Demulsification Methods for Heavy Crude Oil Emulsions. A Review

dc.citation.epage283
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage270
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorTopilnytskyy, Petro
dc.contributor.authorShyshchak, Maksym
dc.contributor.authorSkorokhoda, Volodymyr
dc.contributor.authorTorskyi, Vasyl
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:48Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДеемульгування (зневоднення) є однією з найважливіших проблем у нафтовій промисловості. Особливістю емульсій важких нафт є їхня висока стабільність, оскільки важка нафта містить значну кількість смол та асфальтенів. У цій статті подано огляд проблеми зневоднення важких нафтових емульсій, підкреслено важливість розуміння їхніх властивостей для розробки відповідних методів деемульгування. Особливу увагу приділено використанню екологічно безпечних деемульгаторів. Аналіз поточних досліджень у цій галузі буде корисним для науковців та інженерів.
dc.description.abstractDemulsification (dehydration) is one of the most important problems in the oil industry. The peculiarity of heavy oil emulsions is their high stability since heavy crude contains a significant quantity of resins and asphaltenes. This paper provides an overview of the issue of heavy oil emulsion dehydration, emphasizing the importance of understanding their properties to develop appropriate demulsification methods. The use of environmentally friendly demulsifiers was an object of special attention. The analysis of ongoing research in this area would be useful for researches and engineers.
dc.format.extent270-283
dc.format.pages14
dc.identifier.citationDemulsification Methods for Heavy Crude Oil Emulsions. A Review / Petro Topilnytskyy, Maksym Shyshchak, Volodymyr Skorokhoda, Vasyl Torskyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 270–283.
dc.identifier.citationenDemulsification Methods for Heavy Crude Oil Emulsions. A Review / Petro Topilnytskyy, Maksym Shyshchak, Volodymyr Skorokhoda, Vasyl Torskyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 270–283.
dc.identifier.doidoi.org/10.23939/chcht18.02.270
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111789
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Ezzat, A.O.; Atta, A.M.; Al-Lohedan, H.A. One-Step Synthesis of Amphiphilic Nonylphenol Polyethyleneimine for Demulsification of Water in Heavy Crude Oil Emulsions. ACS Omega 2020, 5(16), 9212–9223. https://doi.org/10.1021/acsomega.0c00002
dc.relation.references[2] Abdulredha, M.M.; Aslina, H.S.; Luqman, C.A. Overview on Petroleum Emulsions, Formation, Influence and Demulsification Treatment Techniques. Arab. J. Chem. 2020, 13(1), 3403−3428. https://doi.org/10.1016/j.arabjc.2018.11.014
dc.relation.references[3] Salam, K.; Alade, A.; Arinkoola, A.; Opawale, A. Improving the Demulsification Process of Heavy Crude Oil Emulsion through Blending with Diluent. J. Pet. Eng. 2013, Article ID 793101. https://doi.org/10.1155/2013/793101
dc.relation.references[4] Raya, S.A.; Mohd Saaid, I.; Abbas Ahmed, A. et al. A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry. J. Pet. Explor. Prod. Technol. 2020, 10, 1711–1728. https://doi.org/10.1007/s13202-020-00830-7
dc.relation.references[5] Fajun, Z.; Zhexi, T.; Zhongqi, Y.; Hongzhi, S.; Yanping, W.; Yufei, Z. Research Status and Analysis of Stabilization Mechanisms and Demulsification Methods of Heavy Oil Emulsions. Energy Sci. Eng. 2020 , 8(12), 4158−4177. https://doi.org/10.1002/ese3.814
dc.relation.references[6] Yarmola, T.V.; Topilnytskyy, P.I., Skorokhoda, V.J.; Korchak B.O. Processing of Heavy High-Viscosity Oil Mixtures from the Eastern Region of Ukraine: Technological Aspects. Voprosy Khimii i Khimicheskoi Tekhnologii 2023, 1, 40−49. https://doi.org/10.32434/0321-4095-2023-146-1-40-49
dc.relation.references[7] Lee, J.; Babadagli, T. Comprehensive Review on Heavy-Oil Emulsions: Colloid Science and Practical Applications, Chem. Eng. Sci. 2020, 228, 115962, https://doi.org/10.1016/j.ces.2020.115962
dc.relation.references[8] Topilnytskyy, P.; Paiuk, S.; Stebelska, H.; Romanchuk, V.; Yarmola, T. Technological Features of High-Sulfur Heavy Crude Oils Processing. Chem. Chem. Technol. 2019, 13, 503−509. https://doi.org/10.23939/chcht13.04.503
dc.relation.references[9] Faizullayev, S.; Adilbekova, A.; Kujawski, W.; Mirzaeian, M. Recent Demulsification Methods of Crude Oil Emulsions – Brief Review. J. Pet. Sci. Eng. 2022, 215, Part B, 110643. https://doi.org/10.1016/j.petrol.2022.110643
dc.relation.references[10] Soliman, E. Flow of Heavy Oils at Low Temperatures: Potential Challenges and Solutions. In Processing of Heavy Crude Oils - Challenges and Opportunities; IntechOpen, 2019. https://doi.org/10.5772/intechopen.82286
dc.relation.references[11] Zamora, E.B.; Hernández, E.I.; Zavala, G.; Fuentes, J.V.; Álvarez, F.; Flores, C.A.; Vázquez, F. High Performance Demulsifiers for Heavy Crude Oil Based on Alkyl Acrylic-Amino Alkyl Acrylic Random Bipolymers. Sep. Purif. Technol. 2021, 275, 119212. https://doi.org/10.1016/j.seppur.2021.119212
dc.relation.references[12] Abed, S.M.; Abdurahman, N.H.; Yunus, R.M.; Abdulbari, H.A.; Akbari, S. Oil Emulsions and the Different Recent Demulsification Techniques in the Petroleum Industry - A Review. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 702, 012060; 1st ProSES Symposium, Kuantan, Pahang, Malaysia, September 4, 2019; https://doi.org/10.1088/1757-899X/702/1/012060
dc.relation.references[13] Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A Review of Petroleum Emulsions and Recent Progress on Water-in-Crude Oil Emulsions Stabilized by Natural Surfactants and Solids. J. Pet. Sci. Eng. 2018, 165, 673−690. https://doi.org/10.1016/j.petrol.2018.03.014
dc.relation.references[14] Saad, M.A.; Kamil, M.; Abdurahman, N.H.; Yunus, R.M.; Awad, O.I. An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions. Processes 2019, 7(7), 470. https://doi.org/10.3390/pr7070470
dc.relation.references[15] Hadi, A.A.; Ali, A.A. A Review of Petroleum Emulsification Types, Formation Factors, and Demulsification Methods. Mater. Today Proc., 2022, 53, Part 1, 273–279. https://doi.org/10.1016/j.matpr.2022.01.091
dc.relation.references[16] Abdulredha, M.M.; Hussain, S.A.; Abdullah, L.C.; Hong, T.L. Water-in-Oil Emulsion Stability and Demulsification via Surface-Active Compounds: A Review. J. Pet. Sci. Eng. 2022, 209, 109848. https://doi.org/10.1016/j.petrol.2021.109848
dc.relation.references[17] Arab, D.; Kantzas, A.; Bryant, S.L. Nanoparticle Stabilized Oil in Water Emulsions: A Critical Review. J. Pet. Sci. Eng. 2018, 163, 217–242. https://doi.org/10.1016/j.petrol.2017.12.091
dc.relation.references[18] Faisal, W.; Almomani, F. A Critical Review of the Development and Demulsification Processes Applied for Oil Recovery from Oil in Water Emulsions. Chemosphere 2022, 291, 133099. https://doi.org/10.1016/j.chemosphere.2021.133099
dc.relation.references[19] Kilpatrick, P.K. Water-in-Crude Oil Emulsion Stabilization: Review and Unanswered Questions. Energy Fuels 2012, 26, 4017–4026. https://doi.org/10.1021/ef3003262
dc.relation.references[20] Yao, L.; Selmi, A.; Esmaeili, H. A Review Study on New Aspects of Biodemulsifiers: Production, Features and their Application in Wastewater Treatment. Chemosphere, 2021, 284, 131364. https://doi.org/10.1016/j.chemosphere.2021.131364
dc.relation.references[21] Zang, H.; Dai, Y.; Sun, Y.; Jia, T.; Song, Q.; Li, X.; Jiang, X.; Sui, D., Han, Z., Li, D. et al. Mechanism of the Biodemulsifier-Enhanced Biodegradation of Phenanthrene by Achromobacter sp. LH-1. Colloids Surf. B 2020, 195, 111253. https://doi.org/10.1016/j.colsurfb.2020.111253
dc.relation.references[22] Sabati, H.; Motamedi, H. Ecofriendly Demulsification of Water in Oil Emulsions by an Efficient Biodemulsifier Producing Bacterium Isolated from Oil Contaminated Environment. Biotechnol. Lett. 2018, 40(7), 1037−1048. https://doi.org/10.1007/s10529-018-2565-9
dc.relation.references[23] Amirabadi, S.Sh.; Jahanmiri, A.; Rahimpour, M.R.; Rafienia, B.; Darvishi, P.; Niazi, A. Investigation of Paenibacillus alvei ARN63 Ability for Biodemulsifier Production: Medium Optimization to Break Heavy Crude Oil Emulsion. Colloids Surf. B 2013, 109, 244−252. https://doi.org/10.1016/j.colsurfb.2013.03.029
dc.relation.references[24] Kang, W.; Yin, X.; Yang, H.; Zhao, Y.; Huang, Z.; Hou, X.; Sarsenbekuly, B.; Zhu, Z.; Wang, P.; Zhang, X. et al. Demulsification Performance, Behavior and Mechanism of Different Demulsifiers on the Light Crude Oil Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 197–204. https://doi.org/10.1016/j.colsurfa.2018.02.055
dc.relation.references[25] Gurbanov, H.R.; Gasimzade, A.V. Research of the Impact of New Compositions on the Decomposition of Stable Water-Oil Emulsions of Heavy Oils. Voprosy Khimii i Khimicheskoi Tekhnologii 2022, 6, 19−28. https://doi.org/10.32434/0321-4095-2022-145-6-19-28
dc.relation.references[26] Czarnecki, J.; Tchoukov, P.; Dabros, T.; Xu, Z. Role of Asphaltenes in Stabilization of Water in Crude Oil Emulsions. Can. J. Chem. Eng. 2013, 91(8), 1365−1371. https://doi.org/10.1002/cjce.21835
dc.relation.references[27] Alves, C.A.; Yanes, J.F.R.; Feitosa, F.X.; de Sant’Ana, H.B. Influence of Asphaltenes and Resins on Water/Model Oil Interfacial Tension and Emulsion Behavior: Comparison of Extracted Fractions from Crude Oils with Different Asphaltene Stability. J. Pet. Sci. Eng. 2022, 208, Part E, 109268. https://doi.org/10.1016/j.petrol.2021.109268
dc.relation.references[28] Zhang, X.; He, C.; Zhou, J.; Tian, Y.; He, L.; Sui, H.; Li, X. Demulsification of Water-in-Heavy Oil Emulsions by Oxygen-Enriched Non-Ionic Demulsifier: Synthesis, Characterization and Mechanisms. Fuel, 2023, 338, 127274. https://doi.org/10.1016/j.fuel.2022.127274
dc.relation.references[29] Yao, X.; Hou, X.; Qi, G.; Zhang, R. Preparation of Superhydrophobic Polyimide Fibrous Membranes with Controllable Surface Structure for High Efficient Oil–Water Emulsion and Heavy Oil Separation. J. Environ. Chem. Eng. 2022, 10, 107470. https://doi.org/10.1016/j.jece.2022.107470
dc.relation.references[30] Akbari, S.; Nour, A.H. Emulsion Types, Stability Mechanisms and Rheology: A review. Int. J. Innov. Res. Sci. Stud. 2018, 1, 11–17.
dc.relation.references[31] Li, Y.; Chen, X.; Liu, Z.; Liu, R.; Liu, W.; Zhang, H. Effects of Molecular Structure of Polymeric Surfactant on Its Physico-Chemical Properties, Percolation and Enhanced Oil Recovery. J. Ind. Eng. Chem. 2021, 101, 165–177. https://doi.org/10.1016/j.jiec.2021.06.016
dc.relation.references[32] Cao, C.; Gu, S.; Song, Z.; Xie, Z.; Chang, X.; Shen, P. The Viscosifying Behavior of W/O Emulsion and Its Underlying Mechanisms: Considering the Interfacial Adsorption of Heavy Components. Colloids Surf. A Physicochem. Eng. Asp. 2021, 632, 127794. https:// doi.org/10.1016/j.colsurfa.2021.127794
dc.relation.references[33] Da Silva, M.; Sad, C.M.; Pereira, L.B.; Corona, R.R.; Bassane, J.F.; dos Santos, F.D.; Neto, D.M.; Silva, S.R.; Castro, E.V.; Filgueiras, P.R. Study of the Stability and Homogeneity of Water in Oil Emulsions of Heavy Oil. Fuel 2018, 226, 278–285. https://doi.org/10.1016/j.fuel.2018.04.011
dc.relation.references[34] Griffith, C.; Daigle, H. A Comparison of the Static and Dynamic Stability of Pickering Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 586, 124256. https://doi.org/10.1016/j.colsurfa.2019.124256
dc.relation.references[35] Sousa, A.M.; Matos, H.A.; Pereira, M.J. Properties of Crude Oil-in-Water and Water-in-Crude Oil Emulsions: A Critical Review. Ind. Eng. Chem. Res. 2021, 61, 1–20. https://doi.org/10.1021/acs.iecr.1c02744
dc.relation.references[36] Wang, X.; Wang, F.; Taleb, M.A.M.; Wen, Z.; Chen, X. A Review of the Seepage Mechanisms of Heavy Oil Emulsions during Chemical Flooding. Energies 2022, 15(22), 8397. https://doi.org/10.3390/en15228397
dc.relation.references[37] Zolfaghari, R.; Fakhru’l-Razi, A.; Abdullah, L.C.; Elnashaie, S.S.E.H.; Pendashteh, A. Demulsification Techniques of Water-in-Oil and Oil-in-Water Emulsions in Petroleum Industry. Sep. Purif. Technol. 2016, 170, 377–407. https://doi.org/10.1016/j.seppur.2016.06.026
dc.relation.references[38] Hamdy, F.M.A.; Raouf, A.M.; Esmael, I.A.; Thuaban, L.H.; Ibraheem, N.F.; Yas, H.M.; Ali, M.T.; Salman, Z.S.A.D.; Jabir, N.A.A.; Yousif, T.N. Mimicking the Crude Oil and Heavy Fuel Oil (HFO) Demulsification Process in Power Plants for Preparing a New Demulsifiers. J. Pet. Res. Stud. 2020, 10(4), 165−180. https://doi.org/10.52716/jprs.v10i4.376
dc.relation.references[39] Yazdanmehr, F.; Nistor, I. Demulsifier Selection for Water Separation from Heavy Crude Oil Emulsions of Iranian Oil Field. Romanian Journal of Petroleum & Gas Technology 2021, II(LXXIII), 62−72. https://doi.org/10.51865/JPGT.2021.01.06
dc.relation.references[40] Kumar, S.; Rajput, V.S.; Mahto, V. Experimental Studies on Demulsification of Heavy Crude Oil-in-Water Emulsions by Chemicals, Heating, and Centrifuging. SPE Prod. Oper. 2021, 36(02), 375–386. https://doi.org/10.2118/204452-PA
dc.relation.references[41] Atta, A.M.; Abdullah, M.M.S.; Al-Lohedan, H.A.; Ezzat, A.O. Demulsification of Heavy Crude Oil Using New Nonionic Cardanol Surfactants. J. Mol. Liq. 2018, 252, 311–320. https://doi.org/10.1016/j.molliq.2017.12.154
dc.relation.references[42] Li, Z.; Geng, H.; Wang, X.; Jing, B.; Liu, Y.; Tan, Y. Noval Tannic Acid-Based Polyether as an Effective Demulsifier for Water-in-Aging Crude Oil Emulsions. Chem. Eng. J. 2018, 354, 1110–1119. https://doi.org/10.1016/j.cej.2018.08.117
dc.relation.references[43] Souza, A.V.; Mendes, M.T.; Souza, S.T.S.; Palermo, L.C.M.; Oliveira, P.F.; Mansur, C.R.E. Synthesis of Additives Based on Polyethylenimine Modified with Non-ionic Surfactants for Application in Phase Separation of Water-in-Oil Emulsions. Energy Fuels 2017, 31, 10612–10619. https://doi.org/10.1021/acs.energyfuels.7b01730
dc.relation.references[44] El-Sharaky, E.-S.A.; El-Tabey, A.E.; Mishrif, M.R. Novel Star Polymeric Nonionic Surfactants as Crude Oil Emulsion Breakers. J. Surfactants Deterg. 2019, 22, 779–793. https://doi.org/10.1002/jsde.12274
dc.relation.references[45] Ma, J.; Li, X.; Zhang, X.; Sui, H.; He, L.; Wang, S. A Novel Oxygen-Containing Demulsifier for Efficient Breaking of Water-in-Oil Emulsions. Chem. Eng. J. 2020, 385, 123826. https://doi/org/10.1016/j.cej.2019.123826
dc.relation.references[46] Xia, X.; Ma, J.; Geng, S.; Liu, F.; Yao, M. A Review of Oil-Solid Separation and Oil-Water Separation in Unconventional Heavy Oil Production Process. Int. J. Mol. Sci. 2022, 24(1), 74. https://doi.org/10.3390/ijms24010074
dc.relation.references[47] Martínez-Palou, R.; Aburto, J. Ionic Liquids as Surfactants – Applications as Demulsifiers of Petroleum Emulsions. In Ionic Liquids - Current State of the Art; IntechOpen, 2015. https://doi.org/10.5772/59094
dc.relation.references[48] Martínez-Palou, R.; Likhanova, N. . Application of ILs in the Breaking of Emulsions Found in the Oil Industry. pp. 58–74. https://doi.org/10.2174/9789815079579123010006. In Applications of Ionic Liquids in the Oil Industry: Towards A Sustainable Industry. 2023 https://doi.org/10.2174/97898150795791230101
dc.relation.references[49] Aburto, J.; Marquez, D.M.; Navarro, J.C.; Martínez-Palou, R. Amphiphilic Choline Carboxylates Ionic Liquids as Demulsifiers of Water-in-Crude Oil Emulsions. Tenside, Surfactants, Deterg. 2014, 51, 314−317. https://doi.org/10.3139/113.110312
dc.relation.references[50] Abdullah, M.M.S.; Al-Lohedan, H.A. Demulsification of Water in Heavy Crude Oil Emulsion Using a New Amphiphilic Ionic Liquid Based on the Glycolysis of Polyethylene Terephthalate Waste. J. Mol. Liq. 2020, 307, 112928. https://doi.org/10.1016/j.molliq.2020.112928
dc.relation.references[51] Husain, A.; Adewunmi, A.A.; Kamal, M.S.; Mahmoud, M.; Al-Harthi, M.A. Demulsification of Heavy Petroleum Emulsion Using Pyridinium Ionic Liquids with Distinct Anion Branching. Energy Fuels 2021, 35(20), 16527−16533. https://doi.org/10.1021/acs.energyfuels.1c02286
dc.relation.references[52] Dollah, A.; Bakar, N.A.; Othman, N.H.; Hussein, S.N.C.M.; Japperi, N.S. Effect of Magnetic Graphene Oxide on Heavy Oil Demulsification. Int. J. Integr. Eng. 2022, 14(5), 146−153. https://doi.org/10/30880/ijie.2022.14.05.017
dc.relation.references[53] Adewunmi, A.A.; Kamal, M.S.; Gbadamosi, A.; Patil, S. Demulsification of Heavy Crude Oil Emulsion Driven by Natural Materials. Middle East Oil, Gas and Geosciences Show, Manama, Bahrain, February 2023. SPE-213624-MS https://doi.org/10.2118/213624-MS
dc.relation.references[54] Ahmadi, S.; Khormali, A.; Khoutoriansky, F.M. Optimization of the Demulsification of Water-in-Heavy Crude Oil Emulsions Using Response Surface Methodology. Fuel, 2022, 323, 124270. https://doi.org/10.1016/j.fuel.2022.124270
dc.relation.references[55] Huang, S.T.; He, X.; Chen, J.Q.; Wang, X.J.; Zhang, J.; Dong, J.Y.; Zhang, B.S. Study on the Performance of an Electric-Field-Enhanced Oil–Water Separator in Treating Heavy Oil with High Water Cut. J. Mar. Sci. Eng. 2022, 10, 1516. https://doi.org/10.3390/jmse10101516
dc.relation.references[56] Zou, J.; Patiguli, Y.; Chen, J.; Alimila, A.; Zhao, B.; Hou J. Study on Demulsification Technology of Heavy Oil Blended in Xinjiang Oilfield. Processes 2023, 11(2), 409. https://doi.org/10.3390/pr11020409
dc.relation.references[57] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15(3), 423−431. https://doi.org/10.23939/chcht15.03.423
dc.relation.references[58] Yarmola, T.; Topilnytskyy, P.; Romanchuk V. High-Viscosity Crude Oil. A Review. Chem. Chem. Technol., 2023, 17(1), 195–202. https://doi.org/10.23939/chcht17.01.195
dc.relation.references[59] da Silva, E.B.; Santos, D.; de Brito, M.P.; Guimarães, R.C.L.; Ferreira, B.M.S.; Freitas, L.S.; de Campos, M.C.V.; Franceschi, E.; Dariva, C.; Santos, A.F. et al. Microwave Demulsification of Heavy Crude Oil Emulsions: Analysis of Acid Species Recovered in the Aqueous Phase. Fuel, 2014, 128, 141−147. https://doi.org/10.1016/j.fuel.2014.02.076
dc.relation.references[60] Martínez-Palou, R. Applications of Microwave for Breaking Petroleum Emulsions. Curr. Microw. Chem. 2017, 4, 276–276. https://doi.org/10.2174/2213335602999150921105652
dc.relation.references[61] Zhang, S.G.; Zhang, J.H.; Zhang, Y.; Deng, Y.Q. Nanoconfined Ionic Liquids. Chem Rev. 2016, 117, 6755−6833. https://doi.org/10.1021/acs.chemrev.6b00509
dc.relation.references[62] Alao, K.T.; Alara, O.R.; Abdurahman, N.H. Trending Approaches on Demulsification of Crude Oil in the Petroleum Industry. Appl. Petrochem. Res. 2021, 11, 281–293. https://doi.org/10.1007/s13203-021-00280-0
dc.relation.references[63] Velázquez, H.D.; Guzmán-Lucero, D.; Martínez-Palou, R. Microwave-Assisted Demulsification for Oilfield Applications: A Critical Review. Taylor & Francis. Published online: March 21, 2022. https://doi.org/10.6084/m9.figshare.19390908.v1
dc.relation.references[64] Abdulla, F.M.; Ali, M.R.; AL-Najar J.A.; Shaker N.A. Application of Microwave Heating in the Demulsification of Crude Oil Emulsions. Engineering and Technology Journal 2019, 37(1C), 79−83. https://doi.org/10.30684/ETJ.37.1C.12
dc.relation.references[65] Santos, D.; da Rocha, E.C.L.; Santos, R.L.M.; Cancelas, A.J.; Franceschi, E.; Santos, A.F.; Fortuny, M.; Dariva, C. Demulsification of Water-in-Crude Oil Emulsions Using Single Mode and Multimode Microwave Irradiation. Sep. Purif. Technol. 2017, 189, 347−356. https://doi.org/10.1016/j.seppur.2017.08.028
dc.relation.references[66] Maheshwari, D.; Anto, R.; Bhui, U.K. Demulsification of Water-in-Crude Oil Emulsion: An Experimental Approach for Reduction of Water Content of the Crude Oil for Refinery Use. Twelve International Conference on Thermal Engineering: Theory and Applications; February 23-26, 2019, Gandhinagar, India. https://journals.library.torontomu.ca/index.php/ictea/article/view/1216/1184
dc.relation.references[67] Abdurahman, N.H.; Yunus, R.M.; Azhari, N.H.; Said, N.; Hassan, Z. The Potential of Microwave Heating in Separating Water-in-Oil (w/o) Emulsions. Energy Procedia 2017, 138, 1023−1028. https://doi.org/10.1016/j.egypro.2017.10.123
dc.relation.references[68] Sun, N.; Jiang, H.; Su, R.;, Zhang, L.; Shen, L.; Sun, H. Experimental Study on Synergistic Demulsification of Microwave-Magnetic Nanoparticles. ACS Omega 2022, 7(40), 35523−35531. https://doi.org/10.1021/acsomega.2c02226
dc.relation.references[69] Wang, Z.; Gu, S.; Zhou, L. Research on the Static Experiment of Super Heavy Crude Oil Demulsification and Dehydration Using Ultrasonic Wave and Audible Sound Wave at High Temperatures. Ultrason. Sonochem. 2018, 40, Part A, 1014−1020. https://doi.org/10.1016/j.ultsonch.2017.08.037
dc.relation.references[70] Yi, M.; Huang, J.; Wang, L. Research on Crude Oil Demulsification Using the Combined Method of Ultrasound and Chemical Demulsifier. J. Chem. 2017, 2017, Article ID 9147926. https://doi.org/10.1155/2017/9147926
dc.relation.references[71] Chen, W-S.; Chen, Z-Y.; Chang, J.Y. Chen, C-Y.; Zeng, Y-P. Ultrasound-Assisted Desalination of Crude Oil: the Influence of Mixing Extent, Crude Oil Species, Chemical Demulsifier and Operation Variables. Ultrason. Sonochem. 2022, 83, 105947. https://doi.org/10.1016/j.ultsonch.2022.105947
dc.relation.references[72] Hassanshahi, N.; Hu, G.; Lee, K.; Li, J. Effect of Ultrasonic Homogenization on Crude Oil-Water Emulsion Stability. J. Environ. Sci. Health A, 2023, 58(3), 211−221. https://doi.org/10.1080/10934529.2023.2178788
dc.relation.references[73] Adeyemi, I.; Meribout, M.; Khezzar, L. Recent Developments, Challenges, and Prospects of Ultrasound-Assisted Oil Technologies. Ultrason. Sonochem. 2022, 82,105902. https://doi.org/10.1016/j.ultsonch.2021.105902
dc.relation.references[74] Xu, X.; Cao, D.; Liu, J.; Gao, J.; Wang, X. Research on Ultrasound-Assisted Demulsification/Dehydration for Crude Oil. Ultrason. Sonochem. 2019, 57, 185−192. https://doi.org/10.1016/j.ultsonch.2019.05.024
dc.relation.references[75] Atehortúa, C.M.G.; Pérez, N.; Andrade, M.A.B.; Pereira, L.O.V.; Adamowski, J.C. Water-in-Oil Emulsions Separation Using an Ultrasonic Standing Wavecoalescence Chamber. Ultrason. Sonochem. 2019, 57, 57−61. https://doi.org/10.1016/j.ultsonch.2019.04.043
dc.relation.references[76] Sadatshojaie, A.; Wood, D.A.; Jokar, S.M.; Rahimpour, M.R. Applying Ultrasonic Fields to Separate Water Contained in Medium-Gravity Crude Oil Emulsions and Determining Crude Oil Adhesion Coefficients. Ultrason. Sonochem. 2021, 70, 105303. https://doi.org/10.1016/j.ultsonch.2020.105303
dc.relation.references[77] Mohsin, M.; Meribout, M. Oil–Water De-Emulsification Using Ultrasonic Technology. Ultrason. Sonochem. 2015, 22, 573−579. https://doi.org/10.1016/j.ultsonch.2014.05.014
dc.relation.references[78] Antes, F.G.; Diehl, L.O.; Pereira, J.S.F.; Guimarães, R.C.L.; Guarnieri, R.A.; Ferreira, B.M.S., Flores, E.M.M. Effect of Ultrasonic Frequency on Separation of Water from Heavy Crude Oil Emulsion Using Ultrasonic Baths. Ultrason. Sonochem. 2017, 35, Part B, 541−546. https://doi.org/10.1016/j.ultsonch.2016.03.031
dc.relation.references[79] Abed, M.M.; Naife, T.M. Synthesis, Characterization, and Evaluation of an Eco-friendly Demulsifier for Crude Oil Emulsion Treatment Using Waste Corn Oil. Int. J. Eng. 2024, 37(3), 468−475. https://doi.org/10.5829/ije.2024.37.03c.03
dc.relation.references[80] Karlapudi, A.P.; Venkateswarulu, T.C.; Tammineedi, J.; Kanumuri, L.; Ravuru, B.K.; Dirisala, V.R.; Kodali, V.P. Role of Biosurfactants in Bioremediation of Oil Pollution - A Review. Petroleum 2018, 4(3), 241−249. https://doi.org/10.1016/j.petlm.2018.03.007
dc.relation.references[81] Vallejo-Cardona, A.A.; Martínez-Palou, R.; Chávez-Gómez, B.; García-Caloca, G.; Guerra-Camacho, J.; Cerón-Camacho, R. et al. Demulsification of Crude Oil-in-Water Emulsions by Means of Fungal Spores. PLoS ONE 2017, 12(2), e0170985. https://doi.org/10.1371/journal.pone.0170985
dc.relation.referencesen[1] Ezzat, A.O.; Atta, A.M.; Al-Lohedan, H.A. One-Step Synthesis of Amphiphilic Nonylphenol Polyethyleneimine for Demulsification of Water in Heavy Crude Oil Emulsions. ACS Omega 2020, 5(16), 9212–9223. https://doi.org/10.1021/acsomega.0c00002
dc.relation.referencesen[2] Abdulredha, M.M.; Aslina, H.S.; Luqman, C.A. Overview on Petroleum Emulsions, Formation, Influence and Demulsification Treatment Techniques. Arab. J. Chem. 2020, 13(1), 3403−3428. https://doi.org/10.1016/j.arabjc.2018.11.014
dc.relation.referencesen[3] Salam, K.; Alade, A.; Arinkoola, A.; Opawale, A. Improving the Demulsification Process of Heavy Crude Oil Emulsion through Blending with Diluent. J. Pet. Eng. 2013, Article ID 793101. https://doi.org/10.1155/2013/793101
dc.relation.referencesen[4] Raya, S.A.; Mohd Saaid, I.; Abbas Ahmed, A. et al. A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry. J. Pet. Explor. Prod. Technol. 2020, 10, 1711–1728. https://doi.org/10.1007/s13202-020-00830-7
dc.relation.referencesen[5] Fajun, Z.; Zhexi, T.; Zhongqi, Y.; Hongzhi, S.; Yanping, W.; Yufei, Z. Research Status and Analysis of Stabilization Mechanisms and Demulsification Methods of Heavy Oil Emulsions. Energy Sci. Eng. 2020 , 8(12), 4158−4177. https://doi.org/10.1002/ese3.814
dc.relation.referencesen[6] Yarmola, T.V.; Topilnytskyy, P.I., Skorokhoda, V.J.; Korchak B.O. Processing of Heavy High-Viscosity Oil Mixtures from the Eastern Region of Ukraine: Technological Aspects. Voprosy Khimii i Khimicheskoi Tekhnologii 2023, 1, 40−49. https://doi.org/10.32434/0321-4095-2023-146-1-40-49
dc.relation.referencesen[7] Lee, J.; Babadagli, T. Comprehensive Review on Heavy-Oil Emulsions: Colloid Science and Practical Applications, Chem. Eng. Sci. 2020, 228, 115962, https://doi.org/10.1016/j.ces.2020.115962
dc.relation.referencesen[8] Topilnytskyy, P.; Paiuk, S.; Stebelska, H.; Romanchuk, V.; Yarmola, T. Technological Features of High-Sulfur Heavy Crude Oils Processing. Chem. Chem. Technol. 2019, 13, 503−509. https://doi.org/10.23939/chcht13.04.503
dc.relation.referencesen[9] Faizullayev, S.; Adilbekova, A.; Kujawski, W.; Mirzaeian, M. Recent Demulsification Methods of Crude Oil Emulsions – Brief Review. J. Pet. Sci. Eng. 2022, 215, Part B, 110643. https://doi.org/10.1016/j.petrol.2022.110643
dc.relation.referencesen[10] Soliman, E. Flow of Heavy Oils at Low Temperatures: Potential Challenges and Solutions. In Processing of Heavy Crude Oils - Challenges and Opportunities; IntechOpen, 2019. https://doi.org/10.5772/intechopen.82286
dc.relation.referencesen[11] Zamora, E.B.; Hernández, E.I.; Zavala, G.; Fuentes, J.V.; Álvarez, F.; Flores, C.A.; Vázquez, F. High Performance Demulsifiers for Heavy Crude Oil Based on Alkyl Acrylic-Amino Alkyl Acrylic Random Bipolymers. Sep. Purif. Technol. 2021, 275, 119212. https://doi.org/10.1016/j.seppur.2021.119212
dc.relation.referencesen[12] Abed, S.M.; Abdurahman, N.H.; Yunus, R.M.; Abdulbari, H.A.; Akbari, S. Oil Emulsions and the Different Recent Demulsification Techniques in the Petroleum Industry - A Review. IOP Conf. Ser., Mater. Sci. Eng. 2019, 702, 012060; 1st ProSES Symposium, Kuantan, Pahang, Malaysia, September 4, 2019; https://doi.org/10.1088/1757-899X/702/1/012060
dc.relation.referencesen[13] Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A Review of Petroleum Emulsions and Recent Progress on Water-in-Crude Oil Emulsions Stabilized by Natural Surfactants and Solids. J. Pet. Sci. Eng. 2018, 165, 673−690. https://doi.org/10.1016/j.petrol.2018.03.014
dc.relation.referencesen[14] Saad, M.A.; Kamil, M.; Abdurahman, N.H.; Yunus, R.M.; Awad, O.I. An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions. Processes 2019, 7(7), 470. https://doi.org/10.3390/pr7070470
dc.relation.referencesen[15] Hadi, A.A.; Ali, A.A. A Review of Petroleum Emulsification Types, Formation Factors, and Demulsification Methods. Mater. Today Proc., 2022, 53, Part 1, 273–279. https://doi.org/10.1016/j.matpr.2022.01.091
dc.relation.referencesen[16] Abdulredha, M.M.; Hussain, S.A.; Abdullah, L.C.; Hong, T.L. Water-in-Oil Emulsion Stability and Demulsification via Surface-Active Compounds: A Review. J. Pet. Sci. Eng. 2022, 209, 109848. https://doi.org/10.1016/j.petrol.2021.109848
dc.relation.referencesen[17] Arab, D.; Kantzas, A.; Bryant, S.L. Nanoparticle Stabilized Oil in Water Emulsions: A Critical Review. J. Pet. Sci. Eng. 2018, 163, 217–242. https://doi.org/10.1016/j.petrol.2017.12.091
dc.relation.referencesen[18] Faisal, W.; Almomani, F. A Critical Review of the Development and Demulsification Processes Applied for Oil Recovery from Oil in Water Emulsions. Chemosphere 2022, 291, 133099. https://doi.org/10.1016/j.chemosphere.2021.133099
dc.relation.referencesen[19] Kilpatrick, P.K. Water-in-Crude Oil Emulsion Stabilization: Review and Unanswered Questions. Energy Fuels 2012, 26, 4017–4026. https://doi.org/10.1021/ef3003262
dc.relation.referencesen[20] Yao, L.; Selmi, A.; Esmaeili, H. A Review Study on New Aspects of Biodemulsifiers: Production, Features and their Application in Wastewater Treatment. Chemosphere, 2021, 284, 131364. https://doi.org/10.1016/j.chemosphere.2021.131364
dc.relation.referencesen[21] Zang, H.; Dai, Y.; Sun, Y.; Jia, T.; Song, Q.; Li, X.; Jiang, X.; Sui, D., Han, Z., Li, D. et al. Mechanism of the Biodemulsifier-Enhanced Biodegradation of Phenanthrene by Achromobacter sp. LH-1. Colloids Surf. B 2020, 195, 111253. https://doi.org/10.1016/j.colsurfb.2020.111253
dc.relation.referencesen[22] Sabati, H.; Motamedi, H. Ecofriendly Demulsification of Water in Oil Emulsions by an Efficient Biodemulsifier Producing Bacterium Isolated from Oil Contaminated Environment. Biotechnol. Lett. 2018, 40(7), 1037−1048. https://doi.org/10.1007/s10529-018-2565-9
dc.relation.referencesen[23] Amirabadi, S.Sh.; Jahanmiri, A.; Rahimpour, M.R.; Rafienia, B.; Darvishi, P.; Niazi, A. Investigation of Paenibacillus alvei ARN63 Ability for Biodemulsifier Production: Medium Optimization to Break Heavy Crude Oil Emulsion. Colloids Surf. B 2013, 109, 244−252. https://doi.org/10.1016/j.colsurfb.2013.03.029
dc.relation.referencesen[24] Kang, W.; Yin, X.; Yang, H.; Zhao, Y.; Huang, Z.; Hou, X.; Sarsenbekuly, B.; Zhu, Z.; Wang, P.; Zhang, X. et al. Demulsification Performance, Behavior and Mechanism of Different Demulsifiers on the Light Crude Oil Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 197–204. https://doi.org/10.1016/j.colsurfa.2018.02.055
dc.relation.referencesen[25] Gurbanov, H.R.; Gasimzade, A.V. Research of the Impact of New Compositions on the Decomposition of Stable Water-Oil Emulsions of Heavy Oils. Voprosy Khimii i Khimicheskoi Tekhnologii 2022, 6, 19−28. https://doi.org/10.32434/0321-4095-2022-145-6-19-28
dc.relation.referencesen[26] Czarnecki, J.; Tchoukov, P.; Dabros, T.; Xu, Z. Role of Asphaltenes in Stabilization of Water in Crude Oil Emulsions. Can. J. Chem. Eng. 2013, 91(8), 1365−1371. https://doi.org/10.1002/cjce.21835
dc.relation.referencesen[27] Alves, C.A.; Yanes, J.F.R.; Feitosa, F.X.; de Sant’Ana, H.B. Influence of Asphaltenes and Resins on Water/Model Oil Interfacial Tension and Emulsion Behavior: Comparison of Extracted Fractions from Crude Oils with Different Asphaltene Stability. J. Pet. Sci. Eng. 2022, 208, Part E, 109268. https://doi.org/10.1016/j.petrol.2021.109268
dc.relation.referencesen[28] Zhang, X.; He, C.; Zhou, J.; Tian, Y.; He, L.; Sui, H.; Li, X. Demulsification of Water-in-Heavy Oil Emulsions by Oxygen-Enriched Non-Ionic Demulsifier: Synthesis, Characterization and Mechanisms. Fuel, 2023, 338, 127274. https://doi.org/10.1016/j.fuel.2022.127274
dc.relation.referencesen[29] Yao, X.; Hou, X.; Qi, G.; Zhang, R. Preparation of Superhydrophobic Polyimide Fibrous Membranes with Controllable Surface Structure for High Efficient Oil–Water Emulsion and Heavy Oil Separation. J. Environ. Chem. Eng. 2022, 10, 107470. https://doi.org/10.1016/j.jece.2022.107470
dc.relation.referencesen[30] Akbari, S.; Nour, A.H. Emulsion Types, Stability Mechanisms and Rheology: A review. Int. J. Innov. Res. Sci. Stud. 2018, 1, 11–17.
dc.relation.referencesen[31] Li, Y.; Chen, X.; Liu, Z.; Liu, R.; Liu, W.; Zhang, H. Effects of Molecular Structure of Polymeric Surfactant on Its Physico-Chemical Properties, Percolation and Enhanced Oil Recovery. J. Ind. Eng. Chem. 2021, 101, 165–177. https://doi.org/10.1016/j.jiec.2021.06.016
dc.relation.referencesen[32] Cao, C.; Gu, S.; Song, Z.; Xie, Z.; Chang, X.; Shen, P. The Viscosifying Behavior of W/O Emulsion and Its Underlying Mechanisms: Considering the Interfacial Adsorption of Heavy Components. Colloids Surf. A Physicochem. Eng. Asp. 2021, 632, 127794. https:// doi.org/10.1016/j.colsurfa.2021.127794
dc.relation.referencesen[33] Da Silva, M.; Sad, C.M.; Pereira, L.B.; Corona, R.R.; Bassane, J.F.; dos Santos, F.D.; Neto, D.M.; Silva, S.R.; Castro, E.V.; Filgueiras, P.R. Study of the Stability and Homogeneity of Water in Oil Emulsions of Heavy Oil. Fuel 2018, 226, 278–285. https://doi.org/10.1016/j.fuel.2018.04.011
dc.relation.referencesen[34] Griffith, C.; Daigle, H. A Comparison of the Static and Dynamic Stability of Pickering Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 586, 124256. https://doi.org/10.1016/j.colsurfa.2019.124256
dc.relation.referencesen[35] Sousa, A.M.; Matos, H.A.; Pereira, M.J. Properties of Crude Oil-in-Water and Water-in-Crude Oil Emulsions: A Critical Review. Ind. Eng. Chem. Res. 2021, 61, 1–20. https://doi.org/10.1021/acs.iecr.1c02744
dc.relation.referencesen[36] Wang, X.; Wang, F.; Taleb, M.A.M.; Wen, Z.; Chen, X. A Review of the Seepage Mechanisms of Heavy Oil Emulsions during Chemical Flooding. Energies 2022, 15(22), 8397. https://doi.org/10.3390/en15228397
dc.relation.referencesen[37] Zolfaghari, R.; Fakhru’l-Razi, A.; Abdullah, L.C.; Elnashaie, S.S.E.H.; Pendashteh, A. Demulsification Techniques of Water-in-Oil and Oil-in-Water Emulsions in Petroleum Industry. Sep. Purif. Technol. 2016, 170, 377–407. https://doi.org/10.1016/j.seppur.2016.06.026
dc.relation.referencesen[38] Hamdy, F.M.A.; Raouf, A.M.; Esmael, I.A.; Thuaban, L.H.; Ibraheem, N.F.; Yas, H.M.; Ali, M.T.; Salman, Z.S.A.D.; Jabir, N.A.A.; Yousif, T.N. Mimicking the Crude Oil and Heavy Fuel Oil (HFO) Demulsification Process in Power Plants for Preparing a New Demulsifiers. J. Pet. Res. Stud. 2020, 10(4), 165−180. https://doi.org/10.52716/jprs.v10i4.376
dc.relation.referencesen[39] Yazdanmehr, F.; Nistor, I. Demulsifier Selection for Water Separation from Heavy Crude Oil Emulsions of Iranian Oil Field. Romanian Journal of Petroleum & Gas Technology 2021, II(LXXIII), 62−72. https://doi.org/10.51865/JPGT.2021.01.06
dc.relation.referencesen[40] Kumar, S.; Rajput, V.S.; Mahto, V. Experimental Studies on Demulsification of Heavy Crude Oil-in-Water Emulsions by Chemicals, Heating, and Centrifuging. SPE Prod. Oper. 2021, 36(02), 375–386. https://doi.org/10.2118/204452-PA
dc.relation.referencesen[41] Atta, A.M.; Abdullah, M.M.S.; Al-Lohedan, H.A.; Ezzat, A.O. Demulsification of Heavy Crude Oil Using New Nonionic Cardanol Surfactants. J. Mol. Liq. 2018, 252, 311–320. https://doi.org/10.1016/j.molliq.2017.12.154
dc.relation.referencesen[42] Li, Z.; Geng, H.; Wang, X.; Jing, B.; Liu, Y.; Tan, Y. Noval Tannic Acid-Based Polyether as an Effective Demulsifier for Water-in-Aging Crude Oil Emulsions. Chem. Eng. J. 2018, 354, 1110–1119. https://doi.org/10.1016/j.cej.2018.08.117
dc.relation.referencesen[43] Souza, A.V.; Mendes, M.T.; Souza, S.T.S.; Palermo, L.C.M.; Oliveira, P.F.; Mansur, C.R.E. Synthesis of Additives Based on Polyethylenimine Modified with Non-ionic Surfactants for Application in Phase Separation of Water-in-Oil Emulsions. Energy Fuels 2017, 31, 10612–10619. https://doi.org/10.1021/acs.energyfuels.7b01730
dc.relation.referencesen[44] El-Sharaky, E.-S.A.; El-Tabey, A.E.; Mishrif, M.R. Novel Star Polymeric Nonionic Surfactants as Crude Oil Emulsion Breakers. J. Surfactants Deterg. 2019, 22, 779–793. https://doi.org/10.1002/jsde.12274
dc.relation.referencesen[45] Ma, J.; Li, X.; Zhang, X.; Sui, H.; He, L.; Wang, S. A Novel Oxygen-Containing Demulsifier for Efficient Breaking of Water-in-Oil Emulsions. Chem. Eng. J. 2020, 385, 123826. https://doi/org/10.1016/j.cej.2019.123826
dc.relation.referencesen[46] Xia, X.; Ma, J.; Geng, S.; Liu, F.; Yao, M. A Review of Oil-Solid Separation and Oil-Water Separation in Unconventional Heavy Oil Production Process. Int. J. Mol. Sci. 2022, 24(1), 74. https://doi.org/10.3390/ijms24010074
dc.relation.referencesen[47] Martínez-Palou, R.; Aburto, J. Ionic Liquids as Surfactants – Applications as Demulsifiers of Petroleum Emulsions. In Ionic Liquids - Current State of the Art; IntechOpen, 2015. https://doi.org/10.5772/59094
dc.relation.referencesen[48] Martínez-Palou, R.; Likhanova, N. . Application of ILs in the Breaking of Emulsions Found in the Oil Industry. pp. 58–74. https://doi.org/10.2174/9789815079579123010006. In Applications of Ionic Liquids in the Oil Industry: Towards A Sustainable Industry. 2023 https://doi.org/10.2174/97898150795791230101
dc.relation.referencesen[49] Aburto, J.; Marquez, D.M.; Navarro, J.C.; Martínez-Palou, R. Amphiphilic Choline Carboxylates Ionic Liquids as Demulsifiers of Water-in-Crude Oil Emulsions. Tenside, Surfactants, Deterg. 2014, 51, 314−317. https://doi.org/10.3139/113.110312
dc.relation.referencesen[50] Abdullah, M.M.S.; Al-Lohedan, H.A. Demulsification of Water in Heavy Crude Oil Emulsion Using a New Amphiphilic Ionic Liquid Based on the Glycolysis of Polyethylene Terephthalate Waste. J. Mol. Liq. 2020, 307, 112928. https://doi.org/10.1016/j.molliq.2020.112928
dc.relation.referencesen[51] Husain, A.; Adewunmi, A.A.; Kamal, M.S.; Mahmoud, M.; Al-Harthi, M.A. Demulsification of Heavy Petroleum Emulsion Using Pyridinium Ionic Liquids with Distinct Anion Branching. Energy Fuels 2021, 35(20), 16527−16533. https://doi.org/10.1021/acs.energyfuels.1c02286
dc.relation.referencesen[52] Dollah, A.; Bakar, N.A.; Othman, N.H.; Hussein, S.N.C.M.; Japperi, N.S. Effect of Magnetic Graphene Oxide on Heavy Oil Demulsification. Int. J. Integr. Eng. 2022, 14(5), 146−153. https://doi.org/10/30880/ijie.2022.14.05.017
dc.relation.referencesen[53] Adewunmi, A.A.; Kamal, M.S.; Gbadamosi, A.; Patil, S. Demulsification of Heavy Crude Oil Emulsion Driven by Natural Materials. Middle East Oil, Gas and Geosciences Show, Manama, Bahrain, February 2023. SPE-213624-MS https://doi.org/10.2118/213624-MS
dc.relation.referencesen[54] Ahmadi, S.; Khormali, A.; Khoutoriansky, F.M. Optimization of the Demulsification of Water-in-Heavy Crude Oil Emulsions Using Response Surface Methodology. Fuel, 2022, 323, 124270. https://doi.org/10.1016/j.fuel.2022.124270
dc.relation.referencesen[55] Huang, S.T.; He, X.; Chen, J.Q.; Wang, X.J.; Zhang, J.; Dong, J.Y.; Zhang, B.S. Study on the Performance of an Electric-Field-Enhanced Oil–Water Separator in Treating Heavy Oil with High Water Cut. J. Mar. Sci. Eng. 2022, 10, 1516. https://doi.org/10.3390/jmse10101516
dc.relation.referencesen[56] Zou, J.; Patiguli, Y.; Chen, J.; Alimila, A.; Zhao, B.; Hou J. Study on Demulsification Technology of Heavy Oil Blended in Xinjiang Oilfield. Processes 2023, 11(2), 409. https://doi.org/10.3390/pr11020409
dc.relation.referencesen[57] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15(3), 423−431. https://doi.org/10.23939/chcht15.03.423
dc.relation.referencesen[58] Yarmola, T.; Topilnytskyy, P.; Romanchuk V. High-Viscosity Crude Oil. A Review. Chem. Chem. Technol., 2023, 17(1), 195–202. https://doi.org/10.23939/chcht17.01.195
dc.relation.referencesen[59] da Silva, E.B.; Santos, D.; de Brito, M.P.; Guimarães, R.C.L.; Ferreira, B.M.S.; Freitas, L.S.; de Campos, M.C.V.; Franceschi, E.; Dariva, C.; Santos, A.F. et al. Microwave Demulsification of Heavy Crude Oil Emulsions: Analysis of Acid Species Recovered in the Aqueous Phase. Fuel, 2014, 128, 141−147. https://doi.org/10.1016/j.fuel.2014.02.076
dc.relation.referencesen[60] Martínez-Palou, R. Applications of Microwave for Breaking Petroleum Emulsions. Curr. Microw. Chem. 2017, 4, 276–276. https://doi.org/10.2174/2213335602999150921105652
dc.relation.referencesen[61] Zhang, S.G.; Zhang, J.H.; Zhang, Y.; Deng, Y.Q. Nanoconfined Ionic Liquids. Chem Rev. 2016, 117, 6755−6833. https://doi.org/10.1021/acs.chemrev.6b00509
dc.relation.referencesen[62] Alao, K.T.; Alara, O.R.; Abdurahman, N.H. Trending Approaches on Demulsification of Crude Oil in the Petroleum Industry. Appl. Petrochem. Res. 2021, 11, 281–293. https://doi.org/10.1007/s13203-021-00280-0
dc.relation.referencesen[63] Velázquez, H.D.; Guzmán-Lucero, D.; Martínez-Palou, R. Microwave-Assisted Demulsification for Oilfield Applications: A Critical Review. Taylor & Francis. Published online: March 21, 2022. https://doi.org/10.6084/m9.figshare.19390908.v1
dc.relation.referencesen[64] Abdulla, F.M.; Ali, M.R.; AL-Najar J.A.; Shaker N.A. Application of Microwave Heating in the Demulsification of Crude Oil Emulsions. Engineering and Technology Journal 2019, 37(1C), 79−83. https://doi.org/10.30684/ETJ.37.1C.12
dc.relation.referencesen[65] Santos, D.; da Rocha, E.C.L.; Santos, R.L.M.; Cancelas, A.J.; Franceschi, E.; Santos, A.F.; Fortuny, M.; Dariva, C. Demulsification of Water-in-Crude Oil Emulsions Using Single Mode and Multimode Microwave Irradiation. Sep. Purif. Technol. 2017, 189, 347−356. https://doi.org/10.1016/j.seppur.2017.08.028
dc.relation.referencesen[66] Maheshwari, D.; Anto, R.; Bhui, U.K. Demulsification of Water-in-Crude Oil Emulsion: An Experimental Approach for Reduction of Water Content of the Crude Oil for Refinery Use. Twelve International Conference on Thermal Engineering: Theory and Applications; February 23-26, 2019, Gandhinagar, India. https://journals.library.torontomu.ca/index.php/ictea/article/view/1216/1184
dc.relation.referencesen[67] Abdurahman, N.H.; Yunus, R.M.; Azhari, N.H.; Said, N.; Hassan, Z. The Potential of Microwave Heating in Separating Water-in-Oil (w/o) Emulsions. Energy Procedia 2017, 138, 1023−1028. https://doi.org/10.1016/j.egypro.2017.10.123
dc.relation.referencesen[68] Sun, N.; Jiang, H.; Su, R.;, Zhang, L.; Shen, L.; Sun, H. Experimental Study on Synergistic Demulsification of Microwave-Magnetic Nanoparticles. ACS Omega 2022, 7(40), 35523−35531. https://doi.org/10.1021/acsomega.2c02226
dc.relation.referencesen[69] Wang, Z.; Gu, S.; Zhou, L. Research on the Static Experiment of Super Heavy Crude Oil Demulsification and Dehydration Using Ultrasonic Wave and Audible Sound Wave at High Temperatures. Ultrason. Sonochem. 2018, 40, Part A, 1014−1020. https://doi.org/10.1016/j.ultsonch.2017.08.037
dc.relation.referencesen[70] Yi, M.; Huang, J.; Wang, L. Research on Crude Oil Demulsification Using the Combined Method of Ultrasound and Chemical Demulsifier. J. Chem. 2017, 2017, Article ID 9147926. https://doi.org/10.1155/2017/9147926
dc.relation.referencesen[71] Chen, W-S.; Chen, Z-Y.; Chang, J.Y. Chen, C-Y.; Zeng, Y-P. Ultrasound-Assisted Desalination of Crude Oil: the Influence of Mixing Extent, Crude Oil Species, Chemical Demulsifier and Operation Variables. Ultrason. Sonochem. 2022, 83, 105947. https://doi.org/10.1016/j.ultsonch.2022.105947
dc.relation.referencesen[72] Hassanshahi, N.; Hu, G.; Lee, K.; Li, J. Effect of Ultrasonic Homogenization on Crude Oil-Water Emulsion Stability. J. Environ. Sci. Health A, 2023, 58(3), 211−221. https://doi.org/10.1080/10934529.2023.2178788
dc.relation.referencesen[73] Adeyemi, I.; Meribout, M.; Khezzar, L. Recent Developments, Challenges, and Prospects of Ultrasound-Assisted Oil Technologies. Ultrason. Sonochem. 2022, 82,105902. https://doi.org/10.1016/j.ultsonch.2021.105902
dc.relation.referencesen[74] Xu, X.; Cao, D.; Liu, J.; Gao, J.; Wang, X. Research on Ultrasound-Assisted Demulsification/Dehydration for Crude Oil. Ultrason. Sonochem. 2019, 57, 185−192. https://doi.org/10.1016/j.ultsonch.2019.05.024
dc.relation.referencesen[75] Atehortúa, C.M.G.; Pérez, N.; Andrade, M.A.B.; Pereira, L.O.V.; Adamowski, J.C. Water-in-Oil Emulsions Separation Using an Ultrasonic Standing Wavecoalescence Chamber. Ultrason. Sonochem. 2019, 57, 57−61. https://doi.org/10.1016/j.ultsonch.2019.04.043
dc.relation.referencesen[76] Sadatshojaie, A.; Wood, D.A.; Jokar, S.M.; Rahimpour, M.R. Applying Ultrasonic Fields to Separate Water Contained in Medium-Gravity Crude Oil Emulsions and Determining Crude Oil Adhesion Coefficients. Ultrason. Sonochem. 2021, 70, 105303. https://doi.org/10.1016/j.ultsonch.2020.105303
dc.relation.referencesen[77] Mohsin, M.; Meribout, M. Oil–Water De-Emulsification Using Ultrasonic Technology. Ultrason. Sonochem. 2015, 22, 573−579. https://doi.org/10.1016/j.ultsonch.2014.05.014
dc.relation.referencesen[78] Antes, F.G.; Diehl, L.O.; Pereira, J.S.F.; Guimarães, R.C.L.; Guarnieri, R.A.; Ferreira, B.M.S., Flores, E.M.M. Effect of Ultrasonic Frequency on Separation of Water from Heavy Crude Oil Emulsion Using Ultrasonic Baths. Ultrason. Sonochem. 2017, 35, Part B, 541−546. https://doi.org/10.1016/j.ultsonch.2016.03.031
dc.relation.referencesen[79] Abed, M.M.; Naife, T.M. Synthesis, Characterization, and Evaluation of an Eco-friendly Demulsifier for Crude Oil Emulsion Treatment Using Waste Corn Oil. Int. J. Eng. 2024, 37(3), 468−475. https://doi.org/10.5829/ije.2024.37.03c.03
dc.relation.referencesen[80] Karlapudi, A.P.; Venkateswarulu, T.C.; Tammineedi, J.; Kanumuri, L.; Ravuru, B.K.; Dirisala, V.R.; Kodali, V.P. Role of Biosurfactants in Bioremediation of Oil Pollution - A Review. Petroleum 2018, 4(3), 241−249. https://doi.org/10.1016/j.petlm.2018.03.007
dc.relation.referencesen[81] Vallejo-Cardona, A.A.; Martínez-Palou, R.; Chávez-Gómez, B.; García-Caloca, G.; Guerra-Camacho, J.; Cerón-Camacho, R. et al. Demulsification of Crude Oil-in-Water Emulsions by Means of Fungal Spores. PLoS ONE 2017, 12(2), e0170985. https://doi.org/10.1371/journal.pone.0170985
dc.relation.urihttps://doi.org/10.1021/acsomega.0c00002
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2018.11.014
dc.relation.urihttps://doi.org/10.1155/2013/793101
dc.relation.urihttps://doi.org/10.1007/s13202-020-00830-7
dc.relation.urihttps://doi.org/10.1002/ese3.814
dc.relation.urihttps://doi.org/10.32434/0321-4095-2023-146-1-40-49
dc.relation.urihttps://doi.org/10.1016/j.ces.2020.115962
dc.relation.urihttps://doi.org/10.23939/chcht13.04.503
dc.relation.urihttps://doi.org/10.1016/j.petrol.2022.110643
dc.relation.urihttps://doi.org/10.5772/intechopen.82286
dc.relation.urihttps://doi.org/10.1016/j.seppur.2021.119212
dc.relation.urihttps://doi.org/10.1088/1757-899X/702/1/012060
dc.relation.urihttps://doi.org/10.1016/j.petrol.2018.03.014
dc.relation.urihttps://doi.org/10.3390/pr7070470
dc.relation.urihttps://doi.org/10.1016/j.matpr.2022.01.091
dc.relation.urihttps://doi.org/10.1016/j.petrol.2021.109848
dc.relation.urihttps://doi.org/10.1016/j.petrol.2017.12.091
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2021.133099
dc.relation.urihttps://doi.org/10.1021/ef3003262
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2021.131364
dc.relation.urihttps://doi.org/10.1016/j.colsurfb.2020.111253
dc.relation.urihttps://doi.org/10.1007/s10529-018-2565-9
dc.relation.urihttps://doi.org/10.1016/j.colsurfb.2013.03.029
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2018.02.055
dc.relation.urihttps://doi.org/10.32434/0321-4095-2022-145-6-19-28
dc.relation.urihttps://doi.org/10.1002/cjce.21835
dc.relation.urihttps://doi.org/10.1016/j.petrol.2021.109268
dc.relation.urihttps://doi.org/10.1016/j.fuel.2022.127274
dc.relation.urihttps://doi.org/10.1016/j.jece.2022.107470
dc.relation.urihttps://doi.org/10.1016/j.jiec.2021.06.016
dc.relation.urihttps://doi.org/10.1016/j.fuel.2018.04.011
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2019.124256
dc.relation.urihttps://doi.org/10.1021/acs.iecr.1c02744
dc.relation.urihttps://doi.org/10.3390/en15228397
dc.relation.urihttps://doi.org/10.1016/j.seppur.2016.06.026
dc.relation.urihttps://doi.org/10.52716/jprs.v10i4.376
dc.relation.urihttps://doi.org/10.51865/JPGT.2021.01.06
dc.relation.urihttps://doi.org/10.2118/204452-PA
dc.relation.urihttps://doi.org/10.1016/j.molliq.2017.12.154
dc.relation.urihttps://doi.org/10.1016/j.cej.2018.08.117
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.7b01730
dc.relation.urihttps://doi.org/10.1002/jsde.12274
dc.relation.urihttps://doi/org/10.1016/j.cej.2019.123826
dc.relation.urihttps://doi.org/10.3390/ijms24010074
dc.relation.urihttps://doi.org/10.5772/59094
dc.relation.urihttps://doi.org/10.2174/9789815079579123010006
dc.relation.urihttps://doi.org/10.2174/97898150795791230101
dc.relation.urihttps://doi.org/10.3139/113.110312
dc.relation.urihttps://doi.org/10.1016/j.molliq.2020.112928
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.1c02286
dc.relation.urihttps://doi.org/10/30880/ijie.2022.14.05.017
dc.relation.urihttps://doi.org/10.2118/213624-MS
dc.relation.urihttps://doi.org/10.1016/j.fuel.2022.124270
dc.relation.urihttps://doi.org/10.3390/jmse10101516
dc.relation.urihttps://doi.org/10.3390/pr11020409
dc.relation.urihttps://doi.org/10.23939/chcht15.03.423
dc.relation.urihttps://doi.org/10.23939/chcht17.01.195
dc.relation.urihttps://doi.org/10.1016/j.fuel.2014.02.076
dc.relation.urihttps://doi.org/10.2174/2213335602999150921105652
dc.relation.urihttps://doi.org/10.1021/acs.chemrev.6b00509
dc.relation.urihttps://doi.org/10.1007/s13203-021-00280-0
dc.relation.urihttps://doi.org/10.6084/m9.figshare.19390908.v1
dc.relation.urihttps://doi.org/10.30684/ETJ.37.1C.12
dc.relation.urihttps://doi.org/10.1016/j.seppur.2017.08.028
dc.relation.urihttps://journals.library.torontomu.ca/index.php/ictea/article/view/1216/1184
dc.relation.urihttps://doi.org/10.1016/j.egypro.2017.10.123
dc.relation.urihttps://doi.org/10.1021/acsomega.2c02226
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2017.08.037
dc.relation.urihttps://doi.org/10.1155/2017/9147926
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2022.105947
dc.relation.urihttps://doi.org/10.1080/10934529.2023.2178788
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2021.105902
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.05.024
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.04.043
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2020.105303
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2014.05.014
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2016.03.031
dc.relation.urihttps://doi.org/10.5829/ije.2024.37.03c.03
dc.relation.urihttps://doi.org/10.1016/j.petlm.2018.03.007
dc.relation.urihttps://doi.org/10.1371/journal.pone.0170985
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Topilnytskyy P., Shyshchak M., Skorokhoda V., Torskyi V., 2024
dc.subjectважка нафта
dc.subjectдеемульгація
dc.subjectекологічно безпечний деемульгатор
dc.subjectмікрохвильове опромінення
dc.subjectультразвук
dc.subjectheavy oil
dc.subjectdemulsification
dc.subjectenvironmentally friendly demulsifier
dc.subjectmicrowave irradiation
dc.subjectultrasound
dc.titleDemulsification Methods for Heavy Crude Oil Emulsions. A Review
dc.title.alternativeМетоди розділення емульсій важкої нафти. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Topilnytskyy_P-Demulsification_Methods_270-283.pdf
Size:
686.51 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Topilnytskyy_P-Demulsification_Methods_270-283__COVER.png
Size:
1.48 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: