Analysis and classification of actual geodetic methods for studying the quantitative parameters of earth surface deformations

dc.citation.epage111
dc.citation.issue45
dc.citation.journalTitleСучасні досягнення геодезичної науки та виробництва
dc.citation.spage106
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorHlotov, V.
dc.contributor.authorBiala, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T09:17:10Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractThe aim of the work is to analyze and evaluate current methods for studying Earth’s surface subsidence-dip deformation processes of technogenically impacted areas and to classify these methods. The analysis of existed methods for studying the spatio-temporal changes in the Earth’s surface consists in their critical assessment based on studied literary sources and highlighting advantages and disadvantages of the geodetic methods for studying the deformation processes of hazardous territories (with landslides and failures). Applying the classification method, a scheme of geodetic methods used in the Earth’s surface monitoring of technogenically loaded areas was developed. The analysis and evaluation of actual geodetic methods for studying the quantitative parameters of subsidence-dip deformation processes has been carried out. Literary sources written by Ukrainian and foreign scientists are processed. The advantages and disadvantages of the studied methods are presented. The classification of geodetic methods for studying and monitoring Earth’s surface deformations has been developed. The obtained results can serve as a theoretical basis that allows for further improvement of the technology for studying subsidence-dip deformation processes of technogenically impacted territories in order to predict technogenic disasters, improve the environmental situation and ensure life safety. The presented classification structures the current geodetic methods of studying the quantitative parameters of the spatio-temporal changes of the Earth's surface.
dc.format.extent106-111
dc.format.pages6
dc.identifier.citationHlotov V. Analysis and classification of actual geodetic methods for studying the quantitative parameters of earth surface deformations / V. Hlotov, M. Biala // Modern achievements of geodesic science and industry. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 1. — No 45. — P. 106–111.
dc.identifier.citationenHlotov V. Analysis and classification of actual geodetic methods for studying the quantitative parameters of earth surface deformations / V. Hlotov, M. Biala // Modern achievements of geodesic science and industry. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 1. — No 45. — P. 106–111.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63720
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofСучасні досягнення геодезичної науки та виробництва, 45 (1), 2023
dc.relation.ispartofModern achievements of geodesic science and industry, 45 (1), 2023
dc.relation.referencesBaran, P. I. (2012). Engineering Geodesy. PAT “VIPOL”, 618 (in Ukrainian).
dc.relation.referencesBurshtinska, Kh., & Stankevich, A. (2010). Aerospace shooting systems. Lviv Polytechnic National University Publishing House, 273 (in Ukrainian).
dc.relation.referencesHlotov, V., Ladanivskyi, B., Kuzyk, Z., Babushka, A., &, Petryshyn, I. (2021). Development of the aerosurveying complex based on the DJI S1000 octocopter UAV. Modern achievements of a geodetic science and industry, І(41), 86–96 (in Ukrainian).
dc.relation.referencesKokhan, S. S., & Vostokov, A. B. (2009). Earth remote sensing: theoretical foundations. Vyshcha Shkola, 460 (in Ukrainian).
dc.relation.referencesLavryk O. D. (2018). Classification and typology of valleyriver landscape and technical systems. Scientific Notes of Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University. Series “Geography”, 1–2(30), 62–70 (in Ukrainian).
dc.relation.referencesMordvinov, I. S., Pakshyn, M. Yu., Lyaska, I. I., Zayats, O. S., Petrov, S. L., & Tretyak, K. R. (2018). Monitoring of vertical movements on Mining and Chemical Plant “Polimineral” area based on processing results of interferometric satellite radar images and tilt measurements Modern achievements of a geodetic science and industry, I(35), 70–75 (in Ukrainian).
dc.relation.referencesOstrovskyi, A. L., Moroz, O. I., Tartachynska, Z. R., & Harasymchuk, I. F. (2011). Geodesy. Part one. Topography. Lviv Polytechnic National University Publishing House, 440 (in Ukrainian).
dc.relation.referencesPalamar, A. Yu., & Syzova, T. D. (2015). Analysis of methods of monitoring geomechanical processes in large mining regions. Bulletin of Kryvyi Rih National University, 40, 166–169 (in Ukrainian).
dc.relation.referencesRakushev, M. Yu., Zuiko, V. V., Zotov, S. V., & Yanchevskyi, S. L. (2020). Analysis of the field of remote sensing of the Earth of high spatial resolution to solve problems in the field of security and defense. Collection of scientific works of the Center for Military and Strategic Research of the National Defense University of Ukraine named after Ivan Chernyakhovsky, 3(70), 121–128 (in Ukrainian).
dc.relation.referencesTretyak, K. R., Maksimchuk, V. Yu., Kutas, R. I., Rokityansky, I. I., Gnilko, O. M., Kendzera, O. V., Pronyshyn, R. S., Klymkovych, T. A., Kuznietsova, V. H., Marchenko, D. O., Smirnova, O. M., Serant, O. V., Babak, V. I., Vovk, A. I., Romaniuk, V. V., & Tereshyn, A. V. (2015). Modern geodynamics and geophysical fields of the Carpathians and adjacent territories. Lviv Polytechnic National University Publishing House, 420 (in Ukrainian).
dc.relation.referencesUkrainian network of GPS stations (2022). Wikipedia. https://uk.wikipedia.org/w/index.php?title=%D0%A3%D0%BA%D1%80%D0%B0%D1%97%D0%BD%D1%81%D1%8C%D0%BA%D0%B0_%D0%BC%D0%B5%D1%80%D0%B5%D0%B6%D0%B0_GPS-%D1%81%D1%82%D0%B0%D0%BD%D1%86%D1%96%D0%B9&oldid=35104477 (in Ukrainian).
dc.relation.referencesZakharova, L. M., Chesnokova, O. V., Pidgurna, O. Y., & Nazimko, V. V. (2020). Investigation of chimney subsidence over a salt mine. Physical and technical problems of mining, 22, 57–76 (in Ukrainian).
dc.relation.referencesZayats, O., Navodych, M., Petrov, S., & Tretyak, K. (2017). Precise tilt measurements for monitoring of mine fields at Stebnyk potassium deposit area. Geodynamics, 2(23), 25–33. https://doi.org/10.23939/jgd2017.02.025 (in Ukrainian).
dc.relation.referencesAkgun, A., Kincal, C., & Pradhan, B. (2012). Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environ. Monit Assess, 184(9), 5453–5470. https://doi.org/10.1007/s10661-011-2352-8
dc.relation.referencesBeavan, R. J., & Litchfield, N. J. (2012). Vertical land movement around the New Zealand coastline: implicationsfor sea-level rise. GNS Science Report, 29, 41.
dc.relation.referencesCalcaterra, S., Cesi, C., Di Maio, C., Gambino, P., Merli, K., Vallario, M., & Vassallo, R. (2012). Surface displacements of two landslides evaluated by GPS and inclinometer systems: A case study in Southern Apennines, Italy. Natural Hazards, 61(1), 257–266. https://doi.org/10.1007/s11069-010-9633-3
dc.relation.referencesCasagli, N., Frodella, W., Morelli, 0S., & Tofani, V., Ciampalini, A., Intrieri, E., Raspini, F., Rossi, G., Tanteri, L., & Lu, P. (2017). Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenvironmental Disasters, 4(1), 9.
dc.relation.referencesCracknell, A. P. (2018) The development of remote sensing in the last 40 years. International Journal of Remote Sensing, 39(23), 8387–8427. https://doi.org/10.1080/01431161.2018.1550919
dc.relation.referencesHlotov, V., Hunina, A., Kolesnichenkо, V., Prokhorchuк, О., & Yurkiv, М. (2018). Development and investigation of UAV for aerial surveying. Geodesy, cartography, and aerial photography, 87, 48–57. https://doi.org/10.23939/istcgcap2018.01.048
dc.relation.referencesHlotov, V., Hunina, A., Kolb, I., Kolesnichenko, V., & Trevoho, I. (2021b). The study of the “Cetus” unmanned aerial vehicle for topographic aerial surveying. Geodesy and Cartography, 47(2), 96–103. https://doi.org/10.3846/gac.2021.12120
dc.relation.referencesHlotov, V., & Biala, M. (2022a). Spatial-temporal geodynamics monitoring of land use and land cover changes in Stebnyk, Ukraine based on Earth remote sensing data. Geodynamics, 1(32), 5–15. https://doi.org/10.23939/jgd2022.02.005
dc.relation.referencesHlotov, V., Shylo, Y., & Biala, M. (2022b). Methods analysis of studying surface sub-vertical movements based on Earth remote sensing data (Case study stebnyk potassium salts deposit, lviv region, ukraine). International Conference of Young Professionals “GeoTerrace-2022”, Lviv, Ukraine. https://doi.org/10.3997/2214-4609.2022590064
dc.relation.referencesJaboyedoff, M., Oppikofer, T., Abellan, A., Derron, M., Loye, A., Metzger, R., & Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: a review. Nat Hazards, 61(1), 5–28.
dc.relation.referencesRossi, G., Nocentini, M., Lombardi, L., Vannocci, P., Tanteri, L., Dotta, G., Bicocchi, G., Scaduto, G., Salvatici, T., Tofani, V., Moretti, S., & Casagli, N. (2016). Integration of multicopter drone measurements and ground-based data for landslide monitoring. В Landslides and Engineered Slopes. Experience, Theory and Practice. CRC Press.
dc.relation.referencesSabuncu, A., & Ozener, H. (2014). Monitoring vertical displacements by precise levelling: A case study along the Tuzla Fault, Izmir, Turkey. Geomatics, Natural Hazards and Risk, 5(4), 320–333. https://doi.org/10.1080/19475705.2013.810179
dc.relation.referencesSahu, P., & Lokhande, R. D. (2015). An Investigation of Sinkhole Subsidence and its Preventive Measures in Underground Coal Mining. Procedia Earth and Planetary Science, 11, 63–75.
dc.relation.referencesSavchyn, I., Tretyak, K., Petrov, S., Zaiats, O., & Brusak, I. (2019). Monitoring of mine fields at Stebnyk potassium deposit area by a geodetic and geotechnical method. European Association of Geoscientists & Engineers, 1, 1–5. https://doi.org/10.3997/2214-4609.201902169
dc.relation.referencesScherer, J. A. (2019). Comparison of the practical applications and limitations of InSAR and structure from motion depictions of surface elevation flux for academic purposes. University of Colorado Boulder. The Code of Ukraine on Bowels. Code of Ukraine; Law, Code on July 27, 1994 No. 132/94-ВР. Web-Portal of the Parliament of Ukraine. URL: https://zakon.rada.gov.ua/go/132/94-%D0%B2%D1%80
dc.relation.referencesThiel, C., & Schmullius, C. (2017). Comparison of UAV photograph-based and airborne LiDAR-based point clouds over forest from a forestry application perspective. Int. J. Remote Sens., 38, 2411–2426.
dc.relation.referencesenBaran, P. I. (2012). Engineering Geodesy. PAT "VIPOL", 618 (in Ukrainian).
dc.relation.referencesenBurshtinska, Kh., & Stankevich, A. (2010). Aerospace shooting systems. Lviv Polytechnic National University Publishing House, 273 (in Ukrainian).
dc.relation.referencesenHlotov, V., Ladanivskyi, B., Kuzyk, Z., Babushka, A., &, Petryshyn, I. (2021). Development of the aerosurveying complex based on the DJI S1000 octocopter UAV. Modern achievements of a geodetic science and industry, I(41), 86–96 (in Ukrainian).
dc.relation.referencesenKokhan, S. S., & Vostokov, A. B. (2009). Earth remote sensing: theoretical foundations. Vyshcha Shkola, 460 (in Ukrainian).
dc.relation.referencesenLavryk O. D. (2018). Classification and typology of valleyriver landscape and technical systems. Scientific Notes of Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University. Series "Geography", 1–2(30), 62–70 (in Ukrainian).
dc.relation.referencesenMordvinov, I. S., Pakshyn, M. Yu., Lyaska, I. I., Zayats, O. S., Petrov, S. L., & Tretyak, K. R. (2018). Monitoring of vertical movements on Mining and Chemical Plant "Polimineral" area based on processing results of interferometric satellite radar images and tilt measurements Modern achievements of a geodetic science and industry, I(35), 70–75 (in Ukrainian).
dc.relation.referencesenOstrovskyi, A. L., Moroz, O. I., Tartachynska, Z. R., & Harasymchuk, I. F. (2011). Geodesy. Part one. Topography. Lviv Polytechnic National University Publishing House, 440 (in Ukrainian).
dc.relation.referencesenPalamar, A. Yu., & Syzova, T. D. (2015). Analysis of methods of monitoring geomechanical processes in large mining regions. Bulletin of Kryvyi Rih National University, 40, 166–169 (in Ukrainian).
dc.relation.referencesenRakushev, M. Yu., Zuiko, V. V., Zotov, S. V., & Yanchevskyi, S. L. (2020). Analysis of the field of remote sensing of the Earth of high spatial resolution to solve problems in the field of security and defense. Collection of scientific works of the Center for Military and Strategic Research of the National Defense University of Ukraine named after Ivan Chernyakhovsky, 3(70), 121–128 (in Ukrainian).
dc.relation.referencesenTretyak, K. R., Maksimchuk, V. Yu., Kutas, R. I., Rokityansky, I. I., Gnilko, O. M., Kendzera, O. V., Pronyshyn, R. S., Klymkovych, T. A., Kuznietsova, V. H., Marchenko, D. O., Smirnova, O. M., Serant, O. V., Babak, V. I., Vovk, A. I., Romaniuk, V. V., & Tereshyn, A. V. (2015). Modern geodynamics and geophysical fields of the Carpathians and adjacent territories. Lviv Polytechnic National University Publishing House, 420 (in Ukrainian).
dc.relation.referencesenUkrainian network of GPS stations (2022). Wikipedia. https://uk.wikipedia.org/w/index.php?title=%D0%A3%D0%BA%D1%80%D0%B0%D1%97%D0%BD%D1%81%D1%8C%D0%BA%D0%B0_%D0%BC%D0%B5%D1%80%D0%B5%D0%B6%D0%B0_GPS-%D1%81%D1%82%D0%B0%D0%BD%D1%86%D1%96%D0%B9&oldid=35104477 (in Ukrainian).
dc.relation.referencesenZakharova, L. M., Chesnokova, O. V., Pidgurna, O. Y., & Nazimko, V. V. (2020). Investigation of chimney subsidence over a salt mine. Physical and technical problems of mining, 22, 57–76 (in Ukrainian).
dc.relation.referencesenZayats, O., Navodych, M., Petrov, S., & Tretyak, K. (2017). Precise tilt measurements for monitoring of mine fields at Stebnyk potassium deposit area. Geodynamics, 2(23), 25–33. https://doi.org/10.23939/jgd2017.02.025 (in Ukrainian).
dc.relation.referencesenAkgun, A., Kincal, C., & Pradhan, B. (2012). Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environ. Monit Assess, 184(9), 5453–5470. https://doi.org/10.1007/s10661-011-2352-8
dc.relation.referencesenBeavan, R. J., & Litchfield, N. J. (2012). Vertical land movement around the New Zealand coastline: implicationsfor sea-level rise. GNS Science Report, 29, 41.
dc.relation.referencesenCalcaterra, S., Cesi, C., Di Maio, C., Gambino, P., Merli, K., Vallario, M., & Vassallo, R. (2012). Surface displacements of two landslides evaluated by GPS and inclinometer systems: A case study in Southern Apennines, Italy. Natural Hazards, 61(1), 257–266. https://doi.org/10.1007/s11069-010-9633-3
dc.relation.referencesenCasagli, N., Frodella, W., Morelli, 0S., & Tofani, V., Ciampalini, A., Intrieri, E., Raspini, F., Rossi, G., Tanteri, L., & Lu, P. (2017). Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenvironmental Disasters, 4(1), 9.
dc.relation.referencesenCracknell, A. P. (2018) The development of remote sensing in the last 40 years. International Journal of Remote Sensing, 39(23), 8387–8427. https://doi.org/10.1080/01431161.2018.1550919
dc.relation.referencesenHlotov, V., Hunina, A., Kolesnichenko, V., Prokhorchuk, O., & Yurkiv, M. (2018). Development and investigation of UAV for aerial surveying. Geodesy, cartography, and aerial photography, 87, 48–57. https://doi.org/10.23939/istcgcap2018.01.048
dc.relation.referencesenHlotov, V., Hunina, A., Kolb, I., Kolesnichenko, V., & Trevoho, I. (2021b). The study of the "Cetus" unmanned aerial vehicle for topographic aerial surveying. Geodesy and Cartography, 47(2), 96–103. https://doi.org/10.3846/gac.2021.12120
dc.relation.referencesenHlotov, V., & Biala, M. (2022a). Spatial-temporal geodynamics monitoring of land use and land cover changes in Stebnyk, Ukraine based on Earth remote sensing data. Geodynamics, 1(32), 5–15. https://doi.org/10.23939/jgd2022.02.005
dc.relation.referencesenHlotov, V., Shylo, Y., & Biala, M. (2022b). Methods analysis of studying surface sub-vertical movements based on Earth remote sensing data (Case study stebnyk potassium salts deposit, lviv region, ukraine). International Conference of Young Professionals "GeoTerrace-2022", Lviv, Ukraine. https://doi.org/10.3997/2214-4609.2022590064
dc.relation.referencesenJaboyedoff, M., Oppikofer, T., Abellan, A., Derron, M., Loye, A., Metzger, R., & Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: a review. Nat Hazards, 61(1), 5–28.
dc.relation.referencesenRossi, G., Nocentini, M., Lombardi, L., Vannocci, P., Tanteri, L., Dotta, G., Bicocchi, G., Scaduto, G., Salvatici, T., Tofani, V., Moretti, S., & Casagli, N. (2016). Integration of multicopter drone measurements and ground-based data for landslide monitoring. V Landslides and Engineered Slopes. Experience, Theory and Practice. CRC Press.
dc.relation.referencesenSabuncu, A., & Ozener, H. (2014). Monitoring vertical displacements by precise levelling: A case study along the Tuzla Fault, Izmir, Turkey. Geomatics, Natural Hazards and Risk, 5(4), 320–333. https://doi.org/10.1080/19475705.2013.810179
dc.relation.referencesenSahu, P., & Lokhande, R. D. (2015). An Investigation of Sinkhole Subsidence and its Preventive Measures in Underground Coal Mining. Procedia Earth and Planetary Science, 11, 63–75.
dc.relation.referencesenSavchyn, I., Tretyak, K., Petrov, S., Zaiats, O., & Brusak, I. (2019). Monitoring of mine fields at Stebnyk potassium deposit area by a geodetic and geotechnical method. European Association of Geoscientists & Engineers, 1, 1–5. https://doi.org/10.3997/2214-4609.201902169
dc.relation.referencesenScherer, J. A. (2019). Comparison of the practical applications and limitations of InSAR and structure from motion depictions of surface elevation flux for academic purposes. University of Colorado Boulder. The Code of Ukraine on Bowels. Code of Ukraine; Law, Code on July 27, 1994 No. 132/94-VR. Web-Portal of the Parliament of Ukraine. URL: https://zakon.rada.gov.ua/go/132/94-%D0%B2%D1%80
dc.relation.referencesenThiel, C., & Schmullius, C. (2017). Comparison of UAV photograph-based and airborne LiDAR-based point clouds over forest from a forestry application perspective. Int. J. Remote Sens., 38, 2411–2426.
dc.relation.urihttps://uk.wikipedia.org/w/index.php?title=%D0%A3%D0%BA%D1%80%D0%B0%D1%97%D0%BD%D1%81%D1%8C%D0%BA%D0%B0_%D0%BC%D0%B5%D1%80%D0%B5%D0%B6%D0%B0_GPS-%D1%81%D1%82%D0%B0%D0%BD%D1%86%D1%96%D0%B9&oldid=35104477
dc.relation.urihttps://doi.org/10.23939/jgd2017.02.025
dc.relation.urihttps://doi.org/10.1007/s10661-011-2352-8
dc.relation.urihttps://doi.org/10.1007/s11069-010-9633-3
dc.relation.urihttps://doi.org/10.1080/01431161.2018.1550919
dc.relation.urihttps://doi.org/10.23939/istcgcap2018.01.048
dc.relation.urihttps://doi.org/10.3846/gac.2021.12120
dc.relation.urihttps://doi.org/10.23939/jgd2022.02.005
dc.relation.urihttps://doi.org/10.3997/2214-4609.2022590064
dc.relation.urihttps://doi.org/10.1080/19475705.2013.810179
dc.relation.urihttps://doi.org/10.3997/2214-4609.201902169
dc.relation.urihttps://zakon.rada.gov.ua/go/132/94-%D0%B2%D1%80
dc.rights.holder© Західне геодезичне товариство, 2023
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectEarth’s surface
dc.subjectdeformation processes
dc.subjectgeodetic methods
dc.subjectgeotechnical monitoring
dc.subjectextraction sites
dc.subject.udc528
dc.titleAnalysis and classification of actual geodetic methods for studying the quantitative parameters of earth surface deformations
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v1n45_Hlotov_V-Analysis_and_classification_106-111.pdf
Size:
501.97 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v1n45_Hlotov_V-Analysis_and_classification_106-111__COVER.png
Size:
558.95 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: