Chromium(VI) Removal Using Activated Thuja Occidentalis Leaves Carbon Powder – Adsorption Isotherms and Kinetic Studies

dc.citation.epage371
dc.citation.issue3
dc.citation.spage362
dc.contributor.affiliationGMR Institute of Technology
dc.contributor.affiliationAndhra Polytechnic
dc.contributor.authorRao, Vaddi Dhilleswara
dc.contributor.authorRao, Mushini Venkata Subba
dc.contributor.authorM. P. S. Murali Krishna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-09T08:54:32Z
dc.date.available2024-01-09T08:54:32Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractДосліджено адсорбційну здатність карбонового порошку з листя туї західної (Thuja occidentalis) для витіснення хрому(VI) з водних розчинів. Встановлено, що кількість видаленого Cr(VI) залежить від рН, часу встановлення рівноваги, кількості адсорбенту і концентрації Cr(VI). За допомогою методів Фур‘є-спектроскопії, скануючої електронної мікроскопії та енергодисперсійної рентгенівської спектроскопії визначено характеристики адсорбенту до і після адсорбції Cr(VI). Одержаним ізотермам адсорбції найбільше відповідає модель Ленгмюра. Згідно кінетичних досліджень, найкращою є модель псевдо-другого порядку. Показана можливість легкої регенерації адсорбенту та його використання для кількох циклів адсорбції/десорбції.
dc.description.abstractThis study investigates the capability of Thuja occidentalis leaves carbon powder (TOLC) as a viable adsorbent for the expulsion of chromium(VI) from aqueous solutions. By batch mode, the removal percentage of Cr(VI) is observed to be pH perceptive and furthermore relies upon the time of equilibration, amount of the TOLC adsorbent and Cr(VI) concentration. TOLC adsorbent before and after adsorption of Cr(VI) was characterized with FTIR, SEM and EDX. Adsorption isotherm results divulge that the Langmuir model was a better fit. The kinetic studies divulge that the pseudosecondorder model was the best fit. TOLC adsorbent can be easily regenerated and utilised for several adsorption/desorption cycles.
dc.format.extent362-371
dc.format.pages10
dc.identifier.citationRao V. D. Chromium(VI) Removal Using Activated Thuja Occidentalis Leaves Carbon Powder – Adsorption Isotherms and Kinetic Studies / Vaddi Dhilleswara Rao, Mushini Venkata Subba Rao, M. P. S. Murali Krishna // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 3. — P. 362–371.
dc.identifier.citationenRao V. D. Chromium(VI) Removal Using Activated Thuja Occidentalis Leaves Carbon Powder – Adsorption Isotherms and Kinetic Studies / Vaddi Dhilleswara Rao, Mushini Venkata Subba Rao, M. P. S. Murali Krishna // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 3. — P. 362–371.
dc.identifier.doidoi.org/10.23939/chcht14.03.362
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60667
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (14), 2020
dc.relation.references[1] Djebbar M., Djafri F.: Chem. Chem. Technol., 2018, 12, 272. https://doi.org/10.23939/chcht12.02.272
dc.relation.references[2] Mehdipour S., Vatanpour V., Kariminia H.: Desalination, 2015, 362, 84. https://doi.org/10.1016/j.desal.2015.01.030
dc.relation.references[3] Skiba E., Kobyłecka J., WolfW.: Environ. Pollut., 2017, 220B, 882. https://doi.org/10.1016/j.envpol.2016.10.072
dc.relation.references[4] Wu L., Liao L., Lv G. et al.: J. Hazard. Mater., 2013, 254, 277. https://doi.org/10.1016/j.jhazmat.2013.03.009
dc.relation.references[5] Lv X., Xu J., Jiang G. et al.: J. Colloid Interface Sci., 2012, 369, 460. https://doi.org/10.1016/j.jcis.2011.11.049
dc.relation.references[6] Cheng Q., Wang C., Doudrick K., Chan C.: Appl. Catal. B, 2015, 176-177, 740. https://doi.org/10.1016/j.apcatb.2015.04.047
dc.relation.references[7] Sharma D., Forster C.: Bioresour. Technol., 1995, 52, 261. https://doi.org/10.1016/0960-8524(95)00035-D
dc.relation.references[8] Focardi S., Pepi M., Focardi S.: Microbial Reduction of Hexavalent Chromium as a Mechanism of Detoxification and Possible Bioremediation Applications. [in:] R. Chamy (Ed.), Biodegradation – Life of Science. InTechOpen 2013. https://doi.org/10.5772/56365
dc.relation.references[9] Miretzky P., Cirelli A.: J. Hazard. Mater., 2010, 180, 1. https://doi.org/10.1016/j.jhazmat.2010.04.060
dc.relation.references[10] Hsu N-H., Wang S-L., Liao Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
dc.relation.references[11] Sereshti H., Farahani M., Baghdadi M.: Talanta, 2016, 146, 662. https://doi.org/10.1016/j.talanta.2015.06.051.
dc.relation.references[12] Crisostomo C., Lima F., Dias R. et al.: Water Air Soil Pollut., 2016, 227, 51. https://doi.org/10.1007/s11270-016-2747-9
dc.relation.references[13] Teh C., Budiman P., Shak K., Wu T.: Ind. Eng. Chem. Res., 2016, 55, 4363. https://doi.org/10.1021/acs.iecr.5b04703
dc.relation.references[14] Kazeminezhad I., Mosivand S.: J. Magn. Magn. Mater., 2017, 422, 84. https://doi.org/10.1016/j.jmmm.2016.08.049
dc.relation.references[15] Ronda A., Della Zassa M., Martín-Lara M. et al.: J. Hazard. Mater., 2016, 308, 285. https://doi.org/10.1016/j.jhazmat.2016.01.045
dc.relation.references[16] Choi K., Lee S.., Ock J. et al.: Nature, 2018, 8, 1438. https://doi.org/10.1038/s41598-018-20017-9
dc.relation.references[17] Guo Z., Zhang J., Liu H., Kang Y.: Powder Technol., 2017, 318, 459. https://doi.org/10.1016/j.powtec.2017.06.024
dc.relation.references[18] Huang M., Wang Z., Liu S.: J. Environ. Chem. Eng., 2016, 4, 1555. https://doi.org/10.1016/j.jece.2016.02.019
dc.relation.references[19] Shashikant M., Trupti Nagendra P.: J. Inst. Eng. India Ser. A, 2015, 96, 237. https://doi.org/10.1007/s40030-015-0124-0
dc.relation.references[20] Song D., Pan K., Tariq A. et al.: PLoS One, 2016, 11(12), e0167037. https://doi.org/10.1371/journal.pone.0167037.
dc.relation.references[21] Kumar M., Tamilarasan R.: Arabian J. Chem., 2013, 10, S1567. https://doi.org/10.1016/j.arabjc.2013.05.025
dc.relation.references[22] Hsu N-H., Wang S-L., Liao Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
dc.relation.references[23] Yang J., Yu M., ChenW.: J. Ind. Eng. Chem., 2015, 21, 414. https://doi.org/10.1016/j.jiec.2014.02.054
dc.relation.references[24] Gueye M., Richardson Y., Kafack F., Blin J.: J. Environ. Chem. Eng., 2014, 2, 273. https://doi.org/10.1016/j.jece.2013.12.014
dc.relation.references[25] Cronje K., Chetty K., Carsky M. et al.: Desalination, 2011, 275, 276. https://doi.org/10.1016/j.desal.2011.03.019
dc.relation.references[26] Oliveira R., Hammer P., Guibal E. et al.: Chem. Eng. J., 2014, 239, 381. https://doi.org/10.1016/j.cej.2013.11.042
dc.relation.references[27] The Gymnosperm Database 2018. https://www.conifers.org/cu/Thuja_occidentalis.php
dc.relation.references[28] Singanan M., Peters E.: J. Environ. Chem. Eng., 2013, 1, 884. https://doi.org/10.1016/j.jece.2013.07.030
dc.relation.references[29] Singanan M.: Science Asia, 2011, 37, 115. https://doi.org/10.2306/scienceasia1513-1874.2011.37.115
dc.relation.references[30] Mengistie A., Siva Rao T., Prasada Rao A.: Global J. Sci. Frontier Res. Chem., 2012, 12, 5.
dc.relation.references[31] Esposito A., Pagnanelli F., Lodi A. et al.: Hydrometallurgy, 2001, 60, 129. https://doi.org/10.1016/S0304-386X(00)00195-X
dc.relation.references[32] Liu C., Liang X., Liu J. et al.: J. Colloid Interface Sci., 2017, 488, 294. https://doi.org/10.1016/j.jcis.2016.11.013
dc.relation.references[33] Srivastava V., Mall I., Mishra I.: J. Hazard. Mater., 2006, B134, 257. https://doi.org/10.1016/j.jhazmat.2005.11.052
dc.relation.references[34] Hsua N-H., Wanga S-L., Liaoa Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
dc.relation.references[35] Rangabhashiyam S., Selvaraju N.: J. Mol. Liq., 2017, 207, 39. https://doi.org/10.1016/j.molliq.2015.03.018
dc.relation.references[36] Huang C-P., Wu M-H.: Water Res., 1977, 11, 673. https://doi.org/10.1016/0043-1354(77)90106-3
dc.relation.references[37] Hamadi N., Chen X., Farid M., Lu M.: Chem. Eng. J., 2001, 84, 95. https://doi.org/10.1016/S1385-8947(01)00194-2
dc.relation.references[38] GuptaV., Ali I., SalehT. et al.: Environ. Sci. Pollut. Res., 2013, 20, 1261. https://doi.org/10.1007/s11356-012-0950-9
dc.relation.references[39] Rai M., Shahi G., Meena V. et al.: Res. Efficient Technol., 2016, 2, S63. https://doi.org/10.1016/j.reffit.2016.11.011
dc.relation.references[40] Langmuir I.: J. Am. Chem. Soc., 1918, 40, 1361. https://doi.org/10.1021/ja02242a004
dc.relation.references[41] Frendlich H.: J. Phys. Chem., 1906, 57, 385.
dc.relation.references[42] Sujitha R., Ravindhranath K.: J. Fluorine Chem., 2017, 193, 58. https://doi.org/10.1016/j.jfluchem.2016.11.013
dc.relation.references[43] Masoud M., El-SarafW., Abdel-Halim A. et al.: Arabian J. Chem., 2016, 9, S1590. https://doi.org/10.1016/j.arabjc.2012.04.028
dc.relation.references[44] Kilic M., Apaydin-Varol E., Pütün A.: J. Hazard. Mater., 2011, 189, 397. https://doi.org/10.1016/j.jhazmat.2011.02.051
dc.relation.references[45] Dundar M., Nuhoglu C., Nuhoglu Y.: J. Hazard. Mater., 2008, 151, 86. https://doi.org/10.1016/j.jhazmat.2007.05.055
dc.relation.references[46] Huang H., Tang L., Wu C.: Environ. Sci. Technol., 2003, 37, 4463. https://doi.org/10.1021/es034193c
dc.relation.references[47] Abdel Ghani N., Hegazy A., El-Chaghaby G.: Int. J. Environ. Sci. Technol., 2009, 6, 243. https://doi.org/10.1007/BF03327628
dc.relation.references[48] Chen Y., An D., Sun S. et al.: Materials, 2018, 11, 269. https://doi.org/10.3390/ma11020269
dc.relation.references[49] Abdolali A., Ngo H., GuoW. et al.: Bioresour. Technol., 2015, 193, 477. https://doi.org/10.1016/j.biortech.2015.06.123
dc.relation.references[50] Selvi K., Pattabi S., Kaadirvelu K.K.: Bioresour. Technol., 2001, 80, 87. https://doi.org/10.1016/S0960-8524(01)00068-2
dc.relation.references[51] Anandkumar J., Mandal B.: J. Hazard. Mater., 2009, 168, 633. https://doi.org/10.1016/j.jhazmat.2009.02.136
dc.relation.references[52] Garg U., Kaur M., Garg V., Sud D.: J. Hazard. Mater., 2007, 140, 60. https://doi.org/10.1016/j.jhazmat.2006.06.056
dc.relation.references[53] Aloma I., Rodriguez I., Calero M., Blazquez G.: Desalin. Water Treat., 2014, 52, 5912. https://doi.org/10.1080/19443994.2013.812521
dc.relation.references[54] Dakiky M., KhamisM., Manassra A., Mereb M.: Adv. Environ. Res., 2002, 6, 533. https://doi.org/10.1016/S1093-0191(01)00079-X
dc.relation.references[55] Rangabhashiyam S., Anu N., Selvaraju N.: Res. J. Chem. Environ, 2014, 18, 30.
dc.relation.referencesen[1] Djebbar M., Djafri F., Chem. Chem. Technol., 2018, 12, 272. https://doi.org/10.23939/chcht12.02.272
dc.relation.referencesen[2] Mehdipour S., Vatanpour V., Kariminia H., Desalination, 2015, 362, 84. https://doi.org/10.1016/j.desal.2015.01.030
dc.relation.referencesen[3] Skiba E., Kobyłecka J., WolfW., Environ. Pollut., 2017, 220B, 882. https://doi.org/10.1016/j.envpol.2016.10.072
dc.relation.referencesen[4] Wu L., Liao L., Lv G. et al., J. Hazard. Mater., 2013, 254, 277. https://doi.org/10.1016/j.jhazmat.2013.03.009
dc.relation.referencesen[5] Lv X., Xu J., Jiang G. et al., J. Colloid Interface Sci., 2012, 369, 460. https://doi.org/10.1016/j.jcis.2011.11.049
dc.relation.referencesen[6] Cheng Q., Wang C., Doudrick K., Chan C., Appl. Catal. B, 2015, 176-177, 740. https://doi.org/10.1016/j.apcatb.2015.04.047
dc.relation.referencesen[7] Sharma D., Forster C., Bioresour. Technol., 1995, 52, 261. https://doi.org/10.1016/0960-8524(95)00035-D
dc.relation.referencesen[8] Focardi S., Pepi M., Focardi S., Microbial Reduction of Hexavalent Chromium as a Mechanism of Detoxification and Possible Bioremediation Applications. [in:] R. Chamy (Ed.), Biodegradation – Life of Science. InTechOpen 2013. https://doi.org/10.5772/56365
dc.relation.referencesen[9] Miretzky P., Cirelli A., J. Hazard. Mater., 2010, 180, 1. https://doi.org/10.1016/j.jhazmat.2010.04.060
dc.relation.referencesen[10] Hsu N-H., Wang S-L., Liao Y-H. et al., J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
dc.relation.referencesen[11] Sereshti H., Farahani M., Baghdadi M., Talanta, 2016, 146, 662. https://doi.org/10.1016/j.talanta.2015.06.051.
dc.relation.referencesen[12] Crisostomo C., Lima F., Dias R. et al., Water Air Soil Pollut., 2016, 227, 51. https://doi.org/10.1007/s11270-016-2747-9
dc.relation.referencesen[13] Teh C., Budiman P., Shak K., Wu T., Ind. Eng. Chem. Res., 2016, 55, 4363. https://doi.org/10.1021/acs.iecr.5b04703
dc.relation.referencesen[14] Kazeminezhad I., Mosivand S., J. Magn. Magn. Mater., 2017, 422, 84. https://doi.org/10.1016/j.jmmm.2016.08.049
dc.relation.referencesen[15] Ronda A., Della Zassa M., Martín-Lara M. et al., J. Hazard. Mater., 2016, 308, 285. https://doi.org/10.1016/j.jhazmat.2016.01.045
dc.relation.referencesen[16] Choi K., Lee S.., Ock J. et al., Nature, 2018, 8, 1438. https://doi.org/10.1038/s41598-018-20017-9
dc.relation.referencesen[17] Guo Z., Zhang J., Liu H., Kang Y., Powder Technol., 2017, 318, 459. https://doi.org/10.1016/j.powtec.2017.06.024
dc.relation.referencesen[18] Huang M., Wang Z., Liu S., J. Environ. Chem. Eng., 2016, 4, 1555. https://doi.org/10.1016/j.jece.2016.02.019
dc.relation.referencesen[19] Shashikant M., Trupti Nagendra P., J. Inst. Eng. India Ser. A, 2015, 96, 237. https://doi.org/10.1007/s40030-015-0124-0
dc.relation.referencesen[20] Song D., Pan K., Tariq A. et al., PLoS One, 2016, 11(12), e0167037. https://doi.org/10.1371/journal.pone.0167037.
dc.relation.referencesen[21] Kumar M., Tamilarasan R., Arabian J. Chem., 2013, 10, S1567. https://doi.org/10.1016/j.arabjc.2013.05.025
dc.relation.referencesen[22] Hsu N-H., Wang S-L., Liao Y-H. et al., J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
dc.relation.referencesen[23] Yang J., Yu M., ChenW., J. Ind. Eng. Chem., 2015, 21, 414. https://doi.org/10.1016/j.jiec.2014.02.054
dc.relation.referencesen[24] Gueye M., Richardson Y., Kafack F., Blin J., J. Environ. Chem. Eng., 2014, 2, 273. https://doi.org/10.1016/j.jece.2013.12.014
dc.relation.referencesen[25] Cronje K., Chetty K., Carsky M. et al., Desalination, 2011, 275, 276. https://doi.org/10.1016/j.desal.2011.03.019
dc.relation.referencesen[26] Oliveira R., Hammer P., Guibal E. et al., Chem. Eng. J., 2014, 239, 381. https://doi.org/10.1016/j.cej.2013.11.042
dc.relation.referencesen[27] The Gymnosperm Database 2018. https://www.conifers.org/cu/Thuja_occidentalis.php
dc.relation.referencesen[28] Singanan M., Peters E., J. Environ. Chem. Eng., 2013, 1, 884. https://doi.org/10.1016/j.jece.2013.07.030
dc.relation.referencesen[29] Singanan M., Science Asia, 2011, 37, 115. https://doi.org/10.2306/scienceasia1513-1874.2011.37.115
dc.relation.referencesen[30] Mengistie A., Siva Rao T., Prasada Rao A., Global J. Sci. Frontier Res. Chem., 2012, 12, 5.
dc.relation.referencesen[31] Esposito A., Pagnanelli F., Lodi A. et al., Hydrometallurgy, 2001, 60, 129. https://doi.org/10.1016/S0304-386X(00)00195-X
dc.relation.referencesen[32] Liu C., Liang X., Liu J. et al., J. Colloid Interface Sci., 2017, 488, 294. https://doi.org/10.1016/j.jcis.2016.11.013
dc.relation.referencesen[33] Srivastava V., Mall I., Mishra I., J. Hazard. Mater., 2006, B134, 257. https://doi.org/10.1016/j.jhazmat.2005.11.052
dc.relation.referencesen[34] Hsua N-H., Wanga S-L., Liaoa Y-H. et al., J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
dc.relation.referencesen[35] Rangabhashiyam S., Selvaraju N., J. Mol. Liq., 2017, 207, 39. https://doi.org/10.1016/j.molliq.2015.03.018
dc.relation.referencesen[36] Huang C-P., Wu M-H., Water Res., 1977, 11, 673. https://doi.org/10.1016/0043-1354(77)90106-3
dc.relation.referencesen[37] Hamadi N., Chen X., Farid M., Lu M., Chem. Eng. J., 2001, 84, 95. https://doi.org/10.1016/S1385-8947(01)00194-2
dc.relation.referencesen[38] GuptaV., Ali I., SalehT. et al., Environ. Sci. Pollut. Res., 2013, 20, 1261. https://doi.org/10.1007/s11356-012-0950-9
dc.relation.referencesen[39] Rai M., Shahi G., Meena V. et al., Res. Efficient Technol., 2016, 2, S63. https://doi.org/10.1016/j.reffit.2016.11.011
dc.relation.referencesen[40] Langmuir I., J. Am. Chem. Soc., 1918, 40, 1361. https://doi.org/10.1021/ja02242a004
dc.relation.referencesen[41] Frendlich H., J. Phys. Chem., 1906, 57, 385.
dc.relation.referencesen[42] Sujitha R., Ravindhranath K., J. Fluorine Chem., 2017, 193, 58. https://doi.org/10.1016/j.jfluchem.2016.11.013
dc.relation.referencesen[43] Masoud M., El-SarafW., Abdel-Halim A. et al., Arabian J. Chem., 2016, 9, S1590. https://doi.org/10.1016/j.arabjc.2012.04.028
dc.relation.referencesen[44] Kilic M., Apaydin-Varol E., Pütün A., J. Hazard. Mater., 2011, 189, 397. https://doi.org/10.1016/j.jhazmat.2011.02.051
dc.relation.referencesen[45] Dundar M., Nuhoglu C., Nuhoglu Y., J. Hazard. Mater., 2008, 151, 86. https://doi.org/10.1016/j.jhazmat.2007.05.055
dc.relation.referencesen[46] Huang H., Tang L., Wu C., Environ. Sci. Technol., 2003, 37, 4463. https://doi.org/10.1021/es034193c
dc.relation.referencesen[47] Abdel Ghani N., Hegazy A., El-Chaghaby G., Int. J. Environ. Sci. Technol., 2009, 6, 243. https://doi.org/10.1007/BF03327628
dc.relation.referencesen[48] Chen Y., An D., Sun S. et al., Materials, 2018, 11, 269. https://doi.org/10.3390/ma11020269
dc.relation.referencesen[49] Abdolali A., Ngo H., GuoW. et al., Bioresour. Technol., 2015, 193, 477. https://doi.org/10.1016/j.biortech.2015.06.123
dc.relation.referencesen[50] Selvi K., Pattabi S., Kaadirvelu K.K., Bioresour. Technol., 2001, 80, 87. https://doi.org/10.1016/S0960-8524(01)00068-2
dc.relation.referencesen[51] Anandkumar J., Mandal B., J. Hazard. Mater., 2009, 168, 633. https://doi.org/10.1016/j.jhazmat.2009.02.136
dc.relation.referencesen[52] Garg U., Kaur M., Garg V., Sud D., J. Hazard. Mater., 2007, 140, 60. https://doi.org/10.1016/j.jhazmat.2006.06.056
dc.relation.referencesen[53] Aloma I., Rodriguez I., Calero M., Blazquez G., Desalin. Water Treat., 2014, 52, 5912. https://doi.org/10.1080/19443994.2013.812521
dc.relation.referencesen[54] Dakiky M., KhamisM., Manassra A., Mereb M., Adv. Environ. Res., 2002, 6, 533. https://doi.org/10.1016/S1093-0191(01)00079-X
dc.relation.referencesen[55] Rangabhashiyam S., Anu N., Selvaraju N., Res. J. Chem. Environ, 2014, 18, 30.
dc.relation.urihttps://doi.org/10.23939/chcht12.02.272
dc.relation.urihttps://doi.org/10.1016/j.desal.2015.01.030
dc.relation.urihttps://doi.org/10.1016/j.envpol.2016.10.072
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2013.03.009
dc.relation.urihttps://doi.org/10.1016/j.jcis.2011.11.049
dc.relation.urihttps://doi.org/10.1016/j.apcatb.2015.04.047
dc.relation.urihttps://doi.org/10.1016/0960-8524(95)00035-D
dc.relation.urihttps://doi.org/10.5772/56365
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2010.04.060
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2009.06.112
dc.relation.urihttps://doi.org/10.1016/j.talanta.2015.06.051
dc.relation.urihttps://doi.org/10.1007/s11270-016-2747-9
dc.relation.urihttps://doi.org/10.1021/acs.iecr.5b04703
dc.relation.urihttps://doi.org/10.1016/j.jmmm.2016.08.049
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2016.01.045
dc.relation.urihttps://doi.org/10.1038/s41598-018-20017-9
dc.relation.urihttps://doi.org/10.1016/j.powtec.2017.06.024
dc.relation.urihttps://doi.org/10.1016/j.jece.2016.02.019
dc.relation.urihttps://doi.org/10.1007/s40030-015-0124-0
dc.relation.urihttps://doi.org/10.1371/journal.pone.0167037
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2013.05.025
dc.relation.urihttps://doi.org/10.1016/j.jiec.2014.02.054
dc.relation.urihttps://doi.org/10.1016/j.jece.2013.12.014
dc.relation.urihttps://doi.org/10.1016/j.desal.2011.03.019
dc.relation.urihttps://doi.org/10.1016/j.cej.2013.11.042
dc.relation.urihttps://www.conifers.org/cu/Thuja_occidentalis.php
dc.relation.urihttps://doi.org/10.1016/j.jece.2013.07.030
dc.relation.urihttps://doi.org/10.2306/scienceasia1513-1874.2011.37.115
dc.relation.urihttps://doi.org/10.1016/S0304-386X(00)00195-X
dc.relation.urihttps://doi.org/10.1016/j.jcis.2016.11.013
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2005.11.052
dc.relation.urihttps://doi.org/10.1016/j.molliq.2015.03.018
dc.relation.urihttps://doi.org/10.1016/0043-1354(77)90106-3
dc.relation.urihttps://doi.org/10.1016/S1385-8947(01)00194-2
dc.relation.urihttps://doi.org/10.1007/s11356-012-0950-9
dc.relation.urihttps://doi.org/10.1016/j.reffit.2016.11.011
dc.relation.urihttps://doi.org/10.1021/ja02242a004
dc.relation.urihttps://doi.org/10.1016/j.jfluchem.2016.11.013
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2012.04.028
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2011.02.051
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2007.05.055
dc.relation.urihttps://doi.org/10.1021/es034193c
dc.relation.urihttps://doi.org/10.1007/BF03327628
dc.relation.urihttps://doi.org/10.3390/ma11020269
dc.relation.urihttps://doi.org/10.1016/j.biortech.2015.06.123
dc.relation.urihttps://doi.org/10.1016/S0960-8524(01)00068-2
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2009.02.136
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2006.06.056
dc.relation.urihttps://doi.org/10.1080/19443994.2013.812521
dc.relation.urihttps://doi.org/10.1016/S1093-0191(01)00079-X
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Rao VD, Rao MVS, Krishna M., 2020
dc.subjectлистя Thuja оccidentalis
dc.subjectадсорбція Cr(VI)
dc.subjectізотерми адсорбції
dc.subjectкінетика
dc.subjectThuja occidentalis leaves
dc.subjectCr(VI) adsorption
dc.subjectadsorption isotherm
dc.subjectkinetics
dc.titleChromium(VI) Removal Using Activated Thuja Occidentalis Leaves Carbon Powder – Adsorption Isotherms and Kinetic Studies
dc.title.alternativeВидалення хрому(VI) з використанням карбонового порошку з листя thuja occidentalis – ізотерми адсорбції та кінетичні дослідження
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v14n3_Rao_V_D-Chromium_VI_Removal_Using_362-371.pdf
Size:
941.84 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v14n3_Rao_V_D-Chromium_VI_Removal_Using_362-371__COVER.png
Size:
578.38 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: