Influence of the SME run Perkins 1104D-44TA engine on the power and torque as well as unitary and hourly fuel consumption
dc.citation.epage | 48 | |
dc.citation.issue | 4 | |
dc.citation.spage | 45 | |
dc.citation.volume | 7 | |
dc.contributor.affiliation | Kielce University of Technology | |
dc.contributor.affiliation | University of Agriculture in Krakow | |
dc.contributor.affiliation | Malopolskie Centre for Renewable Energy Sources “BioEnergia” | |
dc.contributor.affiliation | Cracow University of Economics | |
dc.contributor.affiliation | Lviv National Agrarian University | |
dc.contributor.author | Łagowski, P. | |
dc.contributor.author | Kurczyński, D. | |
dc.contributor.author | Wcisło, G. | |
dc.contributor.author | Pracuch, B. | |
dc.contributor.author | Leśniak, A. | |
dc.contributor.author | Tomyuk, V. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-02-28T08:48:50Z | |
dc.date.available | 2020-02-28T08:48:50Z | |
dc.date.created | 2018-06-26 | |
dc.date.issued | 2018-06-26 | |
dc.description.abstract | he article presents the results of tests determining the impact of using sunflower oil methyl esters on power and torque as well as unitary and hourly fuel consumption of the Perkins 1104D-44TA engine. Biofuels were produced in the Fuel and Energy Laboratory belonging to the Maopolskie Centrum Energii Odnawialnej (Małopolskie Center for Renewable Energy Sources), while analyzes of the selected fuel parameters were performed both in the above-mentioned laboratory and in the Liquid Biofuels Laboratory at the University of Agriculture in Krakow. Engine tests were carried out on the engine test stand at the Kielce University of Technology. During the tests, the engine worked according to the external speed characteristic. The results of the tests have shown that the engine supplied with the SME achieves slightly lower values of both power and torque than in the case of commercial fuel oil type Ekodiesel Ultra from the ORLEN S.A company. There was also an increase, especially in the case of higher unitary fuel consumption. Hourly fuel consumption was higher when supplied with SME in relation to the diesel fuel supply, although not as much as unitary consumption. The increase in SME consumption at the engine supply can be explained by the lower fuel value of SME, which contains oxygen in its structure. | |
dc.format.extent | 45-48 | |
dc.format.pages | 4 | |
dc.identifier.citation | Influence of the SME run Perkins 1104D-44TA engine on the power and torque as well as unitary and hourly fuel consumption / P. Łagowski, D. Kurczyński, G. Wcisło, B. Pracuch, A. Leśniak, V. Tomyuk // Econtechmod : scientific journal. — Lviv : Lublin, 2018. — Vol 7. — No 4. — P. 45–48. | |
dc.identifier.citationen | Influence of the SME run Perkins 1104D-44TA engine on the power and torque as well as unitary and hourly fuel consumption / P. Łagowski, D. Kurczyński, G. Wcisło, B. Pracuch, A. Leśniak, V. Tomyuk // Econtechmod : scientific journal. — Lviv : Lublin, 2018. — Vol 7. — No 4. — P. 45–48. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46291 | |
dc.language.iso | en | |
dc.publisher | Lublin | |
dc.relation.ispartof | Econtechmod : scientific journal, 4 (7), 2018 | |
dc.relation.references | 1. Adewale P., Dumont M.-J., Ngadi M. 2014. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 45(2015), p. 574–588. | |
dc.relation.references | 2. Alptekin E., Canakci M., Sanli H. 2014. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Management 34, p. 2146–2154. | |
dc.relation.references | 3. Cunha A. Jr., Feddern V., De Prá M. C., Higarashi M. M., G. de Abreu P., Coldebella A. 2013. Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 105 (2013), p. 228–234. | |
dc.relation.references | 4. Demirbas A. 2009. Characterization of Biodiesel Fuels. Energy Sources, Part A, 31:889÷896. | |
dc.relation.references | 5. Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. | |
dc.relation.references | 6. Encinar J.M., Sánchez N., Martínez G., García L. 2011. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 102 (2011), p. 10907–10914. | |
dc.relation.references | 7. Issariyakul T., Dalai A. K. 2014. Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews 31, p. 446–471. | |
dc.relation.references | 8. Kirubakaran M., Arul Mozhi Selvan V. 2018. A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews 82 (2018) p. 390–401. | |
dc.relation.references | 9. Kousoulidou M., Fontaras G., Ntziachristos L., Samaras Z., 2010. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 89/2010, s. 3442–3449. | |
dc.relation.references | 10. Millo F., Debnath B. K., Vlachos T., Ciaravino C., Postrioti L., Buitoni G. 2015. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel, vol. 159, p. 614–627. | |
dc.relation.references | 11. Murugesan A., Umarani C., Subramanian R., Nedunchezhian N. 2009. Bio-diesel as an alternative fuel for diesel engines—A review. Renewable and Sustainable Energy Reviews, vol. 13/2009, p. 653÷662. | |
dc.relation.references | 12. Serrano L., Lopes M., Pires N., Ribeiro I., Cascao P., Tarelho L., Monteiro A., Nielsen O., Gameiro da Silva M., Borrego C. 2015. Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Applied Energy, vol. 146, p. 230–238. | |
dc.relation.references | 13. Stamenković O. S. Veličković A. V., Veljković V. B. 2011. The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel 90 (2011), p. 3141–3155. Produkcja biodiesla z olejów roślinnych przez etanolizę: stan obecny i perspektywy. | |
dc.relation.references | 14. Vertes A. A., Qureshi N., Blaschek H. P., Yukawa H. 2010. Biomass to Biofuels: Strategies for Global Industries. WILEY, A John Wiley & Sons, Ltd Publication. | |
dc.relation.references | 15. Wcisło G. 2013. Analiza wpływu odmian rzepaku na własności biopaliw RME oraz parametry pracy silnika o zapłonie samoczynnym. Monografia habilitacyjna. Wydawnictwo FALL. Kraków. | |
dc.relation.references | 16. Wcisło G., Labak N. 2017. Determination of the impact of the type of animal fat used for production of biofuels on the fractional composition of AME. Econtechmod. An international quarterly journal, vol. 6, No. 1. p. 111–114. | |
dc.relation.references | 17. Żmudzińska-Żurek B., Kożuch B., Rakoczy J. 2009. Badanie reakcji transestryfikacji triglicerydów oleju rzepakowego bioetanolem. Nafta-Gaz, 4/2009, s. 338–344. | |
dc.relation.references | 18. Drygaś B., Depciuch J., Puchalski Cz., Zaguła G. 2016. The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies. Econtechmod : an international quarterly journal on economics in technology, new technologies and modelling processes. Vol. 5, no. 3, 41–50. | |
dc.relation.references | 19. Wcisło. G. 2010:Utilization of used oils and fat for manufacturing FAME biofuels. Teka Komisji Motoryzacji I Energetyki Rolnictwa, 2010, Vol. X, P. 509–516. 2010. | |
dc.relation.references | 20. Tziourtzioumis D., Stamatelos A. 2012. Effects f a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine. Energy Conversion and Management 60/2012, P. 56–67. | |
dc.relation.referencesen | 1. Adewale P., Dumont M.-J., Ngadi M. 2014. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 45(2015), p. 574–588. | |
dc.relation.referencesen | 2. Alptekin E., Canakci M., Sanli H. 2014. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Management 34, p. 2146–2154. | |
dc.relation.referencesen | 3. Cunha A. Jr., Feddern V., De Prá M. C., Higarashi M. M., G. de Abreu P., Coldebella A. 2013. Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 105 (2013), p. 228–234. | |
dc.relation.referencesen | 4. Demirbas A. 2009. Characterization of Biodiesel Fuels. Energy Sources, Part A, 31:889÷896. | |
dc.relation.referencesen | 5. Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. | |
dc.relation.referencesen | 6. Encinar J.M., Sánchez N., Martínez G., García L. 2011. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 102 (2011), p. 10907–10914. | |
dc.relation.referencesen | 7. Issariyakul T., Dalai A. K. 2014. Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews 31, p. 446–471. | |
dc.relation.referencesen | 8. Kirubakaran M., Arul Mozhi Selvan V. 2018. A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews 82 (2018) p. 390–401. | |
dc.relation.referencesen | 9. Kousoulidou M., Fontaras G., Ntziachristos L., Samaras Z., 2010. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 89/2010, s. 3442–3449. | |
dc.relation.referencesen | 10. Millo F., Debnath B. K., Vlachos T., Ciaravino C., Postrioti L., Buitoni G. 2015. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel, vol. 159, p. 614–627. | |
dc.relation.referencesen | 11. Murugesan A., Umarani C., Subramanian R., Nedunchezhian N. 2009. Bio-diesel as an alternative fuel for diesel engines-A review. Renewable and Sustainable Energy Reviews, vol. 13/2009, p. 653÷662. | |
dc.relation.referencesen | 12. Serrano L., Lopes M., Pires N., Ribeiro I., Cascao P., Tarelho L., Monteiro A., Nielsen O., Gameiro da Silva M., Borrego P. 2015. Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Applied Energy, vol. 146, p. 230–238. | |
dc.relation.referencesen | 13. Stamenković O. S. Veličković A. V., Veljković V. B. 2011. The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel 90 (2011), p. 3141–3155. Produkcja biodiesla z olejów roślinnych przez etanolizę: stan obecny i perspektywy. | |
dc.relation.referencesen | 14. Vertes A. A., Qureshi N., Blaschek H. P., Yukawa H. 2010. Biomass to Biofuels: Strategies for Global Industries. WILEY, A John Wiley & Sons, Ltd Publication. | |
dc.relation.referencesen | 15. Wcisło G. 2013. Analiza wpływu odmian rzepaku na własności biopaliw RME oraz parametry pracy silnika o zapłonie samoczynnym. Monografia habilitacyjna. Wydawnictwo FALL. Kraków. | |
dc.relation.referencesen | 16. Wcisło G., Labak N. 2017. Determination of the impact of the type of animal fat used for production of biofuels on the fractional composition of AME. Econtechmod. An international quarterly journal, vol. 6, No. 1. p. 111–114. | |
dc.relation.referencesen | 17. Żmudzińska-Żurek B., Kożuch B., Rakoczy J. 2009. Badanie reakcji transestryfikacji triglicerydów oleju rzepakowego bioetanolem. Nafta-Gaz, 4/2009, s. 338–344. | |
dc.relation.referencesen | 18. Drygaś B., Depciuch J., Puchalski Cz., Zaguła G. 2016. The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies. Econtechmod : an international quarterly journal on economics in technology, new technologies and modelling processes. Vol. 5, no. 3, 41–50. | |
dc.relation.referencesen | 19. Wcisło. G. 2010:Utilization of used oils and fat for manufacturing FAME biofuels. Teka Komisji Motoryzacji I Energetyki Rolnictwa, 2010, Vol. X, P. 509–516. 2010. | |
dc.relation.referencesen | 20. Tziourtzioumis D., Stamatelos A. 2012. Effects f a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine. Energy Conversion and Management 60/2012, P. 56–67. | |
dc.rights.holder | © Copyright by Lviv Polytechnic National University 2018 | |
dc.rights.holder | © Copyright by Polish Academy of Sciences 2018 | |
dc.rights.holder | © Copyright by University of Engineering and Economics in Rzeszów 2018 | |
dc.rights.holder | © Copyright by University of Life Sciences in Lublin 2018 | |
dc.subject | combustion engine | |
dc.subject | biofuels | |
dc.subject | methyl esters of sunflower oil | |
dc.subject | external speed characteristics | |
dc.title | Influence of the SME run Perkins 1104D-44TA engine on the power and torque as well as unitary and hourly fuel consumption | |
dc.type | Article |
Files
License bundle
1 - 1 of 1