis of Photoluminescent and Biocompatible Carbon Nanostructures from Almond Husk for Applications in Dye Removal.RSC Adv.2016, 6,29545-29553. https://doi.org/10.1039/C5RA27432J
dc.relation.references[12] Zhao, D.; Zhang Q.; Xuan H.;Chen, Y.; Zhang, K.; Feng, S.; Alsaedi, A.; Hayat, T.; Chen, C. EDTA Functionalized Fe3O4/Graphene Oxide for Efficient Removal of U(VI) from Aqueous Solutions.J. Colloid. Interface Sci. 2017,506, 300-307. https://doi.org/10.1016/j.jcis.2017.07.057
dc.relation.references[13] Zeng, W.; Liu, Y.-G.; Hu, X.-J.; Liu, S.-B.; Zeng, G.-M.; Zheng, B.-H.; Jiang, L.-H.; Guo, F.-Y.; Ding, Y.; Xu, Y. Decontamination of Methylene Blue from Aqueous Solution by Magnetic Chitosan Lignosulfonate Grafted with Graphene Oxide: Effects of Environmental Conditions and Surfactant.RSC Adv. 2016, 6, 19298-19307. https://doi.org/10.1039/C5RA27657H
dc.relation.references[14] Deng, S.; Wang, P.;Zhang, G.;Dou, Y.Polyacrylonitrile-Based Fiber ModifiedwithThiosemicarbazidebyMicrowave Irradiation and its Adsorption BehaviorforCd(II) and Pb(II).J. Hazard. Mater.2016,307, 64-72. https://doi.org/10.1016/j.jhazmat.2016.01.002
dc.relation.references[15] Zhou, P.; Yuan, H.;Ou, L.;Zhiyuan, P.RemovalofCd(II) and Cu(II) Ions fromAqueous Solutions Using Tannin-Phenolic Polymer Immobilized on Cellulose.J. Macromol. Sci. A2019, 56,717-722. https://doi.org/10.1080/10601325.2019.1601496
dc.relation.references[16] Rivas, B.L.; Morales, D.V.;Kabay, N.;Bryjak, M.Cr(III) Removal from Aqueous Solution Byion Exchange Resins Containing Carboxylic Acid and Sulphonic Acid Groups.J. Chil. Chem. Soc.2018, 63, 4012-4018. https://doi.org/10.4067/s0717-97072018000204012
dc.relation.references[17] Wang, Y.-P.; Zhou, P.; Luo, S.Z.; Liao, X.-P.;Wang, B.; Shao, Q.; Guo, X.; Guo, Z. Controllable Synthesis of Monolayer Poly(acrylic acid) on the Channel Surface of Mesoporous Alumina for Pb(II) Adsorption.Langmuir2018,34, 7859-7868. https://doi.org/10.1021/acs.langmuir.8b00789
dc.relation.references[18] Muhanna, F.J.; Dari, K.A.; Mubarak, M.S. Chelation Properties of Chitosan Functionalized with 1-Hydroxy-2-pyridinethione-4-carboxylic Acid Toward Some Heavy Metal Ions in Aqueous Solutions.J. Macromol. Sci. A2012,49,15-29. https://doi.org/10.1080/10601325.2012.630930
dc.relation.references[19] Samadi, N.; Ansari, R.;Khodavirdilo, B.Removal of Copper Ions from Aqueous Solutions Using Polymer Derivations of Poly (Styrene-Alt-Maleic Anhydride).Egypt. J. Petrol. 2017, 26, 375-389. https://doi.org/10.1016/j.ejpe.2016.05.010
dc.relation.references[20] Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA Functionalized Magnetic Graphene Oxide for Removal of Pb(II), Hg(II) and Cu(II) in Water Treatment: Adsorption Mechanism and Separation Property.Chem. Eng. J.2015, 281, 1-10. https://doi.org/10.1016/j.cej.2015.06.043
dc.relation.references[21] Hasanzadeh, R.; Moghadam, P.N.;Samadi, N.Synthesis and Application of Modified Poly (Styrene-alt-maleic anhydride) Networks as a Nano Chelating Resin for Uptake of Heavy Metal Ions.Polym. Adv. Technol. 2013, 24, 34-41. https://doi.org/10.1002/pat.3046
dc.relation.references[22] Masoumi, A.;Ghaemy, M.Adsorption of Heavy Metal Ions and Azo Dyes by CrosslinkedNanochelating Resins Based onPoly(methylmethacrylate-co-maleic anhydride).Express. Polym. Lett.2014, 8, 187-196. https://doi.org/10.3144/expresspolymlett.2014.22
dc.relation.references[23] Liu, Z.S.;Rempel, G.L.Removal of Transition Metals from Dilute Aqueous Solution by CarboxylicAcid Group Containing Absorbent Polymers.Hydrol. Curr. Res.2011,2,1. https://doi.org/10.4172/2157-7587.1000107
dc.relation.references[24] Moghadam, P.N.;Hasanzadeh, R.;Khalafy,J.Preparation of SMA Functionalized Sulfanilic Acid Hydrogels and Investigation of their Metal Ions Adsorption Behavior.Iran. Polym. J.2013, 22, 133-142. https://doi.org/10.1007/s13726-012-0111-5
dc.relation.references[25] Hosseinzadeh, M.Removalof Heavy Metal Ions fromAqueous Solutions UsingModifiedPoly(styrene-alt-maleicanhydride) Copolymer as a ChelatingResin.Russ. J. Appl. Chem. 2018,91, 1984-1993. https://doi.org/10.1134/S1070427218120108
dc.relation.references[26] Hartman, W.W.; Dreger, E.E.A Publicationof Reliable MethodsforthePreparationofOrganic Compounds.Org. Synth. 1931, 11, 30. https://doi.org/10.15227/orgsyn.011.0030
dc.relation.references[27] Hosseinzadeh, M.;Pesyan, N.N.;Moghadam, P.N. Synthesis and Characterization of PolymerMetal Chelates Derived from Poly(2,2,3,3-tetramethyleneaminecyclopropyl)phenyl Acrylate.Adv. Polym. Technol. 2018, 37, 461. https://doi.org/10.1002/adv.21685
dc.relation.references[28] Kashani, E.; Pesyan, N.N.; Rashidnejad, H.;Marjani, A.;Asl, H.Y.Synthesis and Characterization of Novel Polymeric Organic–Inorganic Complex Framework Based on Sodium 2,4‑Dioxo‑6‑aryl‑3‑oxa‑bicyclo[3.1.0]hexane‑1,5‑dicarboxylate (SDAOBDC) with Three‑Dimensional Hybrid Networks.J. Iran.Chem. Soc.2017, 14,2143-2156. https://doi.org/10.1007/s13738-017-1151-8
dc.relation.references[29] Henry, S.M.; El-Sayed, M.E.H.; Pirie, C.M.;Hoffman, A.S.; Stayton, P.S. pH-Responsive Poly(styrene-alt-maleic anhydride) Alkylamide Copolymers for Intracellular Drug Delivery.Biomacromolecules2006,7, 2407-2414. https://doi.org/10.1021/bm060143z
dc.relation.references[30] Wang, C.-C.; Chang, C.-Y.; Chen, C.-Y.Study on Metal Ion Adsorption of Bifunctional Chelating/Ion-Exchange Resins.Macromol. Chem. Phys. 2001,202, 882-890. https://doi.org/10.1002/1521-3935(20010301)202:6%3C882::AID-MACP882%3E3.0.CO;2-K
dc.relation.references[31]Chen, C.L.; Wang, X.K.;Nagatsu, M.Europium Adsorption on Multiwall Carbon Nanotube/Iron Oxide Magnetic Composite in the Presence ofPolyacrylic Acid.Environ. Sci. Technol. 2009, 43, 2362-2367. https://doi.org/10.1021/es803018a
dc.relation.references[32] Chen, C.; Hu, J.; Shao; Li, J.; Wang, X. Adsorption Behavior of Multiwall Carbon Nanotube/Iron Oxide Magnetic Composites for Ni(II) and Sr(II).J. Hazard. Mater.2009, 164, 923-928. https://doi.org/10.1016/j.jhazmat.2008.08.089
dc.relation.references[33] Gomes, E.C.C.; de Sousa, A.; Vasconcelos, P.H.M.;Melo, D.Q.;Diógenes, I.C.N.;deSousa, E.H.S.;do Nascimento, R.F.;San Gil, R.A.S.;Longhinotti, E.Synthesis of Bifunctional Mesoporous Silica Spheres as Potential Adsorbent for Ions in Solution.Chem. Eng. J.2013, 214, 27-33. https://doi.org/10.1016/j.cej.2012.10.053
dc.relation.references[34] Zhao, G.; Li, J.; Ren, X.;Chen, C.;Wang, X. Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environ. Sci. Technol. 2011, 45, 10454-10462. https://doi.org/10.1021/es203439v
dc.relation.references[35] Huang, Y.; Keller, A.A.EDTA Functionalized Magnetic Nanoparticle Sorbents for Cadmium and Lead Contaminated Water Treatment. Water. Res.2015, 80, 159-168. https://doi.org/10.1016/j.watres.2015.05.011
dc.relation.referencesen[1] Isobe, N.; Chen, X.; Kim,U.-J.;Kimura, S.;Wada, M.;Saito, T.;Isogai, A.TEMPO-Oxidized Cellulose Hydrogel as a High-Capacity and Reusable Heavy Metal Ion Adsorbent. J. Hazard. Mater.2013, 260,195-201. https://doi.org/10.1016/j.jhazmat.2013.05.024
dc.relation.referencesen[2] Chibuike, G.U.;Obiora, S.C.Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods.Appl. Environ. Soil. Sci. 2014,2014, 1. https://doi.org/10.1155/2014/752708
dc.relation.referencesen[3] Sharma, S.; Sharma, S.;Upreti,N.; Sharma, K.P.Monitoring Toxicity of an Azo Dye Methyl Red and a Heavy Metal Cu, Using Plant and Animal Bioassays.Toxicol. Environ. Chem.2009, 91, 109-120. https://doi.org/10.1080/02772240802010987
dc.relation.referencesen[4] Brieger, G.; Wells, J.R.; Hunter, R.D. Plant and Animal Species Composition and Heavy Metal Content in Fly Ash Ecosystems.Water Air Soil Poll. 1992, 63, 87-103. https://doi.org/10.1007/BF00475624
dc.relation.referencesen[5] Oehmen, A.; Vergel, D.; Fradinho, J.;Reis, M.A.M.;Crespo, J.G.;Velizarov, S.Mercury Removal from Water Streams Through the Ion Exchange Membrane Bioreactor Concept.J. Hazard. Mater.2014, 264, 65-70. https://doi.org/10.1016/j.jhazmat.2013.10.067
dc.relation.referencesen[6] Zou, W.;Filatov, M.; Atwood, D.; Cremer, D.Removal of Mercury from the Environment: A Quantum-Chemical Study with the Normalized Elimination of the Small Component Method.Inorg. Chem.2013, 52, 2497-2504. https://doi.org/10.1021/ic302444b
dc.relation.referencesen[7] Fu, F.;Wang, Q.RemovalofHeavy MetalIons fromWastewaters: A review.J. Environ. Manage. 2011, 92,407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
dc.relation.referencesen[8] Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.-H.; Babel, S.Physico–Chemical Treatment TechniquesforWastewater Laden with Heavy Metals.Chem. Eng. J.2006, 118, 83-98. https://doi.org/10.1016/j.cej.2006.01.015
dc.relation.referencesen[9] Luo, S.; Xu, X.; Zhou, G.; Liu, C.; Tang, Y.; Liu, Y. Amino Siloxane Oligomer-Linked Graphene Oxide as an Efficient Adsorbent for Removal of Pb(II) from Wastewater.J. Hazard. Mater. 2014, 274, 145-155. https://doi.org/10.1016/j.jhazmat.2014.03.062
dc.relation.referencesen[10] Zhao, F.;Tang, W.Z.; Zhao, D.; Meng, Y.; Yin, D.;Sillanpää, M.Adsorption Kinetics, Isotherms and Mechanisms of Cd(II), Pb(II), Co(II) and Ni(II) by a Modified Magnetic Polyacrylamide MicrocompositeAdsorbent.J. Water. Process. Eng.2014, 4, 47-57. https://doi.org/10.1016/j.jwpe.2014.09.003
dc.relation.referencesen[11] Tripathi, K.M.; Tyagi, A.; Ashfaq, M.; Gupta, R.K. Temperature Dependent, Shape Variant Synthesis of Photoluminescent and Biocompatible Carbon Nanostructures from Almond Husk for Applications in Dye Removal.RSC Adv.2016, 6,29545-29553. https://doi.org/10.1039/P.5RA27432J
dc.relation.referencesen[12] Zhao, D.; Zhang Q.; Xuan H.;Chen, Y.; Zhang, K.; Feng, S.; Alsaedi, A.; Hayat, T.; Chen, C. EDTA Functionalized Fe3O4/Graphene Oxide for Efficient Removal of U(VI) from Aqueous Solutions.J. Colloid. Interface Sci. 2017,506, 300-307. https://doi.org/10.1016/j.jcis.2017.07.057
dc.relation.referencesen[13] Zeng, W.; Liu, Y.-G.; Hu, X.-J.; Liu, S.-B.; Zeng, G.-M.; Zheng, B.-H.; Jiang, L.-H.; Guo, F.-Y.; Ding, Y.; Xu, Y. Decontamination of Methylene Blue from Aqueous Solution by Magnetic Chitosan Lignosulfonate Grafted with Graphene Oxide: Effects of Environmental Conditions and Surfactant.RSC Adv. 2016, 6, 19298-19307. https://doi.org/10.1039/P.5RA27657H
dc.relation.referencesen[14] Deng, S.; Wang, P.;Zhang, G.;Dou, Y.Polyacrylonitrile-Based Fiber ModifiedwithThiosemicarbazidebyMicrowave Irradiation and its Adsorption BehaviorforCd(II) and Pb(II).J. Hazard. Mater.2016,307, 64-72. https://doi.org/10.1016/j.jhazmat.2016.01.002
dc.relation.referencesen[15] Zhou, P.; Yuan, H.;Ou, L.;Zhiyuan, P.RemovalofCd(II) and Cu(II) Ions fromAqueous Solutions Using Tannin-Phenolic Polymer Immobilized on Cellulose.J. Macromol. Sci. A2019, 56,717-722. https://doi.org/10.1080/10601325.2019.1601496
dc.relation.referencesen[16] Rivas, B.L.; Morales, D.V.;Kabay, N.;Bryjak, M.Cr(III) Removal from Aqueous Solution Byion Exchange Resins Containing Carboxylic Acid and Sulphonic Acid Groups.J. Chil. Chem. Soc.2018, 63, 4012-4018. https://doi.org/10.4067/s0717-97072018000204012
dc.relation.referencesen[17] Wang, Y.-P.; Zhou, P.; Luo, S.Z.; Liao, X.-P.;Wang, B.; Shao, Q.; Guo, X.; Guo, Z. Controllable Synthesis of Monolayer Poly(acrylic acid) on the Channel Surface of Mesoporous Alumina for Pb(II) Adsorption.Langmuir2018,34, 7859-7868. https://doi.org/10.1021/acs.langmuir.8b00789
dc.relation.referencesen[18] Muhanna, F.J.; Dari, K.A.; Mubarak, M.S. Chelation Properties of Chitosan Functionalized with 1-Hydroxy-2-pyridinethione-4-carboxylic Acid Toward Some Heavy Metal Ions in Aqueous Solutions.J. Macromol. Sci. A2012,49,15-29. https://doi.org/10.1080/10601325.2012.630930
dc.relation.referencesen[19] Samadi, N.; Ansari, R.;Khodavirdilo, B.Removal of Copper Ions from Aqueous Solutions Using Polymer Derivations of Poly (Styrene-Alt-Maleic Anhydride).Egypt. J. Petrol. 2017, 26, 375-389. https://doi.org/10.1016/j.ejpe.2016.05.010
dc.relation.referencesen[20] Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA Functionalized Magnetic Graphene Oxide for Removal of Pb(II), Hg(II) and Cu(II) in Water Treatment: Adsorption Mechanism and Separation Property.Chem. Eng. J.2015, 281, 1-10. https://doi.org/10.1016/j.cej.2015.06.043
dc.relation.referencesen[21] Hasanzadeh, R.; Moghadam, P.N.;Samadi, N.Synthesis and Application of Modified Poly (Styrene-alt-maleic anhydride) Networks as a Nano Chelating Resin for Uptake of Heavy Metal Ions.Polym. Adv. Technol. 2013, 24, 34-41. https://doi.org/10.1002/pat.3046
dc.relation.referencesen[22] Masoumi, A.;Ghaemy, M.Adsorption of Heavy Metal Ions and Azo Dyes by CrosslinkedNanochelating Resins Based onPoly(methylmethacrylate-co-maleic anhydride).Express. Polym. Lett.2014, 8, 187-196. https://doi.org/10.3144/expresspolymlett.2014.22
dc.relation.referencesen[23] Liu, Z.S.;Rempel, G.L.Removal of Transition Metals from Dilute Aqueous Solution by CarboxylicAcid Group Containing Absorbent Polymers.Hydrol. Curr. Res.2011,2,1. https://doi.org/10.4172/2157-7587.1000107
dc.relation.referencesen[24] Moghadam, P.N.;Hasanzadeh, R.;Khalafy,J.Preparation of SMA Functionalized Sulfanilic Acid Hydrogels and Investigation of their Metal Ions Adsorption Behavior.Iran. Polym. J.2013, 22, 133-142. https://doi.org/10.1007/s13726-012-0111-5
dc.relation.referencesen[25] Hosseinzadeh, M.Removalof Heavy Metal Ions fromAqueous Solutions UsingModifiedPoly(styrene-alt-maleicanhydride) Copolymer as a ChelatingResin.Russ. J. Appl. Chem. 2018,91, 1984-1993. https://doi.org/10.1134/S1070427218120108
dc.relation.referencesen[26] Hartman, W.W.; Dreger, E.E.A Publicationof Reliable MethodsforthePreparationofOrganic Compounds.Org. Synth. 1931, 11, 30. https://doi.org/10.15227/orgsyn.011.0030
dc.relation.referencesen[27] Hosseinzadeh, M.;Pesyan, N.N.;Moghadam, P.N. Synthesis and Characterization of PolymerMetal Chelates Derived from Poly(2,2,3,3-tetramethyleneaminecyclopropyl)phenyl Acrylate.Adv. Polym. Technol. 2018, 37, 461. https://doi.org/10.1002/adv.21685
dc.relation.referencesen[28] Kashani, E.; Pesyan, N.N.; Rashidnejad, H.;Marjani, A.;Asl, H.Y.Synthesis and Characterization of Novel Polymeric Organic–Inorganic Complex Framework Based on Sodium 2,4‑Dioxo‑6‑aryl‑3‑oxa‑bicyclo[3.1.0]hexane‑1,5‑dicarboxylate (SDAOBDC) with Three‑Dimensional Hybrid Networks.J. Iran.Chem. Soc.2017, 14,2143-2156. https://doi.org/10.1007/s13738-017-1151-8
dc.relation.referencesen[29] Henry, S.M.; El-Sayed, M.E.H.; Pirie, C.M.;Hoffman, A.S.; Stayton, P.S. pH-Responsive Poly(styrene-alt-maleic anhydride) Alkylamide Copolymers for Intracellular Drug Delivery.Biomacromolecules2006,7, 2407-2414. https://doi.org/10.1021/bm060143z
dc.relation.referencesen[30] Wang, C.-C.; Chang, C.-Y.; Chen, C.-Y.Study on Metal Ion Adsorption of Bifunctional Chelating/Ion-Exchange Resins.Macromol. Chem. Phys. 2001,202, 882-890. https://doi.org/10.1002/1521-3935(20010301)202:6%3C882::AID-MACP882%3E3.0.CO;2-K
dc.relation.referencesen[31]Chen, C.L.; Wang, X.K.;Nagatsu, M.Europium Adsorption on Multiwall Carbon Nanotube/Iron Oxide Magnetic Composite in the Presence ofPolyacrylic Acid.Environ. Sci. Technol. 2009, 43, 2362-2367. https://doi.org/10.1021/es803018a
dc.relation.referencesen[32] Chen, C.; Hu, J.; Shao; Li, J.; Wang, X. Adsorption Behavior of Multiwall Carbon Nanotube/Iron Oxide Magnetic Composites for Ni(II) and Sr(II).J. Hazard. Mater.2009, 164, 923-928. https://doi.org/10.1016/j.jhazmat.2008.08.089
dc.relation.referencesen[33] Gomes, E.C.C.; de Sousa, A.; Vasconcelos, P.H.M.;Melo, D.Q.;Diógenes, I.C.N.;deSousa, E.H.S.;do Nascimento, R.F.;San Gil, R.A.S.;Longhinotti, E.Synthesis of Bifunctional Mesoporous Silica Spheres as Potential Adsorbent for Ions in Solution.Chem. Eng. J.2013, 214, 27-33. https://doi.org/10.1016/j.cej.2012.10.053
dc.relation.referencesen[34] Zhao, G.; Li, J.; Ren, X.;Chen, C.;Wang, X. Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environ. Sci. Technol. 2011, 45, 10454-10462. https://doi.org/10.1021/es203439v
dc.relation.referencesen[35] Huang, Y.; Keller, A.A.EDTA Functionalized Magnetic Nanoparticle Sorbents for Cadmium and Lead Contaminated Water Treatment. Water. Res.2015, 80, 159-168. https://doi.org/10.1016/j.watres.2015.05.011
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2013.05.024
dc.relation.urihttps://doi.org/10.1155/2014/752708
dc.relation.urihttps://doi.org/10.1080/02772240802010987
dc.relation.urihttps://doi.org/10.1007/BF00475624
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2013.10.067
dc.relation.urihttps://doi.org/10.1021/ic302444b
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2010.11.011
dc.relation.urihttps://doi.org/10.1016/j.cej.2006.01.015
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2014.03.062
dc.relation.urihttps://doi.org/10.1016/j.jwpe.2014.09.003
dc.relation.urihttps://doi.org/10.1039/C5RA27432J
dc.relation.urihttps://doi.org/10.1016/j.jcis.2017.07.057
dc.relation.urihttps://doi.org/10.1039/C5RA27657H
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2016.01.002
dc.relation.urihttps://doi.org/10.1080/10601325.2019.1601496
dc.relation.urihttps://doi.org/10.4067/s0717-97072018000204012
dc.relation.urihttps://doi.org/10.1021/acs.langmuir.8b00789
dc.relation.urihttps://doi.org/10.1080/10601325.2012.630930
dc.relation.urihttps://doi.org/10.1016/j.ejpe.2016.05.010
dc.relation.urihttps://doi.org/10.1016/j.cej.2015.06.043
dc.relation.urihttps://doi.org/10.1002/pat.3046
dc.relation.urihttps://doi.org/10.3144/expresspolymlett.2014.22
dc.relation.urihttps://doi.org/10.4172/2157-7587.1000107
dc.relation.urihttps://doi.org/10.1007/s13726-012-0111-5
dc.relation.urihttps://doi.org/10.1134/S1070427218120108
dc.relation.urihttps://doi.org/10.15227/orgsyn.011.0030
dc.relation.urihttps://doi.org/10.1002/adv.21685
dc.relation.urihttps://doi.org/10.1007/s13738-017-1151-8
dc.relation.urihttps://doi.org/10.1021/bm060143z
dc.relation.urihttps://doi.org/10.1002/1521-3935(20010301)202:6%3C882::AID-MACP882%3E3.0.CO;2-K
dc.relation.urihttps://doi.org/10.1021/es803018a
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.08.089
dc.relation.urihttps://doi.org/10.1016/j.cej.2012.10.053
dc.relation.urihttps://doi.org/10.1021/es203439v
dc.relation.urihttps://doi.org/10.1016/j.watres.2015.05.011
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Hosseinzadeh M., Mirzaei M., 2022
dc.subjectадсорбція
dc.subjectхелатна смола
dc.subject3-(4-гідроксифеніл)циклопропан-1
dc.subject1
dc.subject2
dc.subject2-тетракарбонова кислота
dc.subjectйони металів
dc.subjectполі(стирен-альт-малеїновий ангідрид)
dc.subjectadsorption
dc.subjectchelating resin
dc.subject3-(4-hydroxyphenyl)cyclopropane-1
dc.subject1
dc.subject2
dc.subject2-tetracarboxylic acid
dc.subjectmetal ions
dc.subjectpoly(styrene-alt-maleic anhydride)
dc.titleSynthesized Copolymer Derivative of Poly(Styrene-alt-Maleic Anhydride) as a New Chelating Resin to Remove Heavy Metal Ions from Aqueous Solution
dc.title.alternativeСинтезований кополімерний похідний полі(стирен-альт-малеїновий ангидрид) як нова хелативна смола для видалення йонів важких металів з водного розчину
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n2_Hosseinzadeh_M-Synthesized_Copolymer_203-211.pdf
Size:
713.37 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n2_Hosseinzadeh_M-Synthesized_Copolymer_203-211__COVER.png
Size:
480.74 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: