Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3H-indolenine
dc.citation.epage | 556 | |
dc.citation.issue | 3 | |
dc.citation.spage | 549 | |
dc.contributor.affiliation | Georgian Technical University | |
dc.contributor.affiliation | San Diego State University | |
dc.contributor.affiliation | Ivane Javakhishvili Tbilisi State University | |
dc.contributor.author | Bukia, Tinatin | |
dc.contributor.author | Utiashvili, Mariam | |
dc.contributor.author | Tsiskarishvili, Manana | |
dc.contributor.author | Jalalishvili, Sopo | |
dc.contributor.author | Gogolashvili, Ana | |
dc.contributor.author | Tatrishvili, Tamara | |
dc.contributor.author | Petriashvili, Gia | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:52:10Z | |
dc.date.available | 2024-02-12T08:52:10Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Нові азосполуки на основі 2,3,3-триметил-3Н-індоленіну синтезовано й охарактеризовано за допомогою ІЧ-, ЯМР- і мас-спектрального аналізу. Синтез проводили трьома різними маршрутами: 1) відновленням нітросполуки за допомогою Zn/NaOH у спирті; 2) нагріванням 2,3,3-триметил-3Н-індоленін-5-аміну в присутності MnO2 в толуолі; 3) діазотуванням 2,3,3-триметил-3Н-індоленін-5-аміну й обробкою отриманої солі діазонію відповідною азоскладовою. | |
dc.description.abstract | New azo compounds on the base of 2,3,3-trimethyl-3H-indolenine were synthesized and characterized by FT-IR, NMR, and Mas-spectral analysis. The synthesis was conducted in three different pathways: 1) by reducing the nitro compound with Zn/NaOH in alcohol; 2) by heating of 2,3,3-trimethyl-3H-indolenine-5-amine in the presence of MnO2 in toluene, and 3) by diazotization of 2,3,3-trimethyl-3H-indolenine-5-amine and treating the resulting diazonium salt with the appropriate coupler. | |
dc.format.extent | 549-556 | |
dc.format.pages | 8 | |
dc.identifier.citation | Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3H-indolenine / Tinatin Bukia, Mariam Utiashvili, Manana Tsiskarishvili, Sopo Jalalishvili, Ana Gogolashvili, Tamara Tatrishvili, Gia Petriashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 549–556. | |
dc.identifier.citationen | Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3H-indolenine / Tinatin Bukia, Mariam Utiashvili, Manana Tsiskarishvili, Sopo Jalalishvili, Ana Gogolashvili, Tamara Tatrishvili, Gia Petriashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 549–556. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.549 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61286 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Benkhaya, S.; Harfi, A. E.; El Harfi, A. Classifications, Proper-ties and Applications of Textile Dyes: A Review. Appl. J. Envir. Eng. Sci. 2017, 3, 311-320. https://doi.org/10.48422/IMIST.PRSM/ajees-v3i3.9681 | |
dc.relation.references | [2] Mikroyannidis, J.A.; Tsagkournos, D.V.; Balraju, P.; Sharma G.D. Low Band Gap Dyes Based 3 on 2-Styryl-5-phenylazo-pyrrole: Synthesis and Application for Efficient Dye-Sensitized Solar Cells. J. Power Sources 2011, 196, 4152-4161. https://doi.org/10.1016/j.jpowsour.2010.12.038 | |
dc.relation.references | [3] Al-Ahmad, A.Y.; Hassan, Q.M.A.; Badran, H.A.; Hussain, K.A. Investigating Some Linear and Nonlinear Optical Properties of the Azo Dye (1-Amino-2-hydroxy naphthalin sulfonic acid-[3-7(4-azo)]-4-amino diphenyl sulfone). Opt. Laser Technol. 2012, 44, 1450-1455. https://doi.org/10.1016/j.optlastec.2011.12.019 | |
dc.relation.references | [4] Pevzner, E.; Ehrenberg, B. Principal Component Analysis of the Absorption and Resonance Raman Spectra of the Metallochromic Indicator Antipyrylazo III. Spectrochim. Acta A Mol. Biomol. Spec-trosc. 2000, 56, 637-651. https://doi.org/10.1016/S1386-1425(99)00164-X | |
dc.relation.references | [5] Feng, Y.; Liu, H.; Luo, W.; Liu, E.; Zhao, N.; Yoshino, K.; Feng, W. Covalent Functionalization of Graphene by Azobenzene with Molecular Hydrogen Bonds for Long-Term Solar Thermal Storage. Sci. Rep. 2013, 3, 3260. https://doi.org/10.1038/srep03260 | |
dc.relation.references | [6] Adegoke, O.A.; Adesuji, T.E.; Thomas, O.E. Novel Colorimetric Sensors for Cyanide Based on Azo-Hydrazone Tautomeric Skeletons. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 147-152. https://doi.org/10.1016/j.saa.2014.02.118 | |
dc.relation.references | [7] Coelho, P.J.; Carvalho, L.M.; Fonseca, A.M.C.; Raposo, M.M.M. Photochromic Properties of Thienylpyrrole Azo in Solu-tion. Tetrahedron Lett. 2006, 47, 3711-3714. https://doi.org/10.1016/j.tetlet.2006.03.125 | |
dc.relation.references | [8] Ruyffelaere, F.; Nardello, V.; Schmidt, R.; Aubry, J.M. Photo-sensitizing Properties and Reactivity of Aryl Azo Naphthol Dyes Towards Singlet Oxygen. J. Photochem. Photobiol. 2006, 183, 98-105. https://doi.org/10.1016/j.jphotochem.2006.02.029 | |
dc.relation.references | [9] Erfantalab, M.; Khanmohammadi, H. New 1.2.4-Triazole-Based Azo–Azomethine Dye. Part III: Synthesis, Characterization, Ther-mal Property, Spectrophotometric and Computational Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 125, 345-352. https://doi.org/10.1016/j.saa.2014.01.113 | |
dc.relation.references | [10] Sabet, R.A.; Khoshsima, H. Real-Time Holographic Investiga-tion of Azo Dye Diffusion in a Nematic Liquid Crystal Host. Dyes Pigm. 2010, 87, 95-99. https://doi.org/10.1016/j.dyepig.2010.02.009 | |
dc.relation.references | [11] Kim, Y.D.; Cho, J.H.; Park, C.R.; Choi, J.H.; Yoon, C.; Kim, J.P. Synthesis, Application and Investigation of Structure–Thermal Stability Relationships of Thermally Stable Water-Soluble azo Naphthalene Dyes for LCD Red Color Filters. Dyes Pigm. 2011, 89, 1-8. https://doi.org/10.1016/j.dyepig.2010.07.008 | |
dc.relation.references | [12] Avella-Oliver, M.; Morais, S.; Puchades, R.; Maquieira, Á. Towards Photochromic and Thermochromic Biosensing. Trends Analyt. Chem. 2016, 79, 37-45 https://doi.org/10.1016/j.trac.2015.11.021 | |
dc.relation.references | [13] Zhang, X.; Hou, L.; Samorı, P. Coupling Carbon Nanomateri-als with photochromic Molecules for the Generation of Optically Responsive Materials. Nat. Commun. 2016, 7, 11118. https://doi.org/10.1038/ncomms11118 | |
dc.relation.references | [14] Benkhaya, S.; M'rabet, S.; El Harfi, A. Classifications, Proper-ties, Recent Synthesis and Applications of Azo Dyes. Heliyon 2020, 6, 03271. https://doi.org/10.1016/j.heliyon.2020.e03271 | |
dc.relation.references | [15] Esser-Kahn, A.P.; Odom, S.A.; Sottos, N.R.; White, S.R.; Moore, J.S. Triggered Release from Polymer Capsules. Macromolecules 2011, 44, 5539-5553. https://doi.org/10.1021/ma201014n | |
dc.relation.references | [16] Yousefi, H.; Yahyazadeh, A.; Moradi Rufchahi, E.O.; Rassa, M. Synthesis, Spectral Properties, Biological Activity and Applica-tion of new 4-(Benzyloxy)phenol Derived Azo Dyes for Polyester Fiber Dyeing. J. Mol. Liq. 2013, 180, 51-58. https://doi.org/10.1016/j.molliq.2012.12.030 | |
dc.relation.references | [17] Mallikarjuna, N.M.; Keshavayya, J. Synthesis, Spectroscopic Characterization and Pharmacological Studies on Novel Sulfamethaxazole Based Azo Dyes. J. King Saud Univ. Sci. 2020, 32, 251-259. https://doi.org/10.1016/j.jksus.2018.04.033 | |
dc.relation.references | [18] Yazdanbakhsh, M.R.; Yousefi, H.; Mamaghani, M.; Moradi, E.O.; Rassa, M.; Pouramir, H.; Bagheri, M. Synthesis, Spectral Characterization and Antimicrobial Activity of Some New Azo 3 Dyes Derived from 4.6 Dihydroxypyrimidine, J. Mol. Liq. 2012, 169, 21-26. https://doi.org/10.1016/j.molliq.2012.03.003 | |
dc.relation.references | [19] Karci, F.; Şener, N.; Yamaç, M.; Şener, İ.; Demirçali, A.A. The Synthesis, Antimicrobial Activity and Absorption Characteristics of Some Novel Heterocyclic Disazo Dyes. Dyes Pigm. 2009, 80, 47-52. https://doi.org/10.1016/j.dyepig.2008.05.001 | |
dc.relation.references | [20] Xu, H.; Zeng, X. Synthesis of Diaryl-Azo Derivatives as Potential Antifungal Agents. Bioorgan. Med. Chem. Lett. 2010, 20, 4193-4195. https://doi.org/10.1016/j.bmcl.2010.05.048 | |
dc.relation.references | [21] Liu, G.; Wang, X.; Hu, J.; Zhang, G.; Liu, S. Self-Immolative Polymersomes for High-Efficiency Triggered Release and Pro-grammed Enzymatic Reactions. J. Am. Chem. Soc. 2014, 136, 7492-7497. https://doi.org/10.1021/ja5030832 | |
dc.relation.references | [22] Mohamed-Smati, S.B.; Faraj, F.L.; Becheker, I.; Berredjem, H.; Bideau, F.L.; Hamdi, M.; Dumas, F.; Rachedi, Y. Synthesis, Characterization and Antimicrobial Activity of Some New Azo Dyes Derived from 4-Hydroxy-6-methyl-2H-pyran-2-one and its Dihydro Derivative. Dyes Pigm. 2021, 188, 109073. https://doi.org/10.1016/j.dyepig.2020.109073 | |
dc.relation.references | [23] Hunger, K.; Mischke, P. Azo Dyes, 1. Ullmann's encycl. ind. chem. 2011, 4, 523-541. https://doi.org/10.1002/14356007.a03_245.pub2 | |
dc.relation.references | [24] Hunger, K.; Mischke, P.; Rieper, W.; Raue, R.; Kunde, K.; Aloys E. Azo Dyes. Ullmann's encycl. ind. chem. 2000, 1-93. https://doi.org/10.1002/14356007.a03_245 | |
dc.relation.references | [25] Gung, B.W.; Taylor, R.T. Parallel Combinatorial Synthesis of Azo Dyes: A Combinatorial Experiment Suitable for Undergraduate Laboratories. J. Chem. Educ. 2004, 81, 1630-1632. https://doi.org/10.1021/ed081p1630 | |
dc.relation.references | [26] Rydchuk, M.; Vrublevska T.; Boyko M.; Korkuna, O. Masking is the Effective Alternative to the Separation during Osmium Determination by Means of Azo Dyes in Complex Samples. Chem. Chem. Technol. 2010, 4, 115-124. https://doi.org/10.23939/chcht04.02.115 | |
dc.relation.references | [27] Nadtoka, O. Nonlinear Optical Effects in Polymeric Azoesters. Chem. Chem. Technol. 2010, 4, 185-190. https://doi.org/10.23939/chcht04.03.185 | |
dc.relation.references | [28] Naji, A.M.; Abdula, A.M.; Nief O.A.; Abdullah, E.K. Synthe-sis, Characterization, Antimicrobial and Molecular Docking Study of Benzooxadiazole Derivatives. Chem. Chem. Technol. 2022, 16, 25-33. https://doi.org/10.23939/chcht16.01.025 | |
dc.relation.references | [29] Kulkarni, M.; Thakur, P. The Effect of UV/TiO2/H2O2 Process and Influence of Operational Parameters on Photocatalytic Degrada-tion of Azo Dye in Aqueous TiO2 Suspension. Chem. Chem. Tech-nol. 2010, 4, 265-270. https://doi.org/10.23939/chcht04.04.265 | |
dc.relation.references | [30] Gilbert, A.M.; Failli, A.; Shumsky, J.; Yang, Y.; Severin, A.; Singh, G.; Hu, W.; Keeney, D.; Petersen, P.J.; Katz, A.H. Pyrazoli-dine-3,5-diones and 5-Hydroxy-1H-pyrazol-3(2H)-ones, Inhibitors of UDP-N-acetylenolpyruvyl Glucosamine Reductase. J. Med. Chem. 2006, 49, 6027-6036. https://doi.org/10.1021/jm060499t | |
dc.relation.references | [31] Hugo, I.; Funderburk, L.H. Process for the Preparation of 2,3,3-Trimethyl Indolenines, US3639420 A, Febuary 1, 1972. | |
dc.relation.references | [32] Piggott, H.A.; Hulme, Ch. Heterocyclic Nitrogen Compounds. US2016836, October 8, 1935. | |
dc.relation.references | [33] Lyubich, M.S.; Isaev, S.G.; Al'perovich, M.A.; Shpileva, I.S.; Arshava, B.M. Interaction of 5-Amino-2,3-trimethyl-3H-indole with p-Nitrobenzaldehyde. Chem. Heterocycl. Compd. 1984, 20, 976-977. https://doi.org/10.1007/BF00506391 | |
dc.relation.references | [34] Bigelow, H.E.; Robinson, D.B. Azobenzene. Org. Synth. 1942, 22, 103. https://doi.org/10.15227/orgsyn.022.0028 | |
dc.relation.references | [35] Bhatnagar, I; George M.V. Oxidation of Phenylhydrazones with Manganese Dioxide. J. Org. Chem. 1967, 32, 2252-2256. https://doi.org/10.1021/jo01282a036 | |
dc.relation.referencesen | [1] Benkhaya, S.; Harfi, A. E.; El Harfi, A. Classifications, Proper-ties and Applications of Textile Dyes: A Review. Appl. J. Envir. Eng. Sci. 2017, 3, 311-320. https://doi.org/10.48422/IMIST.PRSM/ajees-v3i3.9681 | |
dc.relation.referencesen | [2] Mikroyannidis, J.A.; Tsagkournos, D.V.; Balraju, P.; Sharma G.D. Low Band Gap Dyes Based 3 on 2-Styryl-5-phenylazo-pyrrole: Synthesis and Application for Efficient Dye-Sensitized Solar Cells. J. Power Sources 2011, 196, 4152-4161. https://doi.org/10.1016/j.jpowsour.2010.12.038 | |
dc.relation.referencesen | [3] Al-Ahmad, A.Y.; Hassan, Q.M.A.; Badran, H.A.; Hussain, K.A. Investigating Some Linear and Nonlinear Optical Properties of the Azo Dye (1-Amino-2-hydroxy naphthalin sulfonic acid-[3-7(4-azo)]-4-amino diphenyl sulfone). Opt. Laser Technol. 2012, 44, 1450-1455. https://doi.org/10.1016/j.optlastec.2011.12.019 | |
dc.relation.referencesen | [4] Pevzner, E.; Ehrenberg, B. Principal Component Analysis of the Absorption and Resonance Raman Spectra of the Metallochromic Indicator Antipyrylazo III. Spectrochim. Acta A Mol. Biomol. Spec-trosc. 2000, 56, 637-651. https://doi.org/10.1016/S1386-1425(99)00164-X | |
dc.relation.referencesen | [5] Feng, Y.; Liu, H.; Luo, W.; Liu, E.; Zhao, N.; Yoshino, K.; Feng, W. Covalent Functionalization of Graphene by Azobenzene with Molecular Hydrogen Bonds for Long-Term Solar Thermal Storage. Sci. Rep. 2013, 3, 3260. https://doi.org/10.1038/srep03260 | |
dc.relation.referencesen | [6] Adegoke, O.A.; Adesuji, T.E.; Thomas, O.E. Novel Colorimetric Sensors for Cyanide Based on Azo-Hydrazone Tautomeric Skeletons. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 147-152. https://doi.org/10.1016/j.saa.2014.02.118 | |
dc.relation.referencesen | [7] Coelho, P.J.; Carvalho, L.M.; Fonseca, A.M.C.; Raposo, M.M.M. Photochromic Properties of Thienylpyrrole Azo in Solu-tion. Tetrahedron Lett. 2006, 47, 3711-3714. https://doi.org/10.1016/j.tetlet.2006.03.125 | |
dc.relation.referencesen | [8] Ruyffelaere, F.; Nardello, V.; Schmidt, R.; Aubry, J.M. Photo-sensitizing Properties and Reactivity of Aryl Azo Naphthol Dyes Towards Singlet Oxygen. J. Photochem. Photobiol. 2006, 183, 98-105. https://doi.org/10.1016/j.jphotochem.2006.02.029 | |
dc.relation.referencesen | [9] Erfantalab, M.; Khanmohammadi, H. New 1.2.4-Triazole-Based Azo–Azomethine Dye. Part III: Synthesis, Characterization, Ther-mal Property, Spectrophotometric and Computational Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 125, 345-352. https://doi.org/10.1016/j.saa.2014.01.113 | |
dc.relation.referencesen | [10] Sabet, R.A.; Khoshsima, H. Real-Time Holographic Investiga-tion of Azo Dye Diffusion in a Nematic Liquid Crystal Host. Dyes Pigm. 2010, 87, 95-99. https://doi.org/10.1016/j.dyepig.2010.02.009 | |
dc.relation.referencesen | [11] Kim, Y.D.; Cho, J.H.; Park, C.R.; Choi, J.H.; Yoon, C.; Kim, J.P. Synthesis, Application and Investigation of Structure–Thermal Stability Relationships of Thermally Stable Water-Soluble azo Naphthalene Dyes for LCD Red Color Filters. Dyes Pigm. 2011, 89, 1-8. https://doi.org/10.1016/j.dyepig.2010.07.008 | |
dc.relation.referencesen | [12] Avella-Oliver, M.; Morais, S.; Puchades, R.; Maquieira, Á. Towards Photochromic and Thermochromic Biosensing. Trends Analyt. Chem. 2016, 79, 37-45 https://doi.org/10.1016/j.trac.2015.11.021 | |
dc.relation.referencesen | [13] Zhang, X.; Hou, L.; Samorı, P. Coupling Carbon Nanomateri-als with photochromic Molecules for the Generation of Optically Responsive Materials. Nat. Commun. 2016, 7, 11118. https://doi.org/10.1038/ncomms11118 | |
dc.relation.referencesen | [14] Benkhaya, S.; M'rabet, S.; El Harfi, A. Classifications, Proper-ties, Recent Synthesis and Applications of Azo Dyes. Heliyon 2020, 6, 03271. https://doi.org/10.1016/j.heliyon.2020.e03271 | |
dc.relation.referencesen | [15] Esser-Kahn, A.P.; Odom, S.A.; Sottos, N.R.; White, S.R.; Moore, J.S. Triggered Release from Polymer Capsules. Macromolecules 2011, 44, 5539-5553. https://doi.org/10.1021/ma201014n | |
dc.relation.referencesen | [16] Yousefi, H.; Yahyazadeh, A.; Moradi Rufchahi, E.O.; Rassa, M. Synthesis, Spectral Properties, Biological Activity and Applica-tion of new 4-(Benzyloxy)phenol Derived Azo Dyes for Polyester Fiber Dyeing. J. Mol. Liq. 2013, 180, 51-58. https://doi.org/10.1016/j.molliq.2012.12.030 | |
dc.relation.referencesen | [17] Mallikarjuna, N.M.; Keshavayya, J. Synthesis, Spectroscopic Characterization and Pharmacological Studies on Novel Sulfamethaxazole Based Azo Dyes. J. King Saud Univ. Sci. 2020, 32, 251-259. https://doi.org/10.1016/j.jksus.2018.04.033 | |
dc.relation.referencesen | [18] Yazdanbakhsh, M.R.; Yousefi, H.; Mamaghani, M.; Moradi, E.O.; Rassa, M.; Pouramir, H.; Bagheri, M. Synthesis, Spectral Characterization and Antimicrobial Activity of Some New Azo 3 Dyes Derived from 4.6 Dihydroxypyrimidine, J. Mol. Liq. 2012, 169, 21-26. https://doi.org/10.1016/j.molliq.2012.03.003 | |
dc.relation.referencesen | [19] Karci, F.; Şener, N.; Yamaç, M.; Şener, İ.; Demirçali, A.A. The Synthesis, Antimicrobial Activity and Absorption Characteristics of Some Novel Heterocyclic Disazo Dyes. Dyes Pigm. 2009, 80, 47-52. https://doi.org/10.1016/j.dyepig.2008.05.001 | |
dc.relation.referencesen | [20] Xu, H.; Zeng, X. Synthesis of Diaryl-Azo Derivatives as Potential Antifungal Agents. Bioorgan. Med. Chem. Lett. 2010, 20, 4193-4195. https://doi.org/10.1016/j.bmcl.2010.05.048 | |
dc.relation.referencesen | [21] Liu, G.; Wang, X.; Hu, J.; Zhang, G.; Liu, S. Self-Immolative Polymersomes for High-Efficiency Triggered Release and Pro-grammed Enzymatic Reactions. J. Am. Chem. Soc. 2014, 136, 7492-7497. https://doi.org/10.1021/ja5030832 | |
dc.relation.referencesen | [22] Mohamed-Smati, S.B.; Faraj, F.L.; Becheker, I.; Berredjem, H.; Bideau, F.L.; Hamdi, M.; Dumas, F.; Rachedi, Y. Synthesis, Characterization and Antimicrobial Activity of Some New Azo Dyes Derived from 4-Hydroxy-6-methyl-2H-pyran-2-one and its Dihydro Derivative. Dyes Pigm. 2021, 188, 109073. https://doi.org/10.1016/j.dyepig.2020.109073 | |
dc.relation.referencesen | [23] Hunger, K.; Mischke, P. Azo Dyes, 1. Ullmann's encycl. ind. chem. 2011, 4, 523-541. https://doi.org/10.1002/14356007.a03_245.pub2 | |
dc.relation.referencesen | [24] Hunger, K.; Mischke, P.; Rieper, W.; Raue, R.; Kunde, K.; Aloys E. Azo Dyes. Ullmann's encycl. ind. chem. 2000, 1-93. https://doi.org/10.1002/14356007.a03_245 | |
dc.relation.referencesen | [25] Gung, B.W.; Taylor, R.T. Parallel Combinatorial Synthesis of Azo Dyes: A Combinatorial Experiment Suitable for Undergraduate Laboratories. J. Chem. Educ. 2004, 81, 1630-1632. https://doi.org/10.1021/ed081p1630 | |
dc.relation.referencesen | [26] Rydchuk, M.; Vrublevska T.; Boyko M.; Korkuna, O. Masking is the Effective Alternative to the Separation during Osmium Determination by Means of Azo Dyes in Complex Samples. Chem. Chem. Technol. 2010, 4, 115-124. https://doi.org/10.23939/chcht04.02.115 | |
dc.relation.referencesen | [27] Nadtoka, O. Nonlinear Optical Effects in Polymeric Azoesters. Chem. Chem. Technol. 2010, 4, 185-190. https://doi.org/10.23939/chcht04.03.185 | |
dc.relation.referencesen | [28] Naji, A.M.; Abdula, A.M.; Nief O.A.; Abdullah, E.K. Synthe-sis, Characterization, Antimicrobial and Molecular Docking Study of Benzooxadiazole Derivatives. Chem. Chem. Technol. 2022, 16, 25-33. https://doi.org/10.23939/chcht16.01.025 | |
dc.relation.referencesen | [29] Kulkarni, M.; Thakur, P. The Effect of UV/TiO2/H2O2 Process and Influence of Operational Parameters on Photocatalytic Degrada-tion of Azo Dye in Aqueous TiO2 Suspension. Chem. Chem. Tech-nol. 2010, 4, 265-270. https://doi.org/10.23939/chcht04.04.265 | |
dc.relation.referencesen | [30] Gilbert, A.M.; Failli, A.; Shumsky, J.; Yang, Y.; Severin, A.; Singh, G.; Hu, W.; Keeney, D.; Petersen, P.J.; Katz, A.H. Pyrazoli-dine-3,5-diones and 5-Hydroxy-1H-pyrazol-3(2H)-ones, Inhibitors of UDP-N-acetylenolpyruvyl Glucosamine Reductase. J. Med. Chem. 2006, 49, 6027-6036. https://doi.org/10.1021/jm060499t | |
dc.relation.referencesen | [31] Hugo, I.; Funderburk, L.H. Process for the Preparation of 2,3,3-Trimethyl Indolenines, US3639420 A, Febuary 1, 1972. | |
dc.relation.referencesen | [32] Piggott, H.A.; Hulme, Ch. Heterocyclic Nitrogen Compounds. US2016836, October 8, 1935. | |
dc.relation.referencesen | [33] Lyubich, M.S.; Isaev, S.G.; Al'perovich, M.A.; Shpileva, I.S.; Arshava, B.M. Interaction of 5-Amino-2,3-trimethyl-3H-indole with p-Nitrobenzaldehyde. Chem. Heterocycl. Compd. 1984, 20, 976-977. https://doi.org/10.1007/BF00506391 | |
dc.relation.referencesen | [34] Bigelow, H.E.; Robinson, D.B. Azobenzene. Org. Synth. 1942, 22, 103. https://doi.org/10.15227/orgsyn.022.0028 | |
dc.relation.referencesen | [35] Bhatnagar, I; George M.V. Oxidation of Phenylhydrazones with Manganese Dioxide. J. Org. Chem. 1967, 32, 2252-2256. https://doi.org/10.1021/jo01282a036 | |
dc.relation.uri | https://doi.org/10.48422/IMIST.PRSM/ajees-v3i3.9681 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2010.12.038 | |
dc.relation.uri | https://doi.org/10.1016/j.optlastec.2011.12.019 | |
dc.relation.uri | https://doi.org/10.1016/S1386-1425(99)00164-X | |
dc.relation.uri | https://doi.org/10.1038/srep03260 | |
dc.relation.uri | https://doi.org/10.1016/j.saa.2014.02.118 | |
dc.relation.uri | https://doi.org/10.1016/j.tetlet.2006.03.125 | |
dc.relation.uri | https://doi.org/10.1016/j.jphotochem.2006.02.029 | |
dc.relation.uri | https://doi.org/10.1016/j.saa.2014.01.113 | |
dc.relation.uri | https://doi.org/10.1016/j.dyepig.2010.02.009 | |
dc.relation.uri | https://doi.org/10.1016/j.dyepig.2010.07.008 | |
dc.relation.uri | https://doi.org/10.1016/j.trac.2015.11.021 | |
dc.relation.uri | https://doi.org/10.1038/ncomms11118 | |
dc.relation.uri | https://doi.org/10.1016/j.heliyon.2020.e03271 | |
dc.relation.uri | https://doi.org/10.1021/ma201014n | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2012.12.030 | |
dc.relation.uri | https://doi.org/10.1016/j.jksus.2018.04.033 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2012.03.003 | |
dc.relation.uri | https://doi.org/10.1016/j.dyepig.2008.05.001 | |
dc.relation.uri | https://doi.org/10.1016/j.bmcl.2010.05.048 | |
dc.relation.uri | https://doi.org/10.1021/ja5030832 | |
dc.relation.uri | https://doi.org/10.1016/j.dyepig.2020.109073 | |
dc.relation.uri | https://doi.org/10.1002/14356007.a03_245.pub2 | |
dc.relation.uri | https://doi.org/10.1002/14356007.a03_245 | |
dc.relation.uri | https://doi.org/10.1021/ed081p1630 | |
dc.relation.uri | https://doi.org/10.23939/chcht04.02.115 | |
dc.relation.uri | https://doi.org/10.23939/chcht04.03.185 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.01.025 | |
dc.relation.uri | https://doi.org/10.23939/chcht04.04.265 | |
dc.relation.uri | https://doi.org/10.1021/jm060499t | |
dc.relation.uri | https://doi.org/10.1007/BF00506391 | |
dc.relation.uri | https://doi.org/10.15227/orgsyn.022.0028 | |
dc.relation.uri | https://doi.org/10.1021/jo01282a036 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Bukia T., Utiashvili M., Tsiskarishvili M., Jalalishvili S., Gogolashvili A., Tatrishvili T., Petriashvili G., 2023 | |
dc.subject | азобарвники | |
dc.subject | біс-азобарвник | |
dc.subject | відновлення | |
dc.subject | 2 | |
dc.subject | 3 | |
dc.subject | 3-триметил-3Н-індоленін | |
dc.subject | синтез | |
dc.subject | azo dyes | |
dc.subject | bis azo dye | |
dc.subject | reduction | |
dc.subject | 2 | |
dc.subject | 3 | |
dc.subject | 3-trimethyl-3H-indolenine | |
dc.subject | synthesis | |
dc.title | Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3H-indolenine | |
dc.title.alternative | Синтез деяких азобарвників на основі 2,3,3 триметил 3H індоленіну | |
dc.type | Article |
Files
License bundle
1 - 1 of 1