Chromium(VI) Removal Using Activated Thuja Occidentalis Leaves Carbon Powder – Adsorption Isotherms and Kinetic Studies
dc.citation.epage | 371 | |
dc.citation.issue | 3 | |
dc.citation.spage | 362 | |
dc.contributor.affiliation | GMR Institute of Technology | |
dc.contributor.affiliation | Andhra Polytechnic | |
dc.contributor.author | Rao, Vaddi Dhilleswara | |
dc.contributor.author | Rao, Mushini Venkata Subba | |
dc.contributor.author | M. P. S. Murali Krishna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T08:54:32Z | |
dc.date.available | 2024-01-09T08:54:32Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Досліджено адсорбційну здатність карбонового порошку з листя туї західної (Thuja occidentalis) для витіснення хрому(VI) з водних розчинів. Встановлено, що кількість видаленого Cr(VI) залежить від рН, часу встановлення рівноваги, кількості адсорбенту і концентрації Cr(VI). За допомогою методів Фур‘є-спектроскопії, скануючої електронної мікроскопії та енергодисперсійної рентгенівської спектроскопії визначено характеристики адсорбенту до і після адсорбції Cr(VI). Одержаним ізотермам адсорбції найбільше відповідає модель Ленгмюра. Згідно кінетичних досліджень, найкращою є модель псевдо-другого порядку. Показана можливість легкої регенерації адсорбенту та його використання для кількох циклів адсорбції/десорбції. | |
dc.description.abstract | This study investigates the capability of Thuja occidentalis leaves carbon powder (TOLC) as a viable adsorbent for the expulsion of chromium(VI) from aqueous solutions. By batch mode, the removal percentage of Cr(VI) is observed to be pH perceptive and furthermore relies upon the time of equilibration, amount of the TOLC adsorbent and Cr(VI) concentration. TOLC adsorbent before and after adsorption of Cr(VI) was characterized with FTIR, SEM and EDX. Adsorption isotherm results divulge that the Langmuir model was a better fit. The kinetic studies divulge that the pseudosecondorder model was the best fit. TOLC adsorbent can be easily regenerated and utilised for several adsorption/desorption cycles. | |
dc.format.extent | 362-371 | |
dc.format.pages | 10 | |
dc.identifier.citation | Rao V. D. Chromium(VI) Removal Using Activated Thuja Occidentalis Leaves Carbon Powder – Adsorption Isotherms and Kinetic Studies / Vaddi Dhilleswara Rao, Mushini Venkata Subba Rao, M. P. S. Murali Krishna // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 3. — P. 362–371. | |
dc.identifier.citationen | Rao V. D. Chromium(VI) Removal Using Activated Thuja Occidentalis Leaves Carbon Powder – Adsorption Isotherms and Kinetic Studies / Vaddi Dhilleswara Rao, Mushini Venkata Subba Rao, M. P. S. Murali Krishna // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 3. — P. 362–371. | |
dc.identifier.doi | doi.org/10.23939/chcht14.03.362 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60667 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (14), 2020 | |
dc.relation.references | [1] Djebbar M., Djafri F.: Chem. Chem. Technol., 2018, 12, 272. https://doi.org/10.23939/chcht12.02.272 | |
dc.relation.references | [2] Mehdipour S., Vatanpour V., Kariminia H.: Desalination, 2015, 362, 84. https://doi.org/10.1016/j.desal.2015.01.030 | |
dc.relation.references | [3] Skiba E., Kobyłecka J., WolfW.: Environ. Pollut., 2017, 220B, 882. https://doi.org/10.1016/j.envpol.2016.10.072 | |
dc.relation.references | [4] Wu L., Liao L., Lv G. et al.: J. Hazard. Mater., 2013, 254, 277. https://doi.org/10.1016/j.jhazmat.2013.03.009 | |
dc.relation.references | [5] Lv X., Xu J., Jiang G. et al.: J. Colloid Interface Sci., 2012, 369, 460. https://doi.org/10.1016/j.jcis.2011.11.049 | |
dc.relation.references | [6] Cheng Q., Wang C., Doudrick K., Chan C.: Appl. Catal. B, 2015, 176-177, 740. https://doi.org/10.1016/j.apcatb.2015.04.047 | |
dc.relation.references | [7] Sharma D., Forster C.: Bioresour. Technol., 1995, 52, 261. https://doi.org/10.1016/0960-8524(95)00035-D | |
dc.relation.references | [8] Focardi S., Pepi M., Focardi S.: Microbial Reduction of Hexavalent Chromium as a Mechanism of Detoxification and Possible Bioremediation Applications. [in:] R. Chamy (Ed.), Biodegradation – Life of Science. InTechOpen 2013. https://doi.org/10.5772/56365 | |
dc.relation.references | [9] Miretzky P., Cirelli A.: J. Hazard. Mater., 2010, 180, 1. https://doi.org/10.1016/j.jhazmat.2010.04.060 | |
dc.relation.references | [10] Hsu N-H., Wang S-L., Liao Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112 | |
dc.relation.references | [11] Sereshti H., Farahani M., Baghdadi M.: Talanta, 2016, 146, 662. https://doi.org/10.1016/j.talanta.2015.06.051. | |
dc.relation.references | [12] Crisostomo C., Lima F., Dias R. et al.: Water Air Soil Pollut., 2016, 227, 51. https://doi.org/10.1007/s11270-016-2747-9 | |
dc.relation.references | [13] Teh C., Budiman P., Shak K., Wu T.: Ind. Eng. Chem. Res., 2016, 55, 4363. https://doi.org/10.1021/acs.iecr.5b04703 | |
dc.relation.references | [14] Kazeminezhad I., Mosivand S.: J. Magn. Magn. Mater., 2017, 422, 84. https://doi.org/10.1016/j.jmmm.2016.08.049 | |
dc.relation.references | [15] Ronda A., Della Zassa M., Martín-Lara M. et al.: J. Hazard. Mater., 2016, 308, 285. https://doi.org/10.1016/j.jhazmat.2016.01.045 | |
dc.relation.references | [16] Choi K., Lee S.., Ock J. et al.: Nature, 2018, 8, 1438. https://doi.org/10.1038/s41598-018-20017-9 | |
dc.relation.references | [17] Guo Z., Zhang J., Liu H., Kang Y.: Powder Technol., 2017, 318, 459. https://doi.org/10.1016/j.powtec.2017.06.024 | |
dc.relation.references | [18] Huang M., Wang Z., Liu S.: J. Environ. Chem. Eng., 2016, 4, 1555. https://doi.org/10.1016/j.jece.2016.02.019 | |
dc.relation.references | [19] Shashikant M., Trupti Nagendra P.: J. Inst. Eng. India Ser. A, 2015, 96, 237. https://doi.org/10.1007/s40030-015-0124-0 | |
dc.relation.references | [20] Song D., Pan K., Tariq A. et al.: PLoS One, 2016, 11(12), e0167037. https://doi.org/10.1371/journal.pone.0167037. | |
dc.relation.references | [21] Kumar M., Tamilarasan R.: Arabian J. Chem., 2013, 10, S1567. https://doi.org/10.1016/j.arabjc.2013.05.025 | |
dc.relation.references | [22] Hsu N-H., Wang S-L., Liao Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112 | |
dc.relation.references | [23] Yang J., Yu M., ChenW.: J. Ind. Eng. Chem., 2015, 21, 414. https://doi.org/10.1016/j.jiec.2014.02.054 | |
dc.relation.references | [24] Gueye M., Richardson Y., Kafack F., Blin J.: J. Environ. Chem. Eng., 2014, 2, 273. https://doi.org/10.1016/j.jece.2013.12.014 | |
dc.relation.references | [25] Cronje K., Chetty K., Carsky M. et al.: Desalination, 2011, 275, 276. https://doi.org/10.1016/j.desal.2011.03.019 | |
dc.relation.references | [26] Oliveira R., Hammer P., Guibal E. et al.: Chem. Eng. J., 2014, 239, 381. https://doi.org/10.1016/j.cej.2013.11.042 | |
dc.relation.references | [27] The Gymnosperm Database 2018. https://www.conifers.org/cu/Thuja_occidentalis.php | |
dc.relation.references | [28] Singanan M., Peters E.: J. Environ. Chem. Eng., 2013, 1, 884. https://doi.org/10.1016/j.jece.2013.07.030 | |
dc.relation.references | [29] Singanan M.: Science Asia, 2011, 37, 115. https://doi.org/10.2306/scienceasia1513-1874.2011.37.115 | |
dc.relation.references | [30] Mengistie A., Siva Rao T., Prasada Rao A.: Global J. Sci. Frontier Res. Chem., 2012, 12, 5. | |
dc.relation.references | [31] Esposito A., Pagnanelli F., Lodi A. et al.: Hydrometallurgy, 2001, 60, 129. https://doi.org/10.1016/S0304-386X(00)00195-X | |
dc.relation.references | [32] Liu C., Liang X., Liu J. et al.: J. Colloid Interface Sci., 2017, 488, 294. https://doi.org/10.1016/j.jcis.2016.11.013 | |
dc.relation.references | [33] Srivastava V., Mall I., Mishra I.: J. Hazard. Mater., 2006, B134, 257. https://doi.org/10.1016/j.jhazmat.2005.11.052 | |
dc.relation.references | [34] Hsua N-H., Wanga S-L., Liaoa Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112 | |
dc.relation.references | [35] Rangabhashiyam S., Selvaraju N.: J. Mol. Liq., 2017, 207, 39. https://doi.org/10.1016/j.molliq.2015.03.018 | |
dc.relation.references | [36] Huang C-P., Wu M-H.: Water Res., 1977, 11, 673. https://doi.org/10.1016/0043-1354(77)90106-3 | |
dc.relation.references | [37] Hamadi N., Chen X., Farid M., Lu M.: Chem. Eng. J., 2001, 84, 95. https://doi.org/10.1016/S1385-8947(01)00194-2 | |
dc.relation.references | [38] GuptaV., Ali I., SalehT. et al.: Environ. Sci. Pollut. Res., 2013, 20, 1261. https://doi.org/10.1007/s11356-012-0950-9 | |
dc.relation.references | [39] Rai M., Shahi G., Meena V. et al.: Res. Efficient Technol., 2016, 2, S63. https://doi.org/10.1016/j.reffit.2016.11.011 | |
dc.relation.references | [40] Langmuir I.: J. Am. Chem. Soc., 1918, 40, 1361. https://doi.org/10.1021/ja02242a004 | |
dc.relation.references | [41] Frendlich H.: J. Phys. Chem., 1906, 57, 385. | |
dc.relation.references | [42] Sujitha R., Ravindhranath K.: J. Fluorine Chem., 2017, 193, 58. https://doi.org/10.1016/j.jfluchem.2016.11.013 | |
dc.relation.references | [43] Masoud M., El-SarafW., Abdel-Halim A. et al.: Arabian J. Chem., 2016, 9, S1590. https://doi.org/10.1016/j.arabjc.2012.04.028 | |
dc.relation.references | [44] Kilic M., Apaydin-Varol E., Pütün A.: J. Hazard. Mater., 2011, 189, 397. https://doi.org/10.1016/j.jhazmat.2011.02.051 | |
dc.relation.references | [45] Dundar M., Nuhoglu C., Nuhoglu Y.: J. Hazard. Mater., 2008, 151, 86. https://doi.org/10.1016/j.jhazmat.2007.05.055 | |
dc.relation.references | [46] Huang H., Tang L., Wu C.: Environ. Sci. Technol., 2003, 37, 4463. https://doi.org/10.1021/es034193c | |
dc.relation.references | [47] Abdel Ghani N., Hegazy A., El-Chaghaby G.: Int. J. Environ. Sci. Technol., 2009, 6, 243. https://doi.org/10.1007/BF03327628 | |
dc.relation.references | [48] Chen Y., An D., Sun S. et al.: Materials, 2018, 11, 269. https://doi.org/10.3390/ma11020269 | |
dc.relation.references | [49] Abdolali A., Ngo H., GuoW. et al.: Bioresour. Technol., 2015, 193, 477. https://doi.org/10.1016/j.biortech.2015.06.123 | |
dc.relation.references | [50] Selvi K., Pattabi S., Kaadirvelu K.K.: Bioresour. Technol., 2001, 80, 87. https://doi.org/10.1016/S0960-8524(01)00068-2 | |
dc.relation.references | [51] Anandkumar J., Mandal B.: J. Hazard. Mater., 2009, 168, 633. https://doi.org/10.1016/j.jhazmat.2009.02.136 | |
dc.relation.references | [52] Garg U., Kaur M., Garg V., Sud D.: J. Hazard. Mater., 2007, 140, 60. https://doi.org/10.1016/j.jhazmat.2006.06.056 | |
dc.relation.references | [53] Aloma I., Rodriguez I., Calero M., Blazquez G.: Desalin. Water Treat., 2014, 52, 5912. https://doi.org/10.1080/19443994.2013.812521 | |
dc.relation.references | [54] Dakiky M., KhamisM., Manassra A., Mereb M.: Adv. Environ. Res., 2002, 6, 533. https://doi.org/10.1016/S1093-0191(01)00079-X | |
dc.relation.references | [55] Rangabhashiyam S., Anu N., Selvaraju N.: Res. J. Chem. Environ, 2014, 18, 30. | |
dc.relation.referencesen | [1] Djebbar M., Djafri F., Chem. Chem. Technol., 2018, 12, 272. https://doi.org/10.23939/chcht12.02.272 | |
dc.relation.referencesen | [2] Mehdipour S., Vatanpour V., Kariminia H., Desalination, 2015, 362, 84. https://doi.org/10.1016/j.desal.2015.01.030 | |
dc.relation.referencesen | [3] Skiba E., Kobyłecka J., WolfW., Environ. Pollut., 2017, 220B, 882. https://doi.org/10.1016/j.envpol.2016.10.072 | |
dc.relation.referencesen | [4] Wu L., Liao L., Lv G. et al., J. Hazard. Mater., 2013, 254, 277. https://doi.org/10.1016/j.jhazmat.2013.03.009 | |
dc.relation.referencesen | [5] Lv X., Xu J., Jiang G. et al., J. Colloid Interface Sci., 2012, 369, 460. https://doi.org/10.1016/j.jcis.2011.11.049 | |
dc.relation.referencesen | [6] Cheng Q., Wang C., Doudrick K., Chan C., Appl. Catal. B, 2015, 176-177, 740. https://doi.org/10.1016/j.apcatb.2015.04.047 | |
dc.relation.referencesen | [7] Sharma D., Forster C., Bioresour. Technol., 1995, 52, 261. https://doi.org/10.1016/0960-8524(95)00035-D | |
dc.relation.referencesen | [8] Focardi S., Pepi M., Focardi S., Microbial Reduction of Hexavalent Chromium as a Mechanism of Detoxification and Possible Bioremediation Applications. [in:] R. Chamy (Ed.), Biodegradation – Life of Science. InTechOpen 2013. https://doi.org/10.5772/56365 | |
dc.relation.referencesen | [9] Miretzky P., Cirelli A., J. Hazard. Mater., 2010, 180, 1. https://doi.org/10.1016/j.jhazmat.2010.04.060 | |
dc.relation.referencesen | [10] Hsu N-H., Wang S-L., Liao Y-H. et al., J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112 | |
dc.relation.referencesen | [11] Sereshti H., Farahani M., Baghdadi M., Talanta, 2016, 146, 662. https://doi.org/10.1016/j.talanta.2015.06.051. | |
dc.relation.referencesen | [12] Crisostomo C., Lima F., Dias R. et al., Water Air Soil Pollut., 2016, 227, 51. https://doi.org/10.1007/s11270-016-2747-9 | |
dc.relation.referencesen | [13] Teh C., Budiman P., Shak K., Wu T., Ind. Eng. Chem. Res., 2016, 55, 4363. https://doi.org/10.1021/acs.iecr.5b04703 | |
dc.relation.referencesen | [14] Kazeminezhad I., Mosivand S., J. Magn. Magn. Mater., 2017, 422, 84. https://doi.org/10.1016/j.jmmm.2016.08.049 | |
dc.relation.referencesen | [15] Ronda A., Della Zassa M., Martín-Lara M. et al., J. Hazard. Mater., 2016, 308, 285. https://doi.org/10.1016/j.jhazmat.2016.01.045 | |
dc.relation.referencesen | [16] Choi K., Lee S.., Ock J. et al., Nature, 2018, 8, 1438. https://doi.org/10.1038/s41598-018-20017-9 | |
dc.relation.referencesen | [17] Guo Z., Zhang J., Liu H., Kang Y., Powder Technol., 2017, 318, 459. https://doi.org/10.1016/j.powtec.2017.06.024 | |
dc.relation.referencesen | [18] Huang M., Wang Z., Liu S., J. Environ. Chem. Eng., 2016, 4, 1555. https://doi.org/10.1016/j.jece.2016.02.019 | |
dc.relation.referencesen | [19] Shashikant M., Trupti Nagendra P., J. Inst. Eng. India Ser. A, 2015, 96, 237. https://doi.org/10.1007/s40030-015-0124-0 | |
dc.relation.referencesen | [20] Song D., Pan K., Tariq A. et al., PLoS One, 2016, 11(12), e0167037. https://doi.org/10.1371/journal.pone.0167037. | |
dc.relation.referencesen | [21] Kumar M., Tamilarasan R., Arabian J. Chem., 2013, 10, S1567. https://doi.org/10.1016/j.arabjc.2013.05.025 | |
dc.relation.referencesen | [22] Hsu N-H., Wang S-L., Liao Y-H. et al., J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112 | |
dc.relation.referencesen | [23] Yang J., Yu M., ChenW., J. Ind. Eng. Chem., 2015, 21, 414. https://doi.org/10.1016/j.jiec.2014.02.054 | |
dc.relation.referencesen | [24] Gueye M., Richardson Y., Kafack F., Blin J., J. Environ. Chem. Eng., 2014, 2, 273. https://doi.org/10.1016/j.jece.2013.12.014 | |
dc.relation.referencesen | [25] Cronje K., Chetty K., Carsky M. et al., Desalination, 2011, 275, 276. https://doi.org/10.1016/j.desal.2011.03.019 | |
dc.relation.referencesen | [26] Oliveira R., Hammer P., Guibal E. et al., Chem. Eng. J., 2014, 239, 381. https://doi.org/10.1016/j.cej.2013.11.042 | |
dc.relation.referencesen | [27] The Gymnosperm Database 2018. https://www.conifers.org/cu/Thuja_occidentalis.php | |
dc.relation.referencesen | [28] Singanan M., Peters E., J. Environ. Chem. Eng., 2013, 1, 884. https://doi.org/10.1016/j.jece.2013.07.030 | |
dc.relation.referencesen | [29] Singanan M., Science Asia, 2011, 37, 115. https://doi.org/10.2306/scienceasia1513-1874.2011.37.115 | |
dc.relation.referencesen | [30] Mengistie A., Siva Rao T., Prasada Rao A., Global J. Sci. Frontier Res. Chem., 2012, 12, 5. | |
dc.relation.referencesen | [31] Esposito A., Pagnanelli F., Lodi A. et al., Hydrometallurgy, 2001, 60, 129. https://doi.org/10.1016/S0304-386X(00)00195-X | |
dc.relation.referencesen | [32] Liu C., Liang X., Liu J. et al., J. Colloid Interface Sci., 2017, 488, 294. https://doi.org/10.1016/j.jcis.2016.11.013 | |
dc.relation.referencesen | [33] Srivastava V., Mall I., Mishra I., J. Hazard. Mater., 2006, B134, 257. https://doi.org/10.1016/j.jhazmat.2005.11.052 | |
dc.relation.referencesen | [34] Hsua N-H., Wanga S-L., Liaoa Y-H. et al., J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112 | |
dc.relation.referencesen | [35] Rangabhashiyam S., Selvaraju N., J. Mol. Liq., 2017, 207, 39. https://doi.org/10.1016/j.molliq.2015.03.018 | |
dc.relation.referencesen | [36] Huang C-P., Wu M-H., Water Res., 1977, 11, 673. https://doi.org/10.1016/0043-1354(77)90106-3 | |
dc.relation.referencesen | [37] Hamadi N., Chen X., Farid M., Lu M., Chem. Eng. J., 2001, 84, 95. https://doi.org/10.1016/S1385-8947(01)00194-2 | |
dc.relation.referencesen | [38] GuptaV., Ali I., SalehT. et al., Environ. Sci. Pollut. Res., 2013, 20, 1261. https://doi.org/10.1007/s11356-012-0950-9 | |
dc.relation.referencesen | [39] Rai M., Shahi G., Meena V. et al., Res. Efficient Technol., 2016, 2, S63. https://doi.org/10.1016/j.reffit.2016.11.011 | |
dc.relation.referencesen | [40] Langmuir I., J. Am. Chem. Soc., 1918, 40, 1361. https://doi.org/10.1021/ja02242a004 | |
dc.relation.referencesen | [41] Frendlich H., J. Phys. Chem., 1906, 57, 385. | |
dc.relation.referencesen | [42] Sujitha R., Ravindhranath K., J. Fluorine Chem., 2017, 193, 58. https://doi.org/10.1016/j.jfluchem.2016.11.013 | |
dc.relation.referencesen | [43] Masoud M., El-SarafW., Abdel-Halim A. et al., Arabian J. Chem., 2016, 9, S1590. https://doi.org/10.1016/j.arabjc.2012.04.028 | |
dc.relation.referencesen | [44] Kilic M., Apaydin-Varol E., Pütün A., J. Hazard. Mater., 2011, 189, 397. https://doi.org/10.1016/j.jhazmat.2011.02.051 | |
dc.relation.referencesen | [45] Dundar M., Nuhoglu C., Nuhoglu Y., J. Hazard. Mater., 2008, 151, 86. https://doi.org/10.1016/j.jhazmat.2007.05.055 | |
dc.relation.referencesen | [46] Huang H., Tang L., Wu C., Environ. Sci. Technol., 2003, 37, 4463. https://doi.org/10.1021/es034193c | |
dc.relation.referencesen | [47] Abdel Ghani N., Hegazy A., El-Chaghaby G., Int. J. Environ. Sci. Technol., 2009, 6, 243. https://doi.org/10.1007/BF03327628 | |
dc.relation.referencesen | [48] Chen Y., An D., Sun S. et al., Materials, 2018, 11, 269. https://doi.org/10.3390/ma11020269 | |
dc.relation.referencesen | [49] Abdolali A., Ngo H., GuoW. et al., Bioresour. Technol., 2015, 193, 477. https://doi.org/10.1016/j.biortech.2015.06.123 | |
dc.relation.referencesen | [50] Selvi K., Pattabi S., Kaadirvelu K.K., Bioresour. Technol., 2001, 80, 87. https://doi.org/10.1016/S0960-8524(01)00068-2 | |
dc.relation.referencesen | [51] Anandkumar J., Mandal B., J. Hazard. Mater., 2009, 168, 633. https://doi.org/10.1016/j.jhazmat.2009.02.136 | |
dc.relation.referencesen | [52] Garg U., Kaur M., Garg V., Sud D., J. Hazard. Mater., 2007, 140, 60. https://doi.org/10.1016/j.jhazmat.2006.06.056 | |
dc.relation.referencesen | [53] Aloma I., Rodriguez I., Calero M., Blazquez G., Desalin. Water Treat., 2014, 52, 5912. https://doi.org/10.1080/19443994.2013.812521 | |
dc.relation.referencesen | [54] Dakiky M., KhamisM., Manassra A., Mereb M., Adv. Environ. Res., 2002, 6, 533. https://doi.org/10.1016/S1093-0191(01)00079-X | |
dc.relation.referencesen | [55] Rangabhashiyam S., Anu N., Selvaraju N., Res. J. Chem. Environ, 2014, 18, 30. | |
dc.relation.uri | https://doi.org/10.23939/chcht12.02.272 | |
dc.relation.uri | https://doi.org/10.1016/j.desal.2015.01.030 | |
dc.relation.uri | https://doi.org/10.1016/j.envpol.2016.10.072 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2013.03.009 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2011.11.049 | |
dc.relation.uri | https://doi.org/10.1016/j.apcatb.2015.04.047 | |
dc.relation.uri | https://doi.org/10.1016/0960-8524(95)00035-D | |
dc.relation.uri | https://doi.org/10.5772/56365 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2010.04.060 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2009.06.112 | |
dc.relation.uri | https://doi.org/10.1016/j.talanta.2015.06.051 | |
dc.relation.uri | https://doi.org/10.1007/s11270-016-2747-9 | |
dc.relation.uri | https://doi.org/10.1021/acs.iecr.5b04703 | |
dc.relation.uri | https://doi.org/10.1016/j.jmmm.2016.08.049 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2016.01.045 | |
dc.relation.uri | https://doi.org/10.1038/s41598-018-20017-9 | |
dc.relation.uri | https://doi.org/10.1016/j.powtec.2017.06.024 | |
dc.relation.uri | https://doi.org/10.1016/j.jece.2016.02.019 | |
dc.relation.uri | https://doi.org/10.1007/s40030-015-0124-0 | |
dc.relation.uri | https://doi.org/10.1371/journal.pone.0167037 | |
dc.relation.uri | https://doi.org/10.1016/j.arabjc.2013.05.025 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2014.02.054 | |
dc.relation.uri | https://doi.org/10.1016/j.jece.2013.12.014 | |
dc.relation.uri | https://doi.org/10.1016/j.desal.2011.03.019 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2013.11.042 | |
dc.relation.uri | https://www.conifers.org/cu/Thuja_occidentalis.php | |
dc.relation.uri | https://doi.org/10.1016/j.jece.2013.07.030 | |
dc.relation.uri | https://doi.org/10.2306/scienceasia1513-1874.2011.37.115 | |
dc.relation.uri | https://doi.org/10.1016/S0304-386X(00)00195-X | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2016.11.013 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2005.11.052 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2015.03.018 | |
dc.relation.uri | https://doi.org/10.1016/0043-1354(77)90106-3 | |
dc.relation.uri | https://doi.org/10.1016/S1385-8947(01)00194-2 | |
dc.relation.uri | https://doi.org/10.1007/s11356-012-0950-9 | |
dc.relation.uri | https://doi.org/10.1016/j.reffit.2016.11.011 | |
dc.relation.uri | https://doi.org/10.1021/ja02242a004 | |
dc.relation.uri | https://doi.org/10.1016/j.jfluchem.2016.11.013 | |
dc.relation.uri | https://doi.org/10.1016/j.arabjc.2012.04.028 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2011.02.051 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2007.05.055 | |
dc.relation.uri | https://doi.org/10.1021/es034193c | |
dc.relation.uri | https://doi.org/10.1007/BF03327628 | |
dc.relation.uri | https://doi.org/10.3390/ma11020269 | |
dc.relation.uri | https://doi.org/10.1016/j.biortech.2015.06.123 | |
dc.relation.uri | https://doi.org/10.1016/S0960-8524(01)00068-2 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2009.02.136 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2006.06.056 | |
dc.relation.uri | https://doi.org/10.1080/19443994.2013.812521 | |
dc.relation.uri | https://doi.org/10.1016/S1093-0191(01)00079-X | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Rao VD, Rao MVS, Krishna M., 2020 | |
dc.subject | листя Thuja оccidentalis | |
dc.subject | адсорбція Cr(VI) | |
dc.subject | ізотерми адсорбції | |
dc.subject | кінетика | |
dc.subject | Thuja occidentalis leaves | |
dc.subject | Cr(VI) adsorption | |
dc.subject | adsorption isotherm | |
dc.subject | kinetics | |
dc.title | Chromium(VI) Removal Using Activated Thuja Occidentalis Leaves Carbon Powder – Adsorption Isotherms and Kinetic Studies | |
dc.title.alternative | Видалення хрому(VI) з використанням карбонового порошку з листя thuja occidentalis – ізотерми адсорбції та кінетичні дослідження | |
dc.type | Article |
Files
License bundle
1 - 1 of 1