Quantum-chemical modeling of the processes of cadmium sulfide and cadmium selenide films synthesis in aqueous solutions

dc.citation.epage32
dc.citation.issue1
dc.citation.spage26
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСозанський, М. А.
dc.contributor.authorШаповал, П. Й.
dc.contributor.authorСтаднік, В. Є.
dc.contributor.authorГумінілович, Р. Р.
dc.contributor.authorКурило, О. П.
dc.contributor.authorSozanskyi, M. A.
dc.contributor.authorShapoval, P. Yo.
dc.contributor.authorStadnik, V. E.
dc.contributor.authorGuminilovych, R. R.
dc.contributor.authorKurylo, O. P.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:14:55Z
dc.date.available2024-01-22T08:14:55Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractЗдійснено квантово-хімічне моделювання хімізму процесу синтезу CdS та CdSe у водних розчинах. Змодельовано синтез CdS із утворенням проміжних комплексних форм Cd(II) із тринатрій цитратом та амоній гідроксидом. Для синтезу CdSe використано натрію селеносульфат із тринатрій цитратом і без нього. Встановлено, що цей процес проходить через декілька проміжних стадій із утворенням перехідних реакційноздатних комплексів. На основі отриманих даних побудовано енергетичні діаграми стадій та здійснено порівняння процесів синтезу CdS і CdSe із різними комплексоутворювальними реагентами. Методом хімічного синтезу отримано плівки CdS та CdSe з водного розчину солі кадмію, комплексоутворюючого та халькогенізуючого реагентів. Рентгенофазовим аналізом підтверджено утворення цільових сполук, що було передбачено моделюванням.
dc.description.abstractThe quantum-chemical modeling of the synthesis process chemistry of CdS and CdSe in aqueos solutions was carried out. For that reason, the CdS synthesis simulation was carried out through the formation of Cd(II) complex forms with the trisodium citrate and ammonium hydroxide. At the CdSe synthesis, the sodium selenosulfate with and without trisodium citrate was used. It was established that this process passes through several intermediate stages with the transitional reactive complexes formation. On the basis of obtained data, the energy stages diagrams are constructed and the comparison of CdS and CdSe synthesis processes with various complexing agents has been carried out. The CdS and CdSe films were obtained by chemical synthesis method from an aqueous solution of cadmium salt, complexing and chalcogenizing agents. X-ray phase analysis confirmed the formation of desired compounds, which was predicted by modeling.
dc.format.extent26-32
dc.format.pages7
dc.identifier.citationQuantum-chemical modeling of the processes of cadmium sulfide and cadmium selenide films synthesis in aqueous solutions / M. A. Sozanskyi, P. Yo. Shapoval, V. E. Stadnik, R. R. Guminilovych, O. P. Kurylo // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 26–32.
dc.identifier.citationenQuantum-chemical modeling of the processes of cadmium sulfide and cadmium selenide films synthesis in aqueous solutions / M. A. Sozanskyi, P. Yo. Shapoval, V. E. Stadnik, R. R. Guminilovych, O. P. Kurylo // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 26–32.
dc.identifier.doidoi.org/ 10.23939/ctas2021.01.026
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60869
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (4), 2021
dc.relation.references1. Thiel, W. (2014). Semiempirical quantum-chemical methods. WIREs Computational Molecular Science, 4(2), 145–157. doi:10.1002/wcms.1161
dc.relation.references2. Bertoli, A. C., Carvalho, R., Freitas, M. P., Ramalho, T. C., Mancini, D. T., Oliveira, M. C., Varennes A., & Dias, A. (2015). Theoretical and experimental investigation of complex structures citrate of zinc (II). Inorganica Chimica Acta, 425, 164–168. doi: 10.1016/j.ica.2014.10.025
dc.relation.references3. Bertoli, A. C., Carvalho, R., Freitas, M. P., Ramalho, T. C., Mancini, D. T., Oliveira, M. C., Varennes A., & Dias, A. (2015). Theoretical spectroscopic studies and identification of metal-citrate (Cd and Pb) complexes by ESI-MS in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 271–280. doi: 10.1016/j.saa.2014.08.053
dc.relation.references4. Markov, V., Maskayeva, L., & Ivanov, P. (2006). Gidrokhimicheskoye osazhdeniye plenok sul'fidov metallov: modelirovaniye i yeksperiment. Yekaterinburg: UrO RAN
dc.relation.references5. Berg, L., Meshchenko, K., & Bogomolov, Yu. (1970). Vybor optimal'nykh usloviy osazhdeniya plenok sul'fida svintsa. Neorganicheskiye materialy, 6(7), 1337–1338.
dc.relation.references6. Markov, V, & Maskayeva, L. (2005). Raschet usloviy obrazovaniya tverdoy fazy khal'kogenidov metallov pri gidrokhimicheskom osazhdenii. Yekaterinburg: GOU VPO UGTU−UPI.
dc.relation.references7. Jalilehvand, F., Amini, Z., & Parmar, K. (2012). Cadmium (II) Complex Formation with Selenourea and Thiourea in Solution: An XAS and 113Cd NMR Study. Inorganic Chemistry, 51(20), 10619–10630. doi:10.1021/ic300852t
dc.relation.references8. Лурьє, Ю. Ю. (1989). Справочник по аналитической химии. Москва: Химия.
dc.relation.references9. Bochkarev, V., Soroka, L., Klimova, T., & Velikorechina, L. (2015). Modeling of Condensation Reaction of Aniline to Diphenylamine by PM7 Method. Procedia Chemistry, 15, 320–325. doi:10.1016/j.proche. 2015.10.051
dc.relation.references10. Somekawa, K. (2014). Molecular Simulation of Potential Energies, Steric Changes and Substituent Effects in Photochromic Cyclization/Cycloreversion of Three Kinds of Dithienylethenes by MOPAC-PM6 Method. Journal of Computer Chemistry, Japan, 13(4), 233–241. doi:10.2477/jccj.2014-0013
dc.relation.references11. Stewart, J. (2016). MOPAC2016 Home Page. Retrieved from http://openmopac.net/MOPAC2016.html
dc.relation.references12. Senda, N. (2018). Winmostar – Structure modeler and visualizer for free Chemistry simulations. Retrieved from https://winmostar.com/
dc.relation.references13. Sozanskyi, M. A., Shapoval, P. Y., Guminilovych, R. R., Laruk, M. M., & Yatchyshyn, Y. Y. (2019). Synthesis of cadmium sulfide thin films from an aqueous solution containing sodium citrate. Voprosy Khimii I Khimicheskoi Tekhnologii, (2), 39–46. doi:10.32434/0321-4095-2019-123-2-39-46
dc.relation.references14. Il’Chuk, G. A., Kurilo, I. V., Kus’Nezh, V. V., Petrus’, R. Y., & Shapoval, P. I., Guminilovich, R. R., Partyka, M.V., Tokarev, S. V. (2014). Growth of thin CdS films on glass substrates via reaction of thiourea with cadmium acetate in aqueous solution. Inorganic Materials, 50(8), 762-767. doi:10.1134/s0020168514080093.
dc.relation.references15. Sozanskyi, M., Shapoval, P., Guminilovych, R., Yatchyshyn, Y., Stadnik, V., & Koval, N. (2018). Khimichne osadzhennya z vann plivok kadmiy sul'fidu ta kadmiy selenidu. Proceedings of the ХVI International Scientific and Methodical Conference SHLA-2018, April 25–27, 2018. Lviv, Ukraine, 173–174.
dc.relation.references16. Guminilovych, R. R., Shapoval, P. I., Yatchyshyn, I. I., Il’Chuk, G. A., & Kusnezh, V. V. (2013). Chemical surface deposition and growth rate of thin CdSe films. Russian Journal of Applied Chemistry, 86(5), 696–702. doi:10.1134/s1070427213050157
dc.relation.references17. Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301–303. doi:10.1107/s0021889895014920
dc.relation.references18. Sozanskyi, M. A., Guminilovych, R. R., Shapoval, P. Yo., Yatchyshyn, Yo. Yo., Stadnik, V., & Koval, N. (2018). Methods of synthesis of CdSe films with good adhesion to glass substrates. Abstracts of the 5th International Congress “Sustainable Development: Environmental Protection. Energy Saving. Sustainable Environmental Management”, 26–29th September, 2018. Lviv, Ukraine, 91.
dc.relation.referencesen1. Thiel, W. (2014). Semiempirical quantum-chemical methods. WIREs Computational Molecular Science, 4(2), 145–157. doi:10.1002/wcms.1161
dc.relation.referencesen2. Bertoli, A. C., Carvalho, R., Freitas, M. P., Ramalho, T. C., Mancini, D. T., Oliveira, M. C., Varennes A., & Dias, A. (2015). Theoretical and experimental investigation of complex structures citrate of zinc (II). Inorganica Chimica Acta, 425, 164–168. doi: 10.1016/j.ica.2014.10.025
dc.relation.referencesen3. Bertoli, A. C., Carvalho, R., Freitas, M. P., Ramalho, T. C., Mancini, D. T., Oliveira, M. C., Varennes A., & Dias, A. (2015). Theoretical spectroscopic studies and identification of metal-citrate (Cd and Pb) complexes by ESI-MS in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 271–280. doi: 10.1016/j.saa.2014.08.053
dc.relation.referencesen4. Markov, V., Maskayeva, L., & Ivanov, P. (2006). Gidrokhimicheskoye osazhdeniye plenok sul'fidov metallov: modelirovaniye i yeksperiment. Yekaterinburg: UrO RAN
dc.relation.referencesen5. Berg, L., Meshchenko, K., & Bogomolov, Yu. (1970). Vybor optimal'nykh usloviy osazhdeniya plenok sul'fida svintsa. Neorganicheskiye materialy, 6(7), 1337–1338.
dc.relation.referencesen6. Markov, V, & Maskayeva, L. (2005). Raschet usloviy obrazovaniya tverdoy fazy khal'kogenidov metallov pri gidrokhimicheskom osazhdenii. Yekaterinburg: GOU VPO UGTU−UPI.
dc.relation.referencesen7. Jalilehvand, F., Amini, Z., & Parmar, K. (2012). Cadmium (II) Complex Formation with Selenourea and Thiourea in Solution: An XAS and 113Cd NMR Study. Inorganic Chemistry, 51(20), 10619–10630. doi:10.1021/ic300852t
dc.relation.referencesen8. Lurie, Yu. Yu. (1989). Spravochnyk po analytycheskoi khymyy. Moskva: Khymyia.
dc.relation.referencesen9. Bochkarev, V., Soroka, L., Klimova, T., & Velikorechina, L. (2015). Modeling of Condensation Reaction of Aniline to Diphenylamine by PM7 Method. Procedia Chemistry, 15, 320–325. doi:10.1016/j.proche. 2015.10.051
dc.relation.referencesen10. Somekawa, K. (2014). Molecular Simulation of Potential Energies, Steric Changes and Substituent Effects in Photochromic Cyclization/Cycloreversion of Three Kinds of Dithienylethenes by MOPAC-PM6 Method. Journal of Computer Chemistry, Japan, 13(4), 233–241. doi:10.2477/jccj.2014-0013
dc.relation.referencesen11. Stewart, J. (2016). MOPAC2016 Home Page. Retrieved from http://openmopac.net/MOPAC2016.html
dc.relation.referencesen12. Senda, N. (2018). Winmostar – Structure modeler and visualizer for free Chemistry simulations. Retrieved from https://winmostar.com/
dc.relation.referencesen13. Sozanskyi, M. A., Shapoval, P. Y., Guminilovych, R. R., Laruk, M. M., & Yatchyshyn, Y. Y. (2019). Synthesis of cadmium sulfide thin films from an aqueous solution containing sodium citrate. Voprosy Khimii I Khimicheskoi Tekhnologii, (2), 39–46. doi:10.32434/0321-4095-2019-123-2-39-46
dc.relation.referencesen14. Il’Chuk, G. A., Kurilo, I. V., Kus’Nezh, V. V., Petrus’, R. Y., & Shapoval, P. I., Guminilovich, R. R., Partyka, M.V., Tokarev, S. V. (2014). Growth of thin CdS films on glass substrates via reaction of thiourea with cadmium acetate in aqueous solution. Inorganic Materials, 50(8), 762-767. doi:10.1134/s0020168514080093.
dc.relation.referencesen15. Sozanskyi, M., Shapoval, P., Guminilovych, R., Yatchyshyn, Y., Stadnik, V., & Koval, N. (2018). Khimichne osadzhennya z vann plivok kadmiy sul'fidu ta kadmiy selenidu. Proceedings of the KhVI International Scientific and Methodical Conference SHLA-2018, April 25–27, 2018. Lviv, Ukraine, 173–174.
dc.relation.referencesen16. Guminilovych, R. R., Shapoval, P. I., Yatchyshyn, I. I., Il’Chuk, G. A., & Kusnezh, V. V. (2013). Chemical surface deposition and growth rate of thin CdSe films. Russian Journal of Applied Chemistry, 86(5), 696–702. doi:10.1134/s1070427213050157
dc.relation.referencesen17. Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301–303. doi:10.1107/s0021889895014920
dc.relation.referencesen18. Sozanskyi, M. A., Guminilovych, R. R., Shapoval, P. Yo., Yatchyshyn, Yo. Yo., Stadnik, V., & Koval, N. (2018). Methods of synthesis of CdSe films with good adhesion to glass substrates. Abstracts of the 5th International Congress "Sustainable Development: Environmental Protection. Energy Saving. Sustainable Environmental Management", 26–29th September, 2018. Lviv, Ukraine, 91.
dc.relation.urihttp://openmopac.net/MOPAC2016.html
dc.relation.urihttps://winmostar.com/
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectкадмій сульфід
dc.subjectкадмій селенід
dc.subjectтонкі плівки
dc.subjectквантово-хімічне моделювання
dc.subjectнапівемпіричні методи
dc.subjectнапівпровідники
dc.subjectcadmium sulfide
dc.subjectcadmium selenide
dc.subjectthin films
dc.subjectquantum-chemical modeling
dc.subjectsemiempirical methods
dc.subjectsemiconductors
dc.titleQuantum-chemical modeling of the processes of cadmium sulfide and cadmium selenide films synthesis in aqueous solutions
dc.title.alternativeКвантово-хімічне моделювання процесів синтезу плівок кадмій сульфіду та кадмій селеніду у водних розчинах
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n1_Sozanskyi_M_A-Quantum_chemical_modeling_26-32.pdf
Size:
660.92 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n1_Sozanskyi_M_A-Quantum_chemical_modeling_26-32__COVER.png
Size:
1.16 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.94 KB
Format:
Plain Text
Description: