Synthesis and Properties of Phosphorus-Containing Pseudo-Poly(Amino Acid)sof Polyester Type Based on N-Derivatives of Glutaminic Acid

dc.citation.epage58
dc.citation.issue1
dc.citation.spage51
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationStepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies
dc.contributor.affiliationInstitute of Animal Biology NAAS
dc.contributor.authorStasiuk, Anna
dc.contributor.authorFihurka, Nataliia
dc.contributor.authorVlizlo, Vasyl
dc.contributor.authorPrychak, Sofiia
dc.contributor.authorOstapiv, Dmytro
dc.contributor.authorVarvarenko, Serhii
dc.contributor.authorSamaryk, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T10:41:35Z
dc.date.available2024-01-22T10:41:35Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractПоліфосфоестери (ПФЕ) – це клас полімерів, що володіють високою хімічною функціональністю та здатністю до біологічного розкладання. Синтезовані нові поліфосфоестери на основі глутамінової кислоти за реакцією Стегліха. Розроблений синтетичний підхід дозволяє контролювати склад і структуру ПФЕ, а отже, їхфізичні та колоїдні властивості. Дослідження солюбілізації та цитотоксичності in vitro довели потенціал застосування ПФЕ для доставки лікарських препаратів.
dc.description.abstractPoly(phosphoeter)s (PPE)s are a class of polymers possessing a high chemical functionality and biodegradability. Novel, glutamic acid based poly(phosphoeter)s were synthesized by the Steglich reaction. The developed synthetic approach allows controlling the composition and the structure of PPEs, and therefore their physical and colloidal properties. The studies on solubilization and cytotoxicity in vitro proved the potential of PPEs for drug delivery applications.
dc.format.extent51-58
dc.format.pages8
dc.identifier.citationSynthesis and Properties of Phosphorus-Containing Pseudo-Poly(Amino Acid)sof Polyester Type Based on N-Derivatives of Glutaminic Acid / Anna Stasiuk, Nataliia Fihurka, Vasyl Vlizlo, Sofiia Prychak, Dmytro Ostapiv, Serhii Varvarenko, Volodymyr Samaryk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 51–58.
dc.identifier.citationenSynthesis and Properties of Phosphorus-Containing Pseudo-Poly(Amino Acid)sof Polyester Type Based on N-Derivatives of Glutaminic Acid / Anna Stasiuk, Nataliia Fihurka, Vasyl Vlizlo, Sofiia Prychak, Dmytro Ostapiv, Serhii Varvarenko, Volodymyr Samaryk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 51–58.
dc.identifier.doidoi.org/10.23939/chcht16.01.051
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60960
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (16), 2022
dc.relation.references[1] Brannigan, R.P.; Dove, A.P. Synthesis, Properties and Biomedical Applications of Hydrolytically Degradable Materials Based on Aliphatic Polyesters and Polycarbonates. Biomater. Sci.2017,5, 9-21. https://doi.org/10.1039/c6bm00584e
dc.relation.references[2] Urbánek, T.; Jäger. E.; Jäger, A.; Hrubý, M. Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications. Polymers2019,11, 1061. https://doi.org/10.3390/polym11061061
dc.relation.references[3] Brzozowski, Z.K.; Szymańska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1999,33, 217-224. https://doi.org/10.1016/s1381-5148(97)00045-x
dc.relation.references[4] Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Shirazi, A.N.; Dehghani, F. Biomedical Applications of Biodegradable Polyesters. Polymers2016,8, 20.https://doi.org/10.3390/polym8010020
dc.relation.references[5] Varvarenko, S.; Tarnavchyk, I.; Voronov, A.; Fihurka, N.; Dron, I.; Nosova, N.; Taras, R.; Samaryk, V.; Voronov, S. Synthesis and Colloidal Properties of Polyesters Based on Glutamic Acids and Glycols of Different Nature. Chem. Chem. Technol. 2013,7, 161-168. https://doi.org/10.23939/chcht07.02.161
dc.relation.references[6] Bashta, B.; Bruzdziak, P.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Synthesis and Properties of Carboxy-Containing Peroxy Oligomer. Chem. Chem. Technol.2013,7, 413-421. https://doi.org/10.23939/chcht07.04.413
dc.relation.references[7] Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Introduction-Biomaterials Science: AnEvolving, Multidisciplinary Endeavor. In Biomaterials Science, 3rd ed.; Lemons, B.D., Ratner, A.S., Hoffman, F.J., Schoen, J.E., Eds.; Academic Press: Boston, MA, USA, 2013; pp 25-39. https://doi.org/10.1016/B978-0-08-087780-8.00153-4
dc.relation.references[8] Diaz, A.; Katsarava, R.; Puiggali, J. Synthesis, Properties and Applications of Biodegradable Polymers Derived From Diols and Dicarboxylic Acids: From Polyesters to Poly(Ester Amide)s. Int. J Mol. Sci. 2014, 15, 7064–7123.https://doi.org/10.3390/ijms15057064
dc.relation.references[9] Yakoviv, M.; Fihurka, N.; Nosova, N.; Samaryk, V.; Vasylyshyn, T.; Hermanovych, S.; Voronov, S.; Varvarenko, S. Researches of Amphiphilic Properties of Copolyesterswith Chromophore Groups. Chem. Chem. Technol. 2018,12, 318-325. https://doi.org/10.23939/chcht12.03.318
dc.relation.references[10] Bratychak, M.; Bratychak, M.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Ethereate. Mater. Res. Innov. 2002,6,24-30. https://doi.org/10.1007/s10019-002-0157-7
dc.relation.references[11] Da Costa, R.C.; Pereira, E.D.; Silva, F.M.; De Jesus, E.O.; SouzaJr., F.G. Drug Micro-Carriers Based on Polymers and Their Sterilization. Chem. Chem. Technol. 2018, 12, 473-487. https://doi.org/10.23939/chcht12.04.473
dc.relation.references[12] Ivashkiv, O.; Namiesnik, J.; Shyshchak, O.; Polyuzhyn, I.; Bratychak, M. Synthesis and Properties of Oligomers with Hydroxy End-Groups. Chem. Chem. Technol.2016,10, 587-594. https://doi.org/10.23939/chcht10.04si.587
dc.relation.references[13] Ivanchenko, O.; Authesserre, U.; Coste, G.; Mazières, S.; Destarac, M.; Harrisson, S. ϵ-Thionocaprolactone: An Accessible Monomer for Preparation of Degradable Poly(Vinyl Esters) by Radical Ring-Opening Polymerization. Polym. Chem.2021,12, 1931-1938. https://doi.org/10.1039/D1PY00080B
dc.relation.references[14] Wang, Y.-C.; Yuan, Y.-Y.; Du, J.-Z.; Yang, X.-Z.; Wang, J. Recent Progress in Polyphosphoesters: From Controlled Synthesis to Biomedical Applications. Macromol. Biosci.2009,9, 1154-1164. https://doi.org/10.1002/mabi.200900253
dc.relation.references[15] Buls, V.W.; Creek, W.; Morris, R.C. Polyesters of Phosphoryl-Substitute Alcohols and Polybasic Phosphorus Acids. U.S.Patent 2807636, September 24,1957.
dc.relation.references[16] Yang, X.-Z.; Sun, T.-M.; Dou, S.; Wu, J.; Wang, Y.-C.; Wang, J. Block Copolymer of Polyphosphoester and Poly(l-Lactic Acid) Modified Surface for Enhancing Osteoblast Adhesion, Proliferation, and Function. Biomacromolecules2009,10, 2213-2220. https://doi.org/10.1021/bm900390k
dc.relation.references[17] Strasser, P.; Teasdale, I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules2020, 25, 1716. https://doi.org/10.3390/molecules25071716
dc.relation.references[18] Vanslambrouck, S.; Riva, R.; Ucakar, B.; Préat, V.; Gagliardi, M.; Molin, D.G.M.; Lecomte, P.; Jérôme, C. Thiol-ene Reaction: An Efficient Toolto Design Lipophilic Polyphosphoesters for Drug Delivery Systems. Molecules2021, 26, 1750. https://doi.org/10.3390/molecules26061750
dc.relation.references[19] Bauer, K.N.; Tee, H.T.;Velencoso, M.M.;Wurm, F.R. Main-Chain Poly(Phosphoester)s: History, Syntheses, Degradation, Bio- and Flame-Retardant Applications. Prog. Polym. Sci. 2017,73, 61-122. https://doi.org/10.1016/j.progpolymsci.2017.05.004
dc.relation.references[20] Steinbach, T.; Wurm, F.R. Poly(Phosphoester)s: a New Platform For Degradable Polymers. Angew. Chem. Int. Ed. 2015, 54, 6098-6108. https://doi.org/10.1002/anie.201500147
dc.relation.references[21] Schöttler, S.; Becker, G.;Winzen, S.;Steinbach, T.;Mohr, K.;Landfester, K.;Mailänder, V.;Wurm, F.R. Protein Adsorption is Required for Stealth Effect of Poly(Ethylene Glycol)- and Poly(Phosphoester)-Coated Nanocarriers. Nat. Nanotechnol. 2016,11, 372-377. https://doi.org/10.1038/nnano.2015.330
dc.relation.references[22] Pelosi, C.; Tinè, M. R.; Wurm, F.R. Main-Chain Water-Soluble Polyphosphoesters: Multi-Functional Polymers as Degradable PEG-Alternatives for Biomedical Applications. Eur. Polym. J. 2020, 141, 110079.https://doi.org/10.1016/j.eurpolymj.2020.110079
dc.relation.references[23] Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, Functionalization Strategies and Biomedical Applications of Targeted Biodegradable/Biocompatible Polymer-Based Nanocarriers for Drug Delivery. Chem. Soc. Rev.2013, 42, 1147-235. https://doi.org/10.1039/C2CS35265F
dc.relation.references[24] Gordillo-Galeano, A.; Ponce, A.; Mora-Huertas, C.E. Surface Structural Characteristics of Some Colloidal Lipid Systems Used in Pharmaceutics. J. Drug Deliv. Sci. Technol.2021, 62, 02345. https://doi.org/10.1016/j.jddst.2021.102345
dc.relation.references[25] Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S-U. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials2020, 10, 1970. https://doi.org/10.3390/nano10101970
dc.relation.references[26] Atanase, L.I. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers2021, 13, 477. https://doi.org/10.3390/polym13030477
dc.relation.references[27] Varvarenko, S.M.; Ferens, M.V.; Samaryk, V.Y.; Nosova, N.G.; Fihurka, N.V.; Ostapiv, D.D.; Voronov, S.A. Synthesis of Copolyestersof Fluorescein and 2-(Dodecanamino) Pentanedionic Acid via Steglich Reaction. VoprosyKhimiiiKhimicheskoiTekhnologii2018,2, 5-15.
dc.relation.references[28] Kuznetsova, K.I.; Vostres, V.B.; Fleychuk, R.I.; Hevus, O.I. Synthesis of Surface-Active Monomers and Peroxides on the Basis of Disubstituted Oxetane. VoprosyKhimiiiKhimicheskoiTekhnol.2019,2, 5-11. https://doi.org/10.32434/0321-4095-2019-123-2-5-11
dc.relation.references[29] Nagornyak, M.; Fihurka, N.; Samaryk, V.; Varvarenko, S.; Ferens, M.; Oleksa, V. Modification of Polysaccharides By N-Derivatives of Glutamic Acid Using Steglich Reaction. Chem. Chem. Technol.2016, 10, 423-427. https://doi.org/10.23939/chcht10.04.423
dc.relation.references[30] Zubyk, H.; Plonska-Brzezinska, M.; Shyshchak, O.; Astakhova, O.; Bratychak, M. Study of Phenol-Formaldehyde Oligomers Derivatives Structure by IR- and NMR-Spectroscopy. Chem. Chem. Technol. 2015, 9, 435-444. https://doi.org/10.23939/chcht09.04.435
dc.relation.references[31] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol., 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
dc.relation.references[32] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. MonomethacrylateDerivative of Ed-24 Epoxy Resin and Its Application. Chem. Chem. Technol., 2015, 7(1), 73-77. https://doi.org/10.23939/chcht07.01.073
dc.relation.references[33] Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Cholesterol Containing Polymers for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561-570. https://doi.org/10.23939/chcht10.04si.561
dc.relation.references[34] Matysik, S. I.; Kuzminov, B. P.;Ostapiv, D. D. Cytotoxic Action of Hepatoprotector Antral on Bull Sperm. Gig. Sanit.2020, 99, 206-209. https://doi.org/10.33029/0016-9900-2020-99-2-206-209
dc.relation.references[35] Chekh, B.O.; Ferens, M.V.; Ostapiv, D.D.; Samaryk, V.Y.; Varvarenko, S.M.; Vlizlo, V.V. Characteristics of Novel Polymer Based on Pseudo-Polyamino Acids Glula-DPG-PEG600: Binding of Albumin, Biocompatibility, Biodistribution and Potential Crossing the Blood-Brain Barrier in Rats. Ukr. Biochem. J.2017, 89, 13-21. https://doi.org/10.15407/ubj89.04.013
dc.relation.references[36] Fihurka, N.; Tarnavchyk, I.; Samaryk, V.; Varvarenko, S.; Nosova, N.; Voronov, A.; Nagornyak, M.; Ferens, M.; Voronov, S.A. Study of an Irreversible Condensation of Glutamic Acid and Polyoxyethylene/Polyoxypropylene Diols Using Thionyl Chloride. Org. Prep. Proc. Int. 2018, 50, 502-508.https://doi.org/10.1080/00304948.2018.1525674
dc.relation.referencesen[1] Brannigan, R.P.; Dove, A.P. Synthesis, Properties and Biomedical Applications of Hydrolytically Degradable Materials Based on Aliphatic Polyesters and Polycarbonates. Biomater. Sci.2017,5, 9-21. https://doi.org/10.1039/P.6bm00584e
dc.relation.referencesen[2] Urbánek, T.; Jäger. E.; Jäger, A.; Hrubý, M. Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications. Polymers2019,11, 1061. https://doi.org/10.3390/polym11061061
dc.relation.referencesen[3] Brzozowski, Z.K.; Szymańska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1999,33, 217-224. https://doi.org/10.1016/s1381-5148(97)00045-x
dc.relation.referencesen[4] Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Shirazi, A.N.; Dehghani, F. Biomedical Applications of Biodegradable Polyesters. Polymers2016,8, 20.https://doi.org/10.3390/polym8010020
dc.relation.referencesen[5] Varvarenko, S.; Tarnavchyk, I.; Voronov, A.; Fihurka, N.; Dron, I.; Nosova, N.; Taras, R.; Samaryk, V.; Voronov, S. Synthesis and Colloidal Properties of Polyesters Based on Glutamic Acids and Glycols of Different Nature. Chem. Chem. Technol. 2013,7, 161-168. https://doi.org/10.23939/chcht07.02.161
dc.relation.referencesen[6] Bashta, B.; Bruzdziak, P.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Synthesis and Properties of Carboxy-Containing Peroxy Oligomer. Chem. Chem. Technol.2013,7, 413-421. https://doi.org/10.23939/chcht07.04.413
dc.relation.referencesen[7] Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Introduction-Biomaterials Science: AnEvolving, Multidisciplinary Endeavor. In Biomaterials Science, 3rd ed.; Lemons, B.D., Ratner, A.S., Hoffman, F.J., Schoen, J.E., Eds.; Academic Press: Boston, MA, USA, 2013; pp 25-39. https://doi.org/10.1016/B978-0-08-087780-8.00153-4
dc.relation.referencesen[8] Diaz, A.; Katsarava, R.; Puiggali, J. Synthesis, Properties and Applications of Biodegradable Polymers Derived From Diols and Dicarboxylic Acids: From Polyesters to Poly(Ester Amide)s. Int. J Mol. Sci. 2014, 15, 7064–7123.https://doi.org/10.3390/ijms15057064
dc.relation.referencesen[9] Yakoviv, M.; Fihurka, N.; Nosova, N.; Samaryk, V.; Vasylyshyn, T.; Hermanovych, S.; Voronov, S.; Varvarenko, S. Researches of Amphiphilic Properties of Copolyesterswith Chromophore Groups. Chem. Chem. Technol. 2018,12, 318-325. https://doi.org/10.23939/chcht12.03.318
dc.relation.referencesen[10] Bratychak, M.; Bratychak, M.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Ethereate. Mater. Res. Innov. 2002,6,24-30. https://doi.org/10.1007/s10019-002-0157-7
dc.relation.referencesen[11] Da Costa, R.C.; Pereira, E.D.; Silva, F.M.; De Jesus, E.O.; SouzaJr., F.G. Drug Micro-Carriers Based on Polymers and Their Sterilization. Chem. Chem. Technol. 2018, 12, 473-487. https://doi.org/10.23939/chcht12.04.473
dc.relation.referencesen[12] Ivashkiv, O.; Namiesnik, J.; Shyshchak, O.; Polyuzhyn, I.; Bratychak, M. Synthesis and Properties of Oligomers with Hydroxy End-Groups. Chem. Chem. Technol.2016,10, 587-594. https://doi.org/10.23939/chcht10.04si.587
dc.relation.referencesen[13] Ivanchenko, O.; Authesserre, U.; Coste, G.; Mazières, S.; Destarac, M.; Harrisson, S. ϵ-Thionocaprolactone: An Accessible Monomer for Preparation of Degradable Poly(Vinyl Esters) by Radical Ring-Opening Polymerization. Polym. Chem.2021,12, 1931-1938. https://doi.org/10.1039/D1PY00080B
dc.relation.referencesen[14] Wang, Y.-C.; Yuan, Y.-Y.; Du, J.-Z.; Yang, X.-Z.; Wang, J. Recent Progress in Polyphosphoesters: From Controlled Synthesis to Biomedical Applications. Macromol. Biosci.2009,9, 1154-1164. https://doi.org/10.1002/mabi.200900253
dc.relation.referencesen[15] Buls, V.W.; Creek, W.; Morris, R.C. Polyesters of Phosphoryl-Substitute Alcohols and Polybasic Phosphorus Acids. U.S.Patent 2807636, September 24,1957.
dc.relation.referencesen[16] Yang, X.-Z.; Sun, T.-M.; Dou, S.; Wu, J.; Wang, Y.-C.; Wang, J. Block Copolymer of Polyphosphoester and Poly(l-Lactic Acid) Modified Surface for Enhancing Osteoblast Adhesion, Proliferation, and Function. Biomacromolecules2009,10, 2213-2220. https://doi.org/10.1021/bm900390k
dc.relation.referencesen[17] Strasser, P.; Teasdale, I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules2020, 25, 1716. https://doi.org/10.3390/molecules25071716
dc.relation.referencesen[18] Vanslambrouck, S.; Riva, R.; Ucakar, B.; Préat, V.; Gagliardi, M.; Molin, D.G.M.; Lecomte, P.; Jérôme, C. Thiol-ene Reaction: An Efficient Toolto Design Lipophilic Polyphosphoesters for Drug Delivery Systems. Molecules2021, 26, 1750. https://doi.org/10.3390/molecules26061750
dc.relation.referencesen[19] Bauer, K.N.; Tee, H.T.;Velencoso, M.M.;Wurm, F.R. Main-Chain Poly(Phosphoester)s: History, Syntheses, Degradation, Bio- and Flame-Retardant Applications. Prog. Polym. Sci. 2017,73, 61-122. https://doi.org/10.1016/j.progpolymsci.2017.05.004
dc.relation.referencesen[20] Steinbach, T.; Wurm, F.R. Poly(Phosphoester)s: a New Platform For Degradable Polymers. Angew. Chem. Int. Ed. 2015, 54, 6098-6108. https://doi.org/10.1002/anie.201500147
dc.relation.referencesen[21] Schöttler, S.; Becker, G.;Winzen, S.;Steinbach, T.;Mohr, K.;Landfester, K.;Mailänder, V.;Wurm, F.R. Protein Adsorption is Required for Stealth Effect of Poly(Ethylene Glycol)- and Poly(Phosphoester)-Coated Nanocarriers. Nat. Nanotechnol. 2016,11, 372-377. https://doi.org/10.1038/nnano.2015.330
dc.relation.referencesen[22] Pelosi, C.; Tinè, M. R.; Wurm, F.R. Main-Chain Water-Soluble Polyphosphoesters: Multi-Functional Polymers as Degradable PEG-Alternatives for Biomedical Applications. Eur. Polym. J. 2020, 141, 110079.https://doi.org/10.1016/j.eurpolymj.2020.110079
dc.relation.referencesen[23] Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, Functionalization Strategies and Biomedical Applications of Targeted Biodegradable/Biocompatible Polymer-Based Nanocarriers for Drug Delivery. Chem. Soc. Rev.2013, 42, 1147-235. https://doi.org/10.1039/P.2CS35265F
dc.relation.referencesen[24] Gordillo-Galeano, A.; Ponce, A.; Mora-Huertas, C.E. Surface Structural Characteristics of Some Colloidal Lipid Systems Used in Pharmaceutics. J. Drug Deliv. Sci. Technol.2021, 62, 02345. https://doi.org/10.1016/j.jddst.2021.102345
dc.relation.referencesen[25] Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S-U. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials2020, 10, 1970. https://doi.org/10.3390/nano10101970
dc.relation.referencesen[26] Atanase, L.I. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers2021, 13, 477. https://doi.org/10.3390/polym13030477
dc.relation.referencesen[27] Varvarenko, S.M.; Ferens, M.V.; Samaryk, V.Y.; Nosova, N.G.; Fihurka, N.V.; Ostapiv, D.D.; Voronov, S.A. Synthesis of Copolyestersof Fluorescein and 2-(Dodecanamino) Pentanedionic Acid via Steglich Reaction. VoprosyKhimiiiKhimicheskoiTekhnologii2018,2, 5-15.
dc.relation.referencesen[28] Kuznetsova, K.I.; Vostres, V.B.; Fleychuk, R.I.; Hevus, O.I. Synthesis of Surface-Active Monomers and Peroxides on the Basis of Disubstituted Oxetane. VoprosyKhimiiiKhimicheskoiTekhnol.2019,2, 5-11. https://doi.org/10.32434/0321-4095-2019-123-2-5-11
dc.relation.referencesen[29] Nagornyak, M.; Fihurka, N.; Samaryk, V.; Varvarenko, S.; Ferens, M.; Oleksa, V. Modification of Polysaccharides By N-Derivatives of Glutamic Acid Using Steglich Reaction. Chem. Chem. Technol.2016, 10, 423-427. https://doi.org/10.23939/chcht10.04.423
dc.relation.referencesen[30] Zubyk, H.; Plonska-Brzezinska, M.; Shyshchak, O.; Astakhova, O.; Bratychak, M. Study of Phenol-Formaldehyde Oligomers Derivatives Structure by IR- and NMR-Spectroscopy. Chem. Chem. Technol. 2015, 9, 435-444. https://doi.org/10.23939/chcht09.04.435
dc.relation.referencesen[31] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol., 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
dc.relation.referencesen[32] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. MonomethacrylateDerivative of Ed-24 Epoxy Resin and Its Application. Chem. Chem. Technol., 2015, 7(1), 73-77. https://doi.org/10.23939/chcht07.01.073
dc.relation.referencesen[33] Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Cholesterol Containing Polymers for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561-570. https://doi.org/10.23939/chcht10.04si.561
dc.relation.referencesen[34] Matysik, S. I.; Kuzminov, B. P.;Ostapiv, D. D. Cytotoxic Action of Hepatoprotector Antral on Bull Sperm. Gig. Sanit.2020, 99, 206-209. https://doi.org/10.33029/0016-9900-2020-99-2-206-209
dc.relation.referencesen[35] Chekh, B.O.; Ferens, M.V.; Ostapiv, D.D.; Samaryk, V.Y.; Varvarenko, S.M.; Vlizlo, V.V. Characteristics of Novel Polymer Based on Pseudo-Polyamino Acids Glula-DPG-PEG600: Binding of Albumin, Biocompatibility, Biodistribution and Potential Crossing the Blood-Brain Barrier in Rats. Ukr. Biochem. J.2017, 89, 13-21. https://doi.org/10.15407/ubj89.04.013
dc.relation.referencesen[36] Fihurka, N.; Tarnavchyk, I.; Samaryk, V.; Varvarenko, S.; Nosova, N.; Voronov, A.; Nagornyak, M.; Ferens, M.; Voronov, S.A. Study of an Irreversible Condensation of Glutamic Acid and Polyoxyethylene/Polyoxypropylene Diols Using Thionyl Chloride. Org. Prep. Proc. Int. 2018, 50, 502-508.https://doi.org/10.1080/00304948.2018.1525674
dc.relation.urihttps://doi.org/10.1039/c6bm00584e
dc.relation.urihttps://doi.org/10.3390/polym11061061
dc.relation.urihttps://doi.org/10.1016/s1381-5148(97)00045-x
dc.relation.urihttps://doi.org/10.3390/polym8010020
dc.relation.urihttps://doi.org/10.23939/chcht07.02.161
dc.relation.urihttps://doi.org/10.23939/chcht07.04.413
dc.relation.urihttps://doi.org/10.1016/B978-0-08-087780-8.00153-4
dc.relation.urihttps://doi.org/10.3390/ijms15057064
dc.relation.urihttps://doi.org/10.23939/chcht12.03.318
dc.relation.urihttps://doi.org/10.1007/s10019-002-0157-7
dc.relation.urihttps://doi.org/10.23939/chcht12.04.473
dc.relation.urihttps://doi.org/10.23939/chcht10.04si.587
dc.relation.urihttps://doi.org/10.1039/D1PY00080B
dc.relation.urihttps://doi.org/10.1002/mabi.200900253
dc.relation.urihttps://doi.org/10.1021/bm900390k
dc.relation.urihttps://doi.org/10.3390/molecules25071716
dc.relation.urihttps://doi.org/10.3390/molecules26061750
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2017.05.004
dc.relation.urihttps://doi.org/10.1002/anie.201500147
dc.relation.urihttps://doi.org/10.1038/nnano.2015.330
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2020.110079
dc.relation.urihttps://doi.org/10.1039/C2CS35265F
dc.relation.urihttps://doi.org/10.1016/j.jddst.2021.102345
dc.relation.urihttps://doi.org/10.3390/nano10101970
dc.relation.urihttps://doi.org/10.3390/polym13030477
dc.relation.urihttps://doi.org/10.32434/0321-4095-2019-123-2-5-11
dc.relation.urihttps://doi.org/10.23939/chcht10.04.423
dc.relation.urihttps://doi.org/10.23939/chcht09.04.435
dc.relation.urihttps://doi.org/10.23939/chcht09.01.069
dc.relation.urihttps://doi.org/10.23939/chcht07.01.073
dc.relation.urihttps://doi.org/10.23939/chcht10.04si.561
dc.relation.urihttps://doi.org/10.33029/0016-9900-2020-99-2-206-209
dc.relation.urihttps://doi.org/10.15407/ubj89.04.013
dc.relation.urihttps://doi.org/10.1080/00304948.2018.1525674
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Stasiuk A., Fihurka N., Vlizlo V., Prychak S., Ostapiv D., Varvarenko, S., Samaryk V., 2022
dc.subjectполіфосфоестери
dc.subjectпсевдополіамінокислоти
dc.subjectглутамінова кислота
dc.subjectполіетиленгліколь
dc.subjectреакція Стегліха
dc.subjectдоставка ліків
dc.subjectpoly(phosphoester)s
dc.subjectpseudo-poly(amino acid)s
dc.subjectglutamic acid
dc.subjectpolyethylene glycol
dc.subjectSteglich reaction
dc.subjectdrug delivery
dc.titleSynthesis and Properties of Phosphorus-Containing Pseudo-Poly(Amino Acid)sof Polyester Type Based on N-Derivatives of Glutaminic Acid
dc.title.alternativeСинтез та властивості фосфоровмісних псевдополіамінокислот поліестерного типу на основі n-похідних глутамінової кислоти
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n1_Stasiuk_A-Synthesis_and_Properties_51-58.pdf
Size:
496.59 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n1_Stasiuk_A-Synthesis_and_Properties_51-58__COVER.png
Size:
532.14 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: