Physics-informed neural networks for the reaction-diffusion Brusselator model

dc.citation.epage454
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та обчислення
dc.citation.spage448
dc.citation.volume11
dc.contributor.affiliationУніверситет Хасана ІІ Касабланки
dc.contributor.affiliationУніверситет Султана Мулая Слімана
dc.contributor.affiliationHassan II University of Casablanca
dc.contributor.affiliationUniversity of Sultan Moulay Slimane
dc.contributor.authorХарірі, І.
dc.contributor.authorРадід, А.
dc.contributor.authorРофір, К.
dc.contributor.authorHariri, I.
dc.contributor.authorRadid, A.
dc.contributor.authorRhofir, K.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T08:10:17Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractУ цій роботі розв’язуємо одновимірну та двовимірну нелінійну жорстку реакційно дифузійну систему брюселятора за допомогою техніки машинного навчання під назвою фізичні нейронні мережі (PINN). PINN досяг успіху в різних наукових та інженерних дисциплінах завдяки своїй здатності кодувати фізичні закони, які задані диференціальними рівняннями у частинних похідних, у функцію втрат нейронної мережі так, що мережа повинна не лише відповідати вимірюванням, початковим і граничним умовам, але також задовольняти основні рівняння. Використання PINN для брюселятора все ще перебуває в зародковомустані і потрібно вирішити багато питань. Ефективність фреймворку перевіряється шляхом розв’язання деяких одно- та двовимірних задач із порівнянням їх з чисельними або аналітичними результатами. Перевірка результатів досліджується з точки зору абсолютної похибки. Результати показали, що наш PINN спрацював добре,забезпечивши високу точність у розв’язанні поставлених задач.
dc.description.abstractIn this work, we are interesting in solving the 1D and 2D nonlinear stiff reaction-diffusion Brusselator system using a machine learning technique called Physics-Informed Neural Networks (PINNs). PINN has been successful in a variety of science and engineering disciplines due to its ability of encoding physical laws, given by the PDE, into the neural network loss function in a way where the network must not only conform to the mea surements, initial and boundary conditions, but also satisfy the governing equations. The utilization of PINN for Brusselator system is still in its infancy, with many questions to resolve. Performance of the framework is tested by solving some one and two dimensional problems with comparable numerical or analytical results. Validation of the results is investigated in terms of absolute error. The results showed that our PINN has well performed by producing a good accuracy on the given problems.
dc.format.extent448-454
dc.format.pages7
dc.identifier.citationHariri I. Physics-informed neural networks for the reaction-diffusion Brusselator model / I. Hariri, A. Radid, K. Rhofir // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 448–454.
dc.identifier.citationenHariri I. Physics-informed neural networks for the reaction-diffusion Brusselator model / I. Hariri, A. Radid, K. Rhofir // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 448–454.
dc.identifier.doidoi.org/10.23939/mmc2024.02.448
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113804
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та обчислення, 2 (11), 2024
dc.relation.ispartofMathematical Modeling and Computing, 2 (11), 2024
dc.relation.references[1] Ahmed N., Rafiq M., Rehman M. A., Iqbal M. S., Ali M. Numerical modeling of three dimensional Brusselator reaction diffusion system. AIP Advances. 9 (1), 015205 (2019).
dc.relation.references[2] Prigogine I. Time, structure, and fluctuations. Science. 201 (4358), 777–785 (1978).
dc.relation.references[3] Adomian G. The diffusion-Brusselator equation. Computers & Mathematics with Applications. 29 (5), 1–3 (1995).
dc.relation.references[4] Haq S., Ali I., Nisar K. S. A computational study of two-dimensional reaction–diffusion Brusselator system with applications in chemical processes. Alexandria Engineering Journal. 60 (5), 4381–4392 (2021).
dc.relation.references[5] Jiwari R., Yuan J. Computational modeling of two dimensional reaction–diffusion Brusselator system arising in chemical processes. Journal of Mathematical Chemistry. 52, 1535–1551 (2014).
dc.relation.references[6] Dehghan M., Abbaszadeh M. Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction–diffusion system with and without cross-diffusion. Computer Methods in Applied Mechanics and Engineering. 300, 770–797 (2016).
dc.relation.references[7] Twizell E. H., Gumel A. B., Cao Q. A second-order scheme for the “Brusselator” reaction–diffusion system. Journal of Mathematical Chemistry. 26, 297–316 (1999).
dc.relation.references[8] Zhang S., Chen M., Chen J., Li Y.-F., Wu Y., Li M., Zhu C. Combining cross-modal knowledge transfer and semi-supervised learning for speech emotion recognition. Knowledge-Based Systems. 229, 107340 (2021).
dc.relation.references[9] Gao Y., Mosalam K. M. Deep Transfer Learning for Image-Based Structural Damage Recognition. Computer-Aided Civil and Infrastructure Engineering. 33 (9), 748–768 (2018).
dc.relation.references[10] Yang X., Zhang Y., Lv W., Wang D. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier. Renewable Energy. 163, 386-397 (2021).
dc.relation.references[11] Ruder S., Peters M. E., Swayamdipta S., Wolf T. Transfer Learning in Natural Language Processing. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials. 15–18 (2019).
dc.relation.references[12] Kontolati K., Loukrezis D., Giovanis D. G., Vandanapu L., Shields M. D. A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems. Journal of Computational Physics. 464, 111313 (2022).
dc.relation.references[13] Anantharaman R., Abdelrehim A., Jain A., Pal A., Sharp D., Utkarsh, Edelman A., Rackauckas C. Stably Accelerating Stiff Quantitative Systems Pharmacology Models: Continuous-Time Echo State Networks as Implicit Machine Learning. IFAC-PapersOnLine. 55 (23), 1–6 (2022).
dc.relation.references[14] Raissi M., Perdikaris P., Karniadakis G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics. 378, 686–707 (2019).
dc.relation.references[15] Cuomo S., Di Cola V. S., Giampaolo F., Rozza G., Raissi M., Piccialli F. Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What’s Next. Journal of Scientific Computing. 92, 88 (2022).
dc.relation.referencesen[1] Ahmed N., Rafiq M., Rehman M. A., Iqbal M. S., Ali M. Numerical modeling of three dimensional Brusselator reaction diffusion system. AIP Advances. 9 (1), 015205 (2019).
dc.relation.referencesen[2] Prigogine I. Time, structure, and fluctuations. Science. 201 (4358), 777–785 (1978).
dc.relation.referencesen[3] Adomian G. The diffusion-Brusselator equation. Computers & Mathematics with Applications. 29 (5), 1–3 (1995).
dc.relation.referencesen[4] Haq S., Ali I., Nisar K. S. A computational study of two-dimensional reaction–diffusion Brusselator system with applications in chemical processes. Alexandria Engineering Journal. 60 (5), 4381–4392 (2021).
dc.relation.referencesen[5] Jiwari R., Yuan J. Computational modeling of two dimensional reaction–diffusion Brusselator system arising in chemical processes. Journal of Mathematical Chemistry. 52, 1535–1551 (2014).
dc.relation.referencesen[6] Dehghan M., Abbaszadeh M. Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction–diffusion system with and without cross-diffusion. Computer Methods in Applied Mechanics and Engineering. 300, 770–797 (2016).
dc.relation.referencesen[7] Twizell E. H., Gumel A. B., Cao Q. A second-order scheme for the "Brusselator" reaction–diffusion system. Journal of Mathematical Chemistry. 26, 297–316 (1999).
dc.relation.referencesen[8] Zhang S., Chen M., Chen J., Li Y.-F., Wu Y., Li M., Zhu C. Combining cross-modal knowledge transfer and semi-supervised learning for speech emotion recognition. Knowledge-Based Systems. 229, 107340 (2021).
dc.relation.referencesen[9] Gao Y., Mosalam K. M. Deep Transfer Learning for Image-Based Structural Damage Recognition. Computer-Aided Civil and Infrastructure Engineering. 33 (9), 748–768 (2018).
dc.relation.referencesen[10] Yang X., Zhang Y., Lv W., Wang D. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier. Renewable Energy. 163, 386-397 (2021).
dc.relation.referencesen[11] Ruder S., Peters M. E., Swayamdipta S., Wolf T. Transfer Learning in Natural Language Processing. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials. 15–18 (2019).
dc.relation.referencesen[12] Kontolati K., Loukrezis D., Giovanis D. G., Vandanapu L., Shields M. D. A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems. Journal of Computational Physics. 464, 111313 (2022).
dc.relation.referencesen[13] Anantharaman R., Abdelrehim A., Jain A., Pal A., Sharp D., Utkarsh, Edelman A., Rackauckas C. Stably Accelerating Stiff Quantitative Systems Pharmacology Models: Continuous-Time Echo State Networks as Implicit Machine Learning. IFAC-PapersOnLine. 55 (23), 1–6 (2022).
dc.relation.referencesen[14] Raissi M., Perdikaris P., Karniadakis G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics. 378, 686–707 (2019).
dc.relation.referencesen[15] Cuomo S., Di Cola V. S., Giampaolo F., Rozza G., Raissi M., Piccialli F. Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What’s Next. Journal of Scientific Computing. 92, 88 (2022).
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectфізична нейронна мережа
dc.subjectглибоке навчання
dc.subjectреакційно-дифузійна система Брюсселятора
dc.subjectжорсткі PDE
dc.subjectPhysics-Informed Neural Network
dc.subjectdeep learning
dc.subjectreaction-diffusion Brusse lator system
dc.subjectstiff PDEs
dc.titlePhysics-informed neural networks for the reaction-diffusion Brusselator model
dc.title.alternativeФізичні нейронні мережі для реакційно-дифузійної моделі брюселятора
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v11n2_Hariri_I-Physics_informed_neural_448-454.pdf
Size:
934.65 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v11n2_Hariri_I-Physics_informed_neural_448-454__COVER.png
Size:
318.81 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: