Subsolidus Structure of the MgO – Al2O3 – FeO – TiO2 system
dc.citation.epage | 376 | |
dc.citation.issue | 3 | |
dc.citation.spage | 367 | |
dc.contributor.affiliation | National Technical University “Kharkiv Polytechnic Institute” | |
dc.contributor.affiliation | Simon Kuznets Kharkov National University of Economics | |
dc.contributor.affiliation | TOV “Druzhkivskiy Vognetrivkiy zavod” | |
dc.contributor.author | Borysenko, Oksana | |
dc.contributor.author | Logvinkov, Sergey | |
dc.contributor.author | Shabanova, Galina | |
dc.contributor.author | Pitak, Yaroslav | |
dc.contributor.author | Ivashura, Andrii | |
dc.contributor.author | Ostapenko, Igor | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T12:00:13Z | |
dc.date.available | 2024-01-22T12:00:13Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Досліджено субсолідусну будову чотирикомпонентної системи MgO – Al2O3 – FeO – TiO2 в шести температурних інтервалах. Визначено геометро-топологічні характеристики фаз досліджуваної системи, побудовано топологічні графи взаємозв'язку елементарних тетраедрів, визначено їхні об’єми, ступінь асиметрії для всіх температурних інтервалів. Прогнозовано оптимальні області складів для виробництва матеріалів, що містять шпінель, які лежать у межах елементарних тетраедрів: MgO – FeO – Mg2TiO4 – MgAl2O4, FeAl2O4 – Mg2TiO4 – FeO – Fe2TiO4, FeAl2O4 – Mg2TiO4 – MgAl2O4 – FeO та FeAl2O4 – MgTiO3 – MgAl2O4 – Al2O3. | |
dc.description.abstract | The subsolidus structure of the four-component system MgO – Al2O3 – FeO – TiO2 was studied in six temperature ranges. Geometric-topological characteristics of the phases of the system under study have been determined, topological graphs of the relationship of elementary tetrahedrons have been constructed, their volumes, degrees of asymmetry for all temperature ranges have been found. The optimal regions of compositions for the production of spinel-containing materials have been predicted, which are within the limits of elementary tetrahedra: MgO – FeO – Mg2TiO4 – MgAl2O4, FeAl2O4 – Mg2TiO4 – FeO – Fe2TiO4, FeAl2O4 – Mg2TiO4 – MgAl2O4 – FeO and FeAl2O4 – MgTiO3 – MgAl2O4 – Al2O3. | |
dc.format.extent | 367-376 | |
dc.format.pages | 10 | |
dc.identifier.citation | Subsolidus Structure of the MgO – Al2O3 – FeO – TiO2 system / Oksana Borysenko, Sergey Logvinkov, Galina Shabanova, Yaroslav Pitak, Andrii Ivashura, Igor Ostapenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 367–376. | |
dc.identifier.citationen | Subsolidus Structure of the MgO – Al2O3 – FeO – TiO2 system / Oksana Borysenko, Sergey Logvinkov, Galina Shabanova, Yaroslav Pitak, Andrii Ivashura, Igor Ostapenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 367–376. | |
dc.identifier.doi | doi.org/10.23939/chcht16.03.367 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61001 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (16), 2022 | |
dc.relation.references | [1] Ganesh, I. A Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications. Int. Mater. Rev. 2013, 58, 63-112. https://doi.org/10.1179/1743280412Y.0000000001 | |
dc.relation.references | [2] Ma, Y.; Liu, X. Kinetics and Thermodynamics of Mg-Al Disorder in MgAl2O4-Spinel: A Review. Molecules 2019, 24, 1704. https://doi.org/10.3390/molecules24091704 | |
dc.relation.references | [3] Talimian, A.; Pouchly, V.; Maca, K.; Galusek, D. Densification of Magnesium Aluminate Spinel Using Manganese and Cobalt Fluoride as Sintering Aids. Materials 2020, 13, 102. https://doi.org/10.3390/ma13010102 | |
dc.relation.references | [4] Jiang, P.; Chen, J.-H.; Yan, M.-W.; Li, B.; Su, J.-D. Morphology Characterization of Periclase–Hercynite Refractories by Reaction Sintering. Int. J. Miner. Metall. Mater. 2015, 22, 1219-1224. https://doi.org/10.1007/s12613-015-1188-6 | |
dc.relation.references | [5] Zhang, X.; Yu, R.; Yu, X. Characteristics of Hercynite and its Application: In Refractories. China's Refract. 2012, 21, 17-22. | |
dc.relation.references | [6] Chen, Y.-B. Dielectric Properties and Crystal Structure of Mg2TiO4 Ceramics Substituting Mg2+ with Zn2+ and Co2+. J. Alloys Compd. 2012, 513, 481-486. https://doi.org/10.1016/j.jallcom.2011.10.095 | |
dc.relation.references | [7] Bahtli, T.; Aksel, C.; Kavas, T. Corrosion Behavior of MgO-MgAl2O4-FeAl2O4 Composite Refractory Materials. J. Aust. Ceram. Soc. 2017, 53, 33-40. https://doi.org/10.1007/s41779-016-0006-6 | |
dc.relation.references | [8] Rodríguez, Е.; Castillo, G-A.; Contreras, J.; Puente-Ornelas, R.; Aguilar-Martínez, J.A.; García, L.; Gómeza, C. Hercynite and Magnesium Aluminate Spinels Acting as a Ceramic Bonding in an Electrofused MgO–CaZrO3 Refractory Brick for the Cement Industry. Ceram. Int. 2012, 38, 6769-6775. https://doi.org/10.1016/j.ceramint.2012.05.071 | |
dc.relation.references | [9] Aksoy, T.; Aksel, C.; Kavas, T. Hersinit İlaveli MgO-MgAl2O4 Kompozit Refrakterlerin Mekanik Özelliklerinin ve Mikroyapısal Karakteristiklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 2014, 14, 523-529. https://dergipark.org.tr/tr/download/article-file/18710 | |
dc.relation.references | [10] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Ostapenko, I.A. Geometro-Topologichni Kharakterystyky Subsolidusnoi budovy systemy MgO – FeO – TiO2. Vcheni zapysky Tavriysʹkoho Natsionalʹnoho Universytetu Imeni V.I. Vernadsʹkoho. Seriya: Tekhnichni nauky 2021, 32, 45-49. (in Ukrainian). https://doi.org/10.32838/2663-5941/2021.1-2/08 | |
dc.relation.references | [11] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Korohodska, A.M.; Ivashura, M.M.; Ivashura, A.A. Subsolidusna budova systemy MgO – FeO – Al2O3. Bulletin of the National Technical University "KhPI". Series: New solutions in modern technology 2021, 2, 59-64. (in Ukrainian) https://doi.org/10.20998/2413-4295.2021.01.09 | |
dc.relation.references | [12] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Ostapenko, I.A.; Shumejko, V.M. Geometro-Topologichni Kharakterystyky Subsolidusnoi budovy systemy MgO – FeO – TiO2. Bulletin of the National Technical University «KhPI». Series: Chemistry, Chemical Technology and Ecology 2021, 1, 18-23. (in Ukrainian) https://doi.org/10.20998/2079-0821.2021.01.03 | |
dc.relation.references | [13] Borisenko, O.; Logvinkov, S.; Shabanova, G.; Myrgorod, O. Thermodynamics of Solid-Phase Exchange Reactions Limiting the Subsolidus Structure of the System MgO-Al2O3-FeO-TiO2. Materials Science Forum 2021, 1038, 177-184. https://doi.org/10.4028/www.scientific.net/MSF.1038.177 | |
dc.relation.references | [14] Babushkin, V.I.; Matveev, G.M.; Mchedlov-Petrosyan, O.P. Termodinamika silikatov; Moskva, 1986. | |
dc.relation.references | [15] Jung, I.-H.; Eriksson, G.; Wu, P.; Pelton, A. Thermodynamic Modeling of the Al2O3–Ti2O3–TiO2 System and Its Applications to the Fe–Al–Ti–O Inclusion Diagram. J. Alloys Compd. 2009, 49, 1290-1297. https://doi.org/10.2355/isijinternational.49.1290 | |
dc.relation.referencesen | [1] Ganesh, I. A Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications. Int. Mater. Rev. 2013, 58, 63-112. https://doi.org/10.1179/1743280412Y.0000000001 | |
dc.relation.referencesen | [2] Ma, Y.; Liu, X. Kinetics and Thermodynamics of Mg-Al Disorder in MgAl2O4-Spinel: A Review. Molecules 2019, 24, 1704. https://doi.org/10.3390/molecules24091704 | |
dc.relation.referencesen | [3] Talimian, A.; Pouchly, V.; Maca, K.; Galusek, D. Densification of Magnesium Aluminate Spinel Using Manganese and Cobalt Fluoride as Sintering Aids. Materials 2020, 13, 102. https://doi.org/10.3390/ma13010102 | |
dc.relation.referencesen | [4] Jiang, P.; Chen, J.-H.; Yan, M.-W.; Li, B.; Su, J.-D. Morphology Characterization of Periclase–Hercynite Refractories by Reaction Sintering. Int. J. Miner. Metall. Mater. 2015, 22, 1219-1224. https://doi.org/10.1007/s12613-015-1188-6 | |
dc.relation.referencesen | [5] Zhang, X.; Yu, R.; Yu, X. Characteristics of Hercynite and its Application: In Refractories. China's Refract. 2012, 21, 17-22. | |
dc.relation.referencesen | [6] Chen, Y.-B. Dielectric Properties and Crystal Structure of Mg2TiO4 Ceramics Substituting Mg2+ with Zn2+ and Co2+. J. Alloys Compd. 2012, 513, 481-486. https://doi.org/10.1016/j.jallcom.2011.10.095 | |
dc.relation.referencesen | [7] Bahtli, T.; Aksel, C.; Kavas, T. Corrosion Behavior of MgO-MgAl2O4-FeAl2O4 Composite Refractory Materials. J. Aust. Ceram. Soc. 2017, 53, 33-40. https://doi.org/10.1007/s41779-016-0006-6 | |
dc.relation.referencesen | [8] Rodríguez, E.; Castillo, G-A.; Contreras, J.; Puente-Ornelas, R.; Aguilar-Martínez, J.A.; García, L.; Gómeza, C. Hercynite and Magnesium Aluminate Spinels Acting as a Ceramic Bonding in an Electrofused MgO–CaZrO3 Refractory Brick for the Cement Industry. Ceram. Int. 2012, 38, 6769-6775. https://doi.org/10.1016/j.ceramint.2012.05.071 | |
dc.relation.referencesen | [9] Aksoy, T.; Aksel, C.; Kavas, T. Hersinit İlaveli MgO-MgAl2O4 Kompozit Refrakterlerin Mekanik Özelliklerinin ve Mikroyapısal Karakteristiklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 2014, 14, 523-529. https://dergipark.org.tr/tr/download/article-file/18710 | |
dc.relation.referencesen | [10] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Ostapenko, I.A. Geometro-Topologichni Kharakterystyky Subsolidusnoi budovy systemy MgO – FeO – TiO2. Vcheni zapysky Tavriysʹkoho Natsionalʹnoho Universytetu Imeni V.I. Vernadsʹkoho. Seriya: Tekhnichni nauky 2021, 32, 45-49. (in Ukrainian). https://doi.org/10.32838/2663-5941/2021.1-2/08 | |
dc.relation.referencesen | [11] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Korohodska, A.M.; Ivashura, M.M.; Ivashura, A.A. Subsolidusna budova systemy MgO – FeO – Al2O3. Bulletin of the National Technical University "KhPI". Series: New solutions in modern technology 2021, 2, 59-64. (in Ukrainian) https://doi.org/10.20998/2413-4295.2021.01.09 | |
dc.relation.referencesen | [12] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Ostapenko, I.A.; Shumejko, V.M. Geometro-Topologichni Kharakterystyky Subsolidusnoi budovy systemy MgO – FeO – TiO2. Bulletin of the National Technical University "KhPI". Series: Chemistry, Chemical Technology and Ecology 2021, 1, 18-23. (in Ukrainian) https://doi.org/10.20998/2079-0821.2021.01.03 | |
dc.relation.referencesen | [13] Borisenko, O.; Logvinkov, S.; Shabanova, G.; Myrgorod, O. Thermodynamics of Solid-Phase Exchange Reactions Limiting the Subsolidus Structure of the System MgO-Al2O3-FeO-TiO2. Materials Science Forum 2021, 1038, 177-184. https://doi.org/10.4028/www.scientific.net/MSF.1038.177 | |
dc.relation.referencesen | [14] Babushkin, V.I.; Matveev, G.M.; Mchedlov-Petrosyan, O.P. Termodinamika silikatov; Moskva, 1986. | |
dc.relation.referencesen | [15] Jung, I.-H.; Eriksson, G.; Wu, P.; Pelton, A. Thermodynamic Modeling of the Al2O3–Ti2O3–TiO2 System and Its Applications to the Fe–Al–Ti–O Inclusion Diagram. J. Alloys Compd. 2009, 49, 1290-1297. https://doi.org/10.2355/isijinternational.49.1290 | |
dc.relation.uri | https://doi.org/10.1179/1743280412Y.0000000001 | |
dc.relation.uri | https://doi.org/10.3390/molecules24091704 | |
dc.relation.uri | https://doi.org/10.3390/ma13010102 | |
dc.relation.uri | https://doi.org/10.1007/s12613-015-1188-6 | |
dc.relation.uri | https://doi.org/10.1016/j.jallcom.2011.10.095 | |
dc.relation.uri | https://doi.org/10.1007/s41779-016-0006-6 | |
dc.relation.uri | https://doi.org/10.1016/j.ceramint.2012.05.071 | |
dc.relation.uri | https://dergipark.org.tr/tr/download/article-file/18710 | |
dc.relation.uri | https://doi.org/10.32838/2663-5941/2021.1-2/08 | |
dc.relation.uri | https://doi.org/10.20998/2413-4295.2021.01.09 | |
dc.relation.uri | https://doi.org/10.20998/2079-0821.2021.01.03 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/MSF.1038.177 | |
dc.relation.uri | https://doi.org/10.2355/isijinternational.49.1290 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Borysenko O., Logvinkov S., Shabanova G., Pitak Ya., Ivashura A., Ostapenko I., 2022 | |
dc.subject | субсолідусна будова | |
dc.subject | тетраедрація | |
dc.subject | геометро-топологічні характеристики | |
dc.subject | алюмомагнезіальна шпінель | |
dc.subject | герциніт | |
dc.subject | квандиліт | |
dc.subject | subsolidus structure | |
dc.subject | tetrahedration | |
dc.subject | geometric-topological characteristics | |
dc.subject | magnesium-alumina spinel | |
dc.subject | hercynite | |
dc.subject | quandilite | |
dc.title | Subsolidus Structure of the MgO – Al2O3 – FeO – TiO2 system | |
dc.title.alternative | Субсолідусна будова системи MgO – Al2O3 – FeO – TiO2 | |
dc.type | Article |
Files
License bundle
1 - 1 of 1