Subsolidus Structure of the MgO – Al2O3 – FeO – TiO2 system

dc.citation.epage376
dc.citation.issue3
dc.citation.spage367
dc.contributor.affiliationNational Technical University “Kharkiv Polytechnic Institute”
dc.contributor.affiliationSimon Kuznets Kharkov National University of Economics
dc.contributor.affiliationTOV “Druzhkivskiy Vognetrivkiy zavod”
dc.contributor.authorBorysenko, Oksana
dc.contributor.authorLogvinkov, Sergey
dc.contributor.authorShabanova, Galina
dc.contributor.authorPitak, Yaroslav
dc.contributor.authorIvashura, Andrii
dc.contributor.authorOstapenko, Igor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T12:00:13Z
dc.date.available2024-01-22T12:00:13Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractДосліджено субсолідусну будову чотирикомпонентної системи MgO – Al2O3 – FeO – TiO2 в шести температурних інтервалах. Визначено геометро-топологічні характеристики фаз досліджуваної системи, побудовано топологічні графи взаємозв'язку елементарних тетраедрів, визначено їхні об’єми, ступінь асиметрії для всіх температурних інтервалів. Прогнозовано оптимальні області складів для виробництва матеріалів, що містять шпінель, які лежать у межах елементарних тетраедрів: MgO – FeO – Mg2TiO4 – MgAl2O4, FeAl2O4 – Mg2TiO4 – FeO – Fe2TiO4, FeAl2O4 – Mg2TiO4 – MgAl2O4 – FeO та FeAl2O4 – MgTiO3 – MgAl2O4 – Al2O3.
dc.description.abstractThe subsolidus structure of the four-component system MgO – Al2O3 – FeO – TiO2 was studied in six temperature ranges. Geometric-topological characteristics of the phases of the system under study have been determined, topological graphs of the relationship of elementary tetrahedrons have been constructed, their volumes, degrees of asymmetry for all temperature ranges have been found. The optimal regions of compositions for the production of spinel-containing materials have been predicted, which are within the limits of elementary tetrahedra: MgO – FeO – Mg2TiO4 – MgAl2O4, FeAl2O4 – Mg2TiO4 – FeO – Fe2TiO4, FeAl2O4 – Mg2TiO4 – MgAl2O4 – FeO and FeAl2O4 – MgTiO3 – MgAl2O4 – Al2O3.
dc.format.extent367-376
dc.format.pages10
dc.identifier.citationSubsolidus Structure of the MgO – Al2O3 – FeO – TiO2 system / Oksana Borysenko, Sergey Logvinkov, Galina Shabanova, Yaroslav Pitak, Andrii Ivashura, Igor Ostapenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 367–376.
dc.identifier.citationenSubsolidus Structure of the MgO – Al2O3 – FeO – TiO2 system / Oksana Borysenko, Sergey Logvinkov, Galina Shabanova, Yaroslav Pitak, Andrii Ivashura, Igor Ostapenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 367–376.
dc.identifier.doidoi.org/10.23939/chcht16.03.367
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61001
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (16), 2022
dc.relation.references[1] Ganesh, I. A Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications. Int. Mater. Rev. 2013, 58, 63-112. https://doi.org/10.1179/1743280412Y.0000000001
dc.relation.references[2] Ma, Y.; Liu, X. Kinetics and Thermodynamics of Mg-Al Disorder in MgAl2O4-Spinel: A Review. Molecules 2019, 24, 1704. https://doi.org/10.3390/molecules24091704
dc.relation.references[3] Talimian, A.; Pouchly, V.; Maca, K.; Galusek, D. Densification of Magnesium Aluminate Spinel Using Manganese and Cobalt Fluoride as Sintering Aids. Materials 2020, 13, 102. https://doi.org/10.3390/ma13010102
dc.relation.references[4] Jiang, P.; Chen, J.-H.; Yan, M.-W.; Li, B.; Su, J.-D. Morphology Characterization of Periclase–Hercynite Refractories by Reaction Sintering. Int. J. Miner. Metall. Mater. 2015, 22, 1219-1224. https://doi.org/10.1007/s12613-015-1188-6
dc.relation.references[5] Zhang, X.; Yu, R.; Yu, X. Characteristics of Hercynite and its Application: In Refractories. China's Refract. 2012, 21, 17-22.
dc.relation.references[6] Chen, Y.-B. Dielectric Properties and Crystal Structure of Mg2TiO4 Ceramics Substituting Mg2+ with Zn2+ and Co2+. J. Alloys Compd. 2012, 513, 481-486. https://doi.org/10.1016/j.jallcom.2011.10.095
dc.relation.references[7] Bahtli, T.; Aksel, C.; Kavas, T. Corrosion Behavior of MgO-MgAl2O4-FeAl2O4 Composite Refractory Materials. J. Aust. Ceram. Soc. 2017, 53, 33-40. https://doi.org/10.1007/s41779-016-0006-6
dc.relation.references[8] Rodríguez, Е.; Castillo, G-A.; Contreras, J.; Puente-Ornelas, R.; Aguilar-Martínez, J.A.; García, L.; Gómeza, C. Hercynite and Magnesium Aluminate Spinels Acting as a Ceramic Bonding in an Electrofused MgO–CaZrO3 Refractory Brick for the Cement Industry. Ceram. Int. 2012, 38, 6769-6775. https://doi.org/10.1016/j.ceramint.2012.05.071
dc.relation.references[9] Aksoy, T.; Aksel, C.; Kavas, T. Hersinit İlaveli MgO-MgAl2O4 Kompozit Refrakterlerin Mekanik Özelliklerinin ve Mikroyapısal Karakteristiklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 2014, 14, 523-529. https://dergipark.org.tr/tr/download/article-file/18710
dc.relation.references[10] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Ostapenko, I.A. Geometro-Topologichni Kharakterystyky Subsolidusnoi budovy systemy MgO – FeO – TiO2. Vcheni zapysky Tavriysʹkoho Natsionalʹnoho Universytetu Imeni V.I. Vernadsʹkoho. Seriya: Tekhnichni nauky 2021, 32, 45-49. (in Ukrainian). https://doi.org/10.32838/2663-5941/2021.1-2/08
dc.relation.references[11] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Korohodska, A.M.; Ivashura, M.M.; Ivashura, A.A. Subsolidusna budova systemy MgO – FeO – Al2O3. Bulletin of the National Technical University "KhPI". Series: New solutions in modern technology 2021, 2, 59-64. (in Ukrainian) https://doi.org/10.20998/2413-4295.2021.01.09
dc.relation.references[12] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Ostapenko, I.A.; Shumejko, V.M. Geometro-Topologichni Kharakterystyky Subsolidusnoi budovy systemy MgO – FeO – TiO2. Bulletin of the National Technical University «KhPI». Series: Chemistry, Chemical Technology and Ecology 2021, 1, 18-23. (in Ukrainian) https://doi.org/10.20998/2079-0821.2021.01.03
dc.relation.references[13] Borisenko, O.; Logvinkov, S.; Shabanova, G.; Myrgorod, O. Thermodynamics of Solid-Phase Exchange Reactions Limiting the Subsolidus Structure of the System MgO-Al2O3-FeO-TiO2. Materials Science Forum 2021, 1038, 177-184. https://doi.org/10.4028/www.scientific.net/MSF.1038.177
dc.relation.references[14] Babushkin, V.I.; Matveev, G.M.; Mchedlov-Petrosyan, O.P. Termodinamika silikatov; Moskva, 1986.
dc.relation.references[15] Jung, I.-H.; Eriksson, G.; Wu, P.; Pelton, A. Thermodynamic Modeling of the Al2O3–Ti2O3–TiO2 System and Its Applications to the Fe–Al–Ti–O Inclusion Diagram. J. Alloys Compd. 2009, 49, 1290-1297. https://doi.org/10.2355/isijinternational.49.1290
dc.relation.referencesen[1] Ganesh, I. A Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications. Int. Mater. Rev. 2013, 58, 63-112. https://doi.org/10.1179/1743280412Y.0000000001
dc.relation.referencesen[2] Ma, Y.; Liu, X. Kinetics and Thermodynamics of Mg-Al Disorder in MgAl2O4-Spinel: A Review. Molecules 2019, 24, 1704. https://doi.org/10.3390/molecules24091704
dc.relation.referencesen[3] Talimian, A.; Pouchly, V.; Maca, K.; Galusek, D. Densification of Magnesium Aluminate Spinel Using Manganese and Cobalt Fluoride as Sintering Aids. Materials 2020, 13, 102. https://doi.org/10.3390/ma13010102
dc.relation.referencesen[4] Jiang, P.; Chen, J.-H.; Yan, M.-W.; Li, B.; Su, J.-D. Morphology Characterization of Periclase–Hercynite Refractories by Reaction Sintering. Int. J. Miner. Metall. Mater. 2015, 22, 1219-1224. https://doi.org/10.1007/s12613-015-1188-6
dc.relation.referencesen[5] Zhang, X.; Yu, R.; Yu, X. Characteristics of Hercynite and its Application: In Refractories. China's Refract. 2012, 21, 17-22.
dc.relation.referencesen[6] Chen, Y.-B. Dielectric Properties and Crystal Structure of Mg2TiO4 Ceramics Substituting Mg2+ with Zn2+ and Co2+. J. Alloys Compd. 2012, 513, 481-486. https://doi.org/10.1016/j.jallcom.2011.10.095
dc.relation.referencesen[7] Bahtli, T.; Aksel, C.; Kavas, T. Corrosion Behavior of MgO-MgAl2O4-FeAl2O4 Composite Refractory Materials. J. Aust. Ceram. Soc. 2017, 53, 33-40. https://doi.org/10.1007/s41779-016-0006-6
dc.relation.referencesen[8] Rodríguez, E.; Castillo, G-A.; Contreras, J.; Puente-Ornelas, R.; Aguilar-Martínez, J.A.; García, L.; Gómeza, C. Hercynite and Magnesium Aluminate Spinels Acting as a Ceramic Bonding in an Electrofused MgO–CaZrO3 Refractory Brick for the Cement Industry. Ceram. Int. 2012, 38, 6769-6775. https://doi.org/10.1016/j.ceramint.2012.05.071
dc.relation.referencesen[9] Aksoy, T.; Aksel, C.; Kavas, T. Hersinit İlaveli MgO-MgAl2O4 Kompozit Refrakterlerin Mekanik Özelliklerinin ve Mikroyapısal Karakteristiklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 2014, 14, 523-529. https://dergipark.org.tr/tr/download/article-file/18710
dc.relation.referencesen[10] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Ostapenko, I.A. Geometro-Topologichni Kharakterystyky Subsolidusnoi budovy systemy MgO – FeO – TiO2. Vcheni zapysky Tavriysʹkoho Natsionalʹnoho Universytetu Imeni V.I. Vernadsʹkoho. Seriya: Tekhnichni nauky 2021, 32, 45-49. (in Ukrainian). https://doi.org/10.32838/2663-5941/2021.1-2/08
dc.relation.referencesen[11] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Korohodska, A.M.; Ivashura, M.M.; Ivashura, A.A. Subsolidusna budova systemy MgO – FeO – Al2O3. Bulletin of the National Technical University "KhPI". Series: New solutions in modern technology 2021, 2, 59-64. (in Ukrainian) https://doi.org/10.20998/2413-4295.2021.01.09
dc.relation.referencesen[12] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Ostapenko, I.A.; Shumejko, V.M. Geometro-Topologichni Kharakterystyky Subsolidusnoi budovy systemy MgO – FeO – TiO2. Bulletin of the National Technical University "KhPI". Series: Chemistry, Chemical Technology and Ecology 2021, 1, 18-23. (in Ukrainian) https://doi.org/10.20998/2079-0821.2021.01.03
dc.relation.referencesen[13] Borisenko, O.; Logvinkov, S.; Shabanova, G.; Myrgorod, O. Thermodynamics of Solid-Phase Exchange Reactions Limiting the Subsolidus Structure of the System MgO-Al2O3-FeO-TiO2. Materials Science Forum 2021, 1038, 177-184. https://doi.org/10.4028/www.scientific.net/MSF.1038.177
dc.relation.referencesen[14] Babushkin, V.I.; Matveev, G.M.; Mchedlov-Petrosyan, O.P. Termodinamika silikatov; Moskva, 1986.
dc.relation.referencesen[15] Jung, I.-H.; Eriksson, G.; Wu, P.; Pelton, A. Thermodynamic Modeling of the Al2O3–Ti2O3–TiO2 System and Its Applications to the Fe–Al–Ti–O Inclusion Diagram. J. Alloys Compd. 2009, 49, 1290-1297. https://doi.org/10.2355/isijinternational.49.1290
dc.relation.urihttps://doi.org/10.1179/1743280412Y.0000000001
dc.relation.urihttps://doi.org/10.3390/molecules24091704
dc.relation.urihttps://doi.org/10.3390/ma13010102
dc.relation.urihttps://doi.org/10.1007/s12613-015-1188-6
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2011.10.095
dc.relation.urihttps://doi.org/10.1007/s41779-016-0006-6
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2012.05.071
dc.relation.urihttps://dergipark.org.tr/tr/download/article-file/18710
dc.relation.urihttps://doi.org/10.32838/2663-5941/2021.1-2/08
dc.relation.urihttps://doi.org/10.20998/2413-4295.2021.01.09
dc.relation.urihttps://doi.org/10.20998/2079-0821.2021.01.03
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/MSF.1038.177
dc.relation.urihttps://doi.org/10.2355/isijinternational.49.1290
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Borysenko O., Logvinkov S., Shabanova G., Pitak Ya., Ivashura A., Ostapenko I., 2022
dc.subjectсубсолідусна будова
dc.subjectтетраедрація
dc.subjectгеометро-топологічні характеристики
dc.subjectалюмомагнезіальна шпінель
dc.subjectгерциніт
dc.subjectквандиліт
dc.subjectsubsolidus structure
dc.subjecttetrahedration
dc.subjectgeometric-topological characteristics
dc.subjectmagnesium-alumina spinel
dc.subjecthercynite
dc.subjectquandilite
dc.titleSubsolidus Structure of the MgO – Al2O3 – FeO – TiO2 system
dc.title.alternativeСубсолідусна будова системи MgO – Al2O3 – FeO – TiO2
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n3_Borysenko_O-Subsolidus_Structure_367-376.pdf
Size:
553.08 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n3_Borysenko_O-Subsolidus_Structure_367-376__COVER.png
Size:
496.94 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: