Аналіз математичних моделей квантового паралелізму
| dc.contributor.affiliation | Національний університет „Львівська політехніка” | |
| dc.contributor.author | Кравець , Петро | |
| dc.coverage.placename | Львів | |
| dc.date.accessioned | 2025-10-29T13:06:30Z | |
| dc.date.issued | 2025 | |
| dc.date.submitted | 2025 | |
| dc.description.abstract | У цій статті виконано аналіз математичних моделей квантового паралелізму, основаного на переведенні квантової системи у стан суперпозиції. Обґрунтовано принципи квантового паралелізму та його математичні засади. Для демонстрації квантової переваги проаналізовано математичні моделі фундаментальних квантових алгоритмів Дойча-Йожи та Гровера, які ілюструють ефективність квантових обчислень у порівнянні з класичними методами. Розглянуто алгоритм Дойча-Йожи, який узагальнює задачу визначення виду бінарної функції, розширюючи її на множину аргументів, записаних у квантовому регістрі. Цей алгоритм дозволяє визначити, чи є функція постійною або збалансованою за один квантовий виклик, тоді як у класичних обчисленнях для цього потрібен експоненційний час. Відзначено, що хоча алгоритм Дойча-Йожи демонструє можливості паралельних квантових обчислень, проте має переважно теоретичне значення. Алгоритм Гровера реалізує квантові паралельні обчислення для практичної задачі пошуку елемента у невпорядкованій базі даних. Він заснований на ітераційному підсиленні амплітуди стану, що відповідає шуканому елементу, та забезпечує квадратичне прискорення порівняно з класичними алгоритмами. Крім пошуку в базі даних, алгоритм Гровера може бути адаптований для розв’язання інших задач оптимізації. Роботу розглянутих алгоритмів проілюстровано числовими прикладами, що спрощує розуміння їхніх принципів та сприяє подальшому методологічному розвитку паралельних квантових обчислень. У статті також окреслено переваги квантового паралелізму над класичними обчисленнями та визначено перспективи застосування паралельних квантових алгоритмів. This article analyzes mathematical models of quantum parallelism based on the transfer of a quantum system into a superposition state. The principles of quantum parallelism and its mathematical foundations are substantiated. To demonstrate the quantum advantage, mathematical models of fundamental quantum algorithms Deutsch-Joža and Grover are analyzed, which illustrate the efficiency of quantum computing compared to classical methods. The Deutsch-Joshy algorithm is considered, which generalizes the problem of determining the type of a binary function by extending it to a set of arguments written in a quantum register. This algorithm allows determining whether a function is constant or balanced in a single quantum call, while in classical calculations this requires exponential time. It is noted that although the Deutsch-Joshy algorithm demonstrates the possibilities of parallel quantum computing, it is of mainly theoretical importance. Grover's algorithm implements quantum parallel computing for the practical problem of searching for an element in an unordered database. It is based on iterative amplification of the amplitude of the state corresponding to the searched element and provides quadratic speedup compared to classical algorithms. In addition to database search, Grover's algorithm can be adapted to solve other optimization problems. The work of the considered algorithms is illustrated by numerical examples, which simplifies the understanding of their principles and contributes to the further methodological development of parallel quantum computing. The article also outlines the advantages of quantum parallelism over classical computing and identifies the prospects for the application of parallel quantum algorithms. | |
| dc.format.pages | 248-268 | |
| dc.identifier.citation | Кравець П. Аналіз математичних моделей квантового паралелізму / Петро Кравець // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2025. — № 17. — С. 248–268. | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/115805 | |
| dc.language.iso | uk | |
| dc.publisher | Національний університет «Львівська політехніка» | |
| dc.relation.references | 1. Arute, F., Arya, K., Babbush, R. et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574, 505-510. https://doi.org/10.1038/s41586-019-1666-5. 2. Beer K. (2022). Quantum neural networks. arXiv: 2205.08154 [quant-ph]. https://doi.org/10.48550/ arXiv.2205.08154. 3. Biamonte, J., Wittek, P., Pancotti, N. et al. (2017). Quantum machine learning. Nature, 549 (7671), 195-202. https://doi.org/10.1038/nature23474. 4. Bodnarchuk, O., Zybin, S., & Vasilyuk-Zaytseva, S. (2024). The effectiveness of quantum computers in solving complex problems (in Ukrainian), Information Technology and Society, 4 (15), 6-13. https://doi.org/10. 32689/maup.it.2024.4.1. 5. Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818), 97–117. https://doi.org/10.1098/rspa.1985.0070. 6. Deutsch, D., & Jozsa, R. (1992). Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 439(1907), 553–558. https://doi.org/10.1098 /rspa.1992.0167. 7. Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. Oxford: Clarendon Press. 8. Easttom, C. (2022). Quantum Computing and Cryptography. In: Modern Cryptography, Applied Mathematics for Encryption and Information Security. Springer, Cham, 397-407. https://doi.org/10.1007/978-3-031-12304-7_19. 9. Farhi, E., G oldstone, J., & Gutmann, S. (2014). A Quantum Approximate Optimization Algorithm. arXiv: 1411.4028. https://doi.org/10.48550/arXiv.1411.4028. 10. Feynman, R. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6–7), 467–488. https://doi.org/10.1007/BF02650179. 11. Gaikwad, A., Torres, M.S., Ahmed, S., & Kockum, A.F. (2025). Gradient-descent methods for fast quantum state tomography, 1-20. arXiv: 2503.04526v1 [quant-ph]. 12. Gircha, A.I., Boev, A.S., Avchaciov, K. et al. (2023). Hybrid quantum-classical machine learning for generative chemistry and drug design. Sci Rep, 13, 8250. https://doi.org/10.1038/s41598-023-32703-4. 13. Google Quantum AI and Collaborators. (2025). Quantum error correction below the surface code threshold. Nature 638, 920–926. https://doi.org/10.1038/s41586-024-08449-y. 14. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 212–219. https://doi.org/10.1145/237814.237866. 15. Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79(2), 325–328. https://doi.org/10.1103/PhysRevLett.79.325. 16. Kadowaki, T., & Nishimori, H. (1998). Quantum annealing in the transverse Ising model. Physical Review E, 58(5), 5355. https://doi.org/10.1103/PhysRevE.58.5355. 17. Kalyuzhny, I. G. (2015). Quantum cryptography: principles, problems and prospects (in Ukrainian), Information systems, mechanics and control, 13, 29–37. http://nbuv.gov.ua/UJRN/Ismk_2015_13_5. 18. Karlash, G. Yu. (2018). Quantum Information Systems. Textbook for the specialty “Applied Physics and Nanomaterials” (in Ukrainian), Kyiv: Faculty of Radiophysics, Electronics and Computer Systems of Taras Shevchenko National University of Kyiv. 19. Kosobutsky, P. S. (2022). Physical foundations of quantum informatics: from quantum mechanics, through quantum computing to quantum cryptography (in Ukrainian), Computer systems design: theory and practice, 4 (1), 33-47. DOI: https://doi.org/10.23939/cds2022.01.033. 20. Krokhmalskyi, T. E. (2018). Introduction to Quantum Computing: Textbook (in Ukrainian), Lviv: Ivan Franko National University of Lviv. 21. Kozhukhivskyi, A.D., Gaidur, G.I., & Kozhukhivska, O.A. (2022). Quantum search algorithm in unstructured database, Scientific notes of the State University of Information and Telecommunication Technologies (in Ukrainian), 1-2(2), 10-14. DOI: 10.31673/25187678.2022. 021014. 22. Lloyd, S. (1996). Universal quantum simulators. Science, 273(5278), 1073–1078. 23. https://doi.org/10.1126/science.273.5278.1073. 24. Matsakos, T. & Nield, S. (2024). Quantum Monte Carlo simulations for financial risk analytics: scenario generation for equity, rate, and credit risk factors. Quantum, 8(1306), 1-35. arXiv: 2303.09682v2. https://doi.org/10.22331/q 2024-04-04-1306. 25. Motta, M. (2022). Quantum simulations of molecular systems with intrinsic atomic orbitals. Phys. Rev. A, 106(022404). https://doi.org/10.1103/PhysRevA.106.022404.26. Nielsen, M. A., & Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge University Press. 27. Ostapov, S. E., & Dobrovolskyi, Y. G. (2021). Quantum Informatics and Quantum Computing (in Ukrainian), Chernivtsi: ChNU. 28. Pang, X., Li, Y., & Wang, Z. (2025). Quantum neural network quantum state. Proc. SPIE 13545, Third International Conference on Algorithms, Network, and Communication Technology (ICANCT 2024), 1354504 (3 March 2025). https://doi.org/10.1117/12.3059735. 29. (2014 Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru-Guzik, A., & O’Brien, J. L.). A variational eigenvalue solver on a q uantum processor. Nature Communications, 5, 4213. https://doi.org/10.1038/ncomms5213. 30. Ramezani, S. B., Sommers, A., Manchukonda, H. K., Rahimi, S., & Amirlatifi, A. (2020). Machine Learning Algorithms in Quantum Computing: A Survey. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 1-8, https://doi.org/10.1109/IJCNN48605.2020.9207714. 31. Reichardt, B. W., & Grover, L. K. (2005). Quantum error correction of systematic errors using a quantum search framework. Phys. Rev. A, 72, 042326. arXiv:quant-ph/0506242. https://doi.org/10.48550/arXiv.quant ph/0506242. 32. Ricci, S., Dobias, P., Malina, L., Hajny J., & Jedlicka, P. (2024). Hybrid Keys in Practice: Combining Classical, Quantum and Post-Quantum Cryptography. In IEEE Access, 12, 23206-23219. https://doi.org/10.1109/ACCESS. 2024.3364520. 33. Schrödinger, E. (1926). Quantisierung als Eigenwertproblem. Annalen der phyzik, 18, 109-139. 34. Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science, 124–134. https://doi.org/10.1109/SFCS.1994.365700. 35. Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4), R2493–R2496. https://doi.org/10.1103/PhysRevA.52.R2493. 36. Tkachuk, V. M. (2011). Fundamental Problems of Quantum Mechanics (in Ukrainian), Lviv: Ivan Franko National University of Lviv. 37. Tomamichel, M. (2015). Quantum Information Processing with Finite Resources: Mathematical Foundations, Springer. 38. Vakarchuk, I. O. (2012). Quantum Mechanics, 4th edition (added) (in Ukrainian), Lviv: Ivan Franko National University of Lviv. 39. Wang, Z., & Tang, H. (2024). Artificial Intelligence for Quantum Error Correction: A Comprehensive Review. arXiv: 2412.20380, 1-20. https://doi.org/10.48550/arXiv.2412.20380 40. Wu, H., Zhang, J., Wang, L. et al. (2025). A survey on quantum deep learning. J Supercomput, 81(564). https://doi.org/10.1007/s11227-025-07083-3. 41. Yukhnovsky, I. R. (2002). Fundamentals of Quantum Mechanics. Textbook (second edition with additions) (in Ukrainian), Kyiv: Lybid. 42. Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classica. Reviews of Modern Physics, 75(3), 715–775. https://doi.org/10.1103/RevModPhys.75.715. | |
| dc.relation.uri | https://doi.org/10.23939/sisn2025.17.248 | |
| dc.subject.udc | 004.94:530.145 | |
| dc.title | Аналіз математичних моделей квантового паралелізму | |
| dc.title.alternative | Analysis of mathematical models of quantum parallelism | |
| dc.type | Article |