Synthesis, Sorption Properties, and Evaluation of Silica Gel with Adsorbed Poly[8-Oxyquinoline Methacrylate] as a Sorbent for Cu(II), Cd(II), Pb(II) and Fe(III) Ions

dc.citation.epage51
dc.citation.issue1
dc.citation.spage45
dc.contributor.affiliationTaras Shevchenko National University of Kyiv
dc.contributor.affiliationMaria Curie-Skłodowska University
dc.contributor.affiliationIvan Franko Zhytomyr State University
dc.contributor.authorSavchenko, Irina
dc.contributor.authorYanovska, Elina
dc.contributor.authorSternik, Dariusz
dc.contributor.authorKychkyruk, Olga
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T10:29:42Z
dc.date.available2024-02-09T10:29:42Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цьому дослідженні новий функціоналізований кремнеземний композит отриманий у результаті адсорбції полі[8-оксихінолінметакрилату] на поверхні силікагелю. Як адсорбент для видалення з води іонів Cu(II), Cd(II), Pb(II), Fe(III) ми використовували полімерно функціоналізований силікагель. Іммобілізація полі[8-оксихінолінметакрилату] на поверхні силікагелю була підтверджена за допомогою ІЧ-спектроскопії та термогравіметричного аналізу в поєднанні з мас-спектрометрією. Скануюча електронна мікроскопія показала, що полімер майже повністю покриває поверхню силікагелю. В результаті значно зменшується пористість поверхні мінералу. Досліджено процеси сорбції іонів Cu(II), Cd(II), Pb(II), Fe(III) на поверхні синтезованого композиту в статичному режимі.
dc.description.abstractIn the present study, a novel functionalized silica composite was prepared by adsorption of poly[8 oxyquinoline methacrylate] on the surface of silica gel. Immobilization of poly[8 oxyquinoline methacrylate] on the silica gel surface was confirmed using IR spectroscopy and thermogravimetric analysis combined with mass spectrometry. Scanning electron microscopy revealed that the polymer almost completely covers the surface of the silica gel in the form of agglomerates of different geometric shapes. The processes of sorption of Cu(II), Cd(II), Pb(II), and Fe(III) ions on the surface of the synthesized composite in the static mode have been studied.
dc.format.extent45-51
dc.format.pages7
dc.identifier.citationSynthesis, Sorption Properties, and Evaluation of Silica Gel with Adsorbed Poly[8-Oxyquinoline Methacrylate] as a Sorbent for Cu(II), Cd(II), Pb(II) and Fe(III) Ions / Irina Savchenko, Elina Yanovska, Dariusz Sternik, Olga Kychkyruk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 45–51.
dc.identifier.citationenSynthesis, Sorption Properties, and Evaluation of Silica Gel with Adsorbed Poly[8-Oxyquinoline Methacrylate] as a Sorbent for Cu(II), Cd(II), Pb(II) and Fe(III) Ions / Irina Savchenko, Elina Yanovska, Dariusz Sternik, Olga Kychkyruk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 45–51.
dc.identifier.doidoi.org/10.23939/chcht17.01.045
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61228
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (17), 2023
dc.relation.references[1] Demirbas, A. Heavy Metal Adsorption onto Agro-Based Waste Materials: A Review. J. Hazard. Mater. 2008, 157, 220-229. https://doi.org/10.1016/j.jhazmat.2008.01.024
dc.relation.references[2] Özcan, A.S.; Gök , Ö.; Özcan, A. Adsorption of Lead(II) Ions onto 8-Hydroxy Quinoline-Immobilized Bentonite. J. Hazard. Mater. 2009, 161, 499-509. https://doi.org/10.1016/j.jhazmat.2008.04.002
dc.relation.references[3] Yanovska, E.; Savchenko, I.; Petrenko, O.; Davydov, V. Adsorption of Some Toxic Metal Ions on Pine Sawdust in situ Immobilized by Polyaniline. Appl. Nanosci. 2022, 12, 861-868. https://doi.org/10.1007/s13204-021-01862-z
dc.relation.references[4] Savchenko, I.; Yanovska, E.; Polonska, Y.; Sternik, D.; Kychkiruk, O.; Ol’khovik, L. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Polymer-Based Azobenzene on Toxic Metal Ions. Appl. Nanosci. 2019, 9(5), 657-664. https://doi.org/10.1007/s13204-018-0734-8
dc.relation.references[5] Savchenko, I.; Yanovska, E.; Polonska, Y.; Ol’khovik, L.; Sternik, D.; Kychkiruk, O. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Poly[4-methacroyloxy-(4’-carboxy-2’-nitro)-azobenzene] On Toxic Metals Ions. Mol. Cryst. Liq. Cryst. 2018, 671, 164-174. https://doi.org/10.1080/15421406.2018.1542099
dc.relation.references[6] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14(3), 386-393. https://doi.org/10.23939/chcht14.03.386
dc.relation.references[7] Savchenko, I.; Yanovska, E.; Sternik, D.; Kychkiruk, O.; Ol’khovik, L.; Buriachenko, I. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Poly[N-(4-carboxyphenyl) methacrylamide] on Toxic Metal Ions. Nanoscale Res. Lett. 2017, 12, 313. https://doi.org/10.1186/s11671-017-2066-0
dc.relation.references[8] Chen, L.; Ji, T.; Mu, L.; Shi, Y.; Brisbin, L.; Guo, Z.; Khan, M.A.; Young, D.P.; Zhu, J. Facile Synthesis of Mesoporous Carbon Nanocomposites from Natural Biomass for Efficient Dye Adsorption and Selective Heavy Metal Removal. RSC Adv. 2016, 6, 2259-2269. https://doi.org/10.1039/c5ra19616g
dc.relation.references[9] Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic Nanoparticle (Fe3O4) Impregnated onto Tea Waste for the Removal of Nickel(II) from Aqueous Solution. J. Hazard Mater. 2011, 186, 160-168. https://doi.org/10.1016/j.jhazmat.2010.10.102
dc.relation.references[10] Ji, F.; Li, C.; Tang, B.; Xu, J., Lu, G.; Liu, P. Preparation of Cellulose Acetate/Zeolite Composite Fiber and its Adsorption Behavior for Heavy Metal Ions in Aqueous Solution. Chem. Eng. J. 2012, 209, 325-333. https://doi.org/10.1016/j.cej.2012.08.014
dc.relation.references[11] Yanovska, E.; Savchenko, I.; Sternik, D.; Kychkiruk, O. Adsorption Properties of Natural Alumosilicate Ukrainian Minerals, in situ Modified by Poly[8-methacroyloxy-quinoline] to Pb(ІІ), Mn(ІІ), Cu(ІІ) and Fe(ІІІ) Ions. Mol. Cryst. Liq. Cryst. 2021, 717, 1-13. https://doi.org/10.1080/15421406.2020.1859704
dc.relation.references[12] Savchenko, I.; Yanovska, E.; Sternik, D.; Kychkiruk, O. Synthesis of Organo-Inorganic Composite Based on Clinoptilolite (Ukraine), in situ Modified Poly[8-oxyquinoline methacrylate] and its Sorption Properties with Respect to Toxic Metal Ions. Funct. Mater. 2021, 28(3), 597-604. https://doi.org/10.15407/fm28.03.597
dc.relation.references[13] Chuiko, A.A. Silica surface chemistry. Part 1; Center UkrINTEI: Kyiv, 2001.
dc.relation.references[14] Al-Maliki, S.; Al-Khayat, Z.; Abdulrazzak, I.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16(2), 255-258. https://doi.org/10.23939/chcht16.02.255
dc.relation.references[15] Bernal, J.P.; De San Miguel, E.R.; Aguilar, J.C.; Salazar, G.; De Gyves, J. Adsorption of metallic cations on silica gel-immobilized 8-hydroxyquinoline. Sep. Sci. Technol. 2000, 35, 1661-1679. https://doi.org/10.1081/SS-100100247
dc.relation.references[16] Willie, S.N.; Tekgul, H.; Sturgeon, R.E. Immobilization of 8-Hydroxyquinoline onto Silicone Tubing for the Determination of Trace-Elements in Seawater Using Flow-Injection ICP-MS. Тalanta 1998, 47, 439-445. https://doi.org/10.1016/s0039-9140(98)00153-2
dc.relation.references[17] Lührmann, M.; Stelter, N.; Kettrup, A. Synthesis and Properties of Metal Collecting Phases with Silica Immobilized 8-Hydroxyquinoline. Fresenius Z. Anal. Chem. 1985, 322, 45–52. https://doi.org/10.1007/bf00493041
dc.relation.references[18] Sugawara, K.F.; Weetall, H.H.; Schucker, G.D. Preparation, Properties, and Applications of 8-Hydroxyquinoline Immobilized Chelate. Anal. Chem. 1974, 46(4), 489-492. https://doi.org/10.1021/ac60340a016
dc.relation.references[19] Lan, C.-R.; Yang, M.-H. Synthesis, Properties and Applications of Silica-Immobilized 8-Quinolinol. Part 2. On-Line Column Preconcentration of Copper, Nickel and Cadmium from Sea Water and Determination by Inductively-Coupled Plasma Atomic Emission Spectrometry. Anal. Chim. Acta 1994, 287, 111-117. https://doi.org/10.1016/0003-2670(94)85108-5
dc.relation.references[20] Shahata, M. Poly (8-Hydroxyquinoline) Properties, Different Methods for Characterization, and New Applications for Different Uses: Review Article. Eur. J. Appl. Sci. 2021, 9, 117-161. https://doi.org/10.14738/aivp.91.9409
dc.relation.references[21] Ryabchenko, K.; Yanovskaya, E.; Tertykh, V.; Kichkiruk, O. Complexation of Transition Metals with 8-Hydroxyquinoline Chemically Fixed on the Surface of the Silica Gel-Polyaniline Composite. Zhurn. Neorg. Khimii 2013, 58, 413-419. http://eprints.zu.edu.ua/id/eprint/17709
dc.relation.references[22] Landing, W.M.; Haraldsson, C.; Paxeus, N. Vinyl Polymer Agglomerate-Based Transition-Metal Cation Chelating Ion-Exchange Resin Containing the 8-Hydroxyquinoline Functional Group. Anal. Chem. 1986, 58(14), 3031-3035. https://doi.org/10.1021/ac00127a029
dc.relation.references[23] Savchenko, I.; Yanovska, E.; Vretik, L.; Sternik, D.; Kychkyruk, O. Synthesis, Characterization and Adsorption Properties for Metal Ions of Silica-Gel Functionalized by Poly[8-methacroyloxy-quinoline]. Mol. Cryst. Liq. Cryst. 2021, 719, 103-115. https://doi.org/10.1080/15421406.2020.1862466
dc.relation.referencesen[1] Demirbas, A. Heavy Metal Adsorption onto Agro-Based Waste Materials: A Review. J. Hazard. Mater. 2008, 157, 220-229. https://doi.org/10.1016/j.jhazmat.2008.01.024
dc.relation.referencesen[2] Özcan, A.S.; Gök , Ö.; Özcan, A. Adsorption of Lead(II) Ions onto 8-Hydroxy Quinoline-Immobilized Bentonite. J. Hazard. Mater. 2009, 161, 499-509. https://doi.org/10.1016/j.jhazmat.2008.04.002
dc.relation.referencesen[3] Yanovska, E.; Savchenko, I.; Petrenko, O.; Davydov, V. Adsorption of Some Toxic Metal Ions on Pine Sawdust in situ Immobilized by Polyaniline. Appl. Nanosci. 2022, 12, 861-868. https://doi.org/10.1007/s13204-021-01862-z
dc.relation.referencesen[4] Savchenko, I.; Yanovska, E.; Polonska, Y.; Sternik, D.; Kychkiruk, O.; Ol’khovik, L. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Polymer-Based Azobenzene on Toxic Metal Ions. Appl. Nanosci. 2019, 9(5), 657-664. https://doi.org/10.1007/s13204-018-0734-8
dc.relation.referencesen[5] Savchenko, I.; Yanovska, E.; Polonska, Y.; Ol’khovik, L.; Sternik, D.; Kychkiruk, O. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Poly[4-methacroyloxy-(4’-carboxy-2’-nitro)-azobenzene] On Toxic Metals Ions. Mol. Cryst. Liq. Cryst. 2018, 671, 164-174. https://doi.org/10.1080/15421406.2018.1542099
dc.relation.referencesen[6] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14(3), 386-393. https://doi.org/10.23939/chcht14.03.386
dc.relation.referencesen[7] Savchenko, I.; Yanovska, E.; Sternik, D.; Kychkiruk, O.; Ol’khovik, L.; Buriachenko, I. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Poly[N-(4-carboxyphenyl) methacrylamide] on Toxic Metal Ions. Nanoscale Res. Lett. 2017, 12, 313. https://doi.org/10.1186/s11671-017-2066-0
dc.relation.referencesen[8] Chen, L.; Ji, T.; Mu, L.; Shi, Y.; Brisbin, L.; Guo, Z.; Khan, M.A.; Young, D.P.; Zhu, J. Facile Synthesis of Mesoporous Carbon Nanocomposites from Natural Biomass for Efficient Dye Adsorption and Selective Heavy Metal Removal. RSC Adv. 2016, 6, 2259-2269. https://doi.org/10.1039/P.5ra19616g
dc.relation.referencesen[9] Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic Nanoparticle (Fe3O4) Impregnated onto Tea Waste for the Removal of Nickel(II) from Aqueous Solution. J. Hazard Mater. 2011, 186, 160-168. https://doi.org/10.1016/j.jhazmat.2010.10.102
dc.relation.referencesen[10] Ji, F.; Li, C.; Tang, B.; Xu, J., Lu, G.; Liu, P. Preparation of Cellulose Acetate/Zeolite Composite Fiber and its Adsorption Behavior for Heavy Metal Ions in Aqueous Solution. Chem. Eng. J. 2012, 209, 325-333. https://doi.org/10.1016/j.cej.2012.08.014
dc.relation.referencesen[11] Yanovska, E.; Savchenko, I.; Sternik, D.; Kychkiruk, O. Adsorption Properties of Natural Alumosilicate Ukrainian Minerals, in situ Modified by Poly[8-methacroyloxy-quinoline] to Pb(II), Mn(II), Cu(II) and Fe(III) Ions. Mol. Cryst. Liq. Cryst. 2021, 717, 1-13. https://doi.org/10.1080/15421406.2020.1859704
dc.relation.referencesen[12] Savchenko, I.; Yanovska, E.; Sternik, D.; Kychkiruk, O. Synthesis of Organo-Inorganic Composite Based on Clinoptilolite (Ukraine), in situ Modified Poly[8-oxyquinoline methacrylate] and its Sorption Properties with Respect to Toxic Metal Ions. Funct. Mater. 2021, 28(3), 597-604. https://doi.org/10.15407/fm28.03.597
dc.relation.referencesen[13] Chuiko, A.A. Silica surface chemistry. Part 1; Center UkrINTEI: Kyiv, 2001.
dc.relation.referencesen[14] Al-Maliki, S.; Al-Khayat, Z.; Abdulrazzak, I.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16(2), 255-258. https://doi.org/10.23939/chcht16.02.255
dc.relation.referencesen[15] Bernal, J.P.; De San Miguel, E.R.; Aguilar, J.C.; Salazar, G.; De Gyves, J. Adsorption of metallic cations on silica gel-immobilized 8-hydroxyquinoline. Sep. Sci. Technol. 2000, 35, 1661-1679. https://doi.org/10.1081/SS-100100247
dc.relation.referencesen[16] Willie, S.N.; Tekgul, H.; Sturgeon, R.E. Immobilization of 8-Hydroxyquinoline onto Silicone Tubing for the Determination of Trace-Elements in Seawater Using Flow-Injection ICP-MS. Talanta 1998, 47, 439-445. https://doi.org/10.1016/s0039-9140(98)00153-2
dc.relation.referencesen[17] Lührmann, M.; Stelter, N.; Kettrup, A. Synthesis and Properties of Metal Collecting Phases with Silica Immobilized 8-Hydroxyquinoline. Fresenius Z. Anal. Chem. 1985, 322, 45–52. https://doi.org/10.1007/bf00493041
dc.relation.referencesen[18] Sugawara, K.F.; Weetall, H.H.; Schucker, G.D. Preparation, Properties, and Applications of 8-Hydroxyquinoline Immobilized Chelate. Anal. Chem. 1974, 46(4), 489-492. https://doi.org/10.1021/ac60340a016
dc.relation.referencesen[19] Lan, C.-R.; Yang, M.-H. Synthesis, Properties and Applications of Silica-Immobilized 8-Quinolinol. Part 2. On-Line Column Preconcentration of Copper, Nickel and Cadmium from Sea Water and Determination by Inductively-Coupled Plasma Atomic Emission Spectrometry. Anal. Chim. Acta 1994, 287, 111-117. https://doi.org/10.1016/0003-2670(94)85108-5
dc.relation.referencesen[20] Shahata, M. Poly (8-Hydroxyquinoline) Properties, Different Methods for Characterization, and New Applications for Different Uses: Review Article. Eur. J. Appl. Sci. 2021, 9, 117-161. https://doi.org/10.14738/aivp.91.9409
dc.relation.referencesen[21] Ryabchenko, K.; Yanovskaya, E.; Tertykh, V.; Kichkiruk, O. Complexation of Transition Metals with 8-Hydroxyquinoline Chemically Fixed on the Surface of the Silica Gel-Polyaniline Composite. Zhurn. Neorg. Khimii 2013, 58, 413-419. http://eprints.zu.edu.ua/id/eprint/17709
dc.relation.referencesen[22] Landing, W.M.; Haraldsson, C.; Paxeus, N. Vinyl Polymer Agglomerate-Based Transition-Metal Cation Chelating Ion-Exchange Resin Containing the 8-Hydroxyquinoline Functional Group. Anal. Chem. 1986, 58(14), 3031-3035. https://doi.org/10.1021/ac00127a029
dc.relation.referencesen[23] Savchenko, I.; Yanovska, E.; Vretik, L.; Sternik, D.; Kychkyruk, O. Synthesis, Characterization and Adsorption Properties for Metal Ions of Silica-Gel Functionalized by Poly[8-methacroyloxy-quinoline]. Mol. Cryst. Liq. Cryst. 2021, 719, 103-115. https://doi.org/10.1080/15421406.2020.1862466
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.01.024
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.04.002
dc.relation.urihttps://doi.org/10.1007/s13204-021-01862-z
dc.relation.urihttps://doi.org/10.1007/s13204-018-0734-8
dc.relation.urihttps://doi.org/10.1080/15421406.2018.1542099
dc.relation.urihttps://doi.org/10.23939/chcht14.03.386
dc.relation.urihttps://doi.org/10.1186/s11671-017-2066-0
dc.relation.urihttps://doi.org/10.1039/c5ra19616g
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2010.10.102
dc.relation.urihttps://doi.org/10.1016/j.cej.2012.08.014
dc.relation.urihttps://doi.org/10.1080/15421406.2020.1859704
dc.relation.urihttps://doi.org/10.15407/fm28.03.597
dc.relation.urihttps://doi.org/10.23939/chcht16.02.255
dc.relation.urihttps://doi.org/10.1081/SS-100100247
dc.relation.urihttps://doi.org/10.1016/s0039-9140(98)00153-2
dc.relation.urihttps://doi.org/10.1007/bf00493041
dc.relation.urihttps://doi.org/10.1021/ac60340a016
dc.relation.urihttps://doi.org/10.1016/0003-2670(94)85108-5
dc.relation.urihttps://doi.org/10.14738/aivp.91.9409
dc.relation.urihttp://eprints.zu.edu.ua/id/eprint/17709
dc.relation.urihttps://doi.org/10.1021/ac00127a029
dc.relation.urihttps://doi.org/10.1080/15421406.2020.1862466
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Savchenko I., Yanovska E., Sternik D., Kychkyruk O., 2023
dc.subjectадсорбція
dc.subjectкомпозит
dc.subjectсилікагель
dc.subjectполі[8-оксихінолінметакрилат]
dc.subjectіони Cu(II)
dc.subjectCd(II)
dc.subjectPb(II)
dc.subjectFe(III)
dc.subjectadsorption
dc.subjectcomposite
dc.subjectsilica gel
dc.subjectpoly[8-oxyquinoline methacrylate]
dc.subjectCu(II)
dc.subjectCd(II)
dc.subjectPb(II)
dc.subjectFe(III) Ions
dc.titleSynthesis, Sorption Properties, and Evaluation of Silica Gel with Adsorbed Poly[8-Oxyquinoline Methacrylate] as a Sorbent for Cu(II), Cd(II), Pb(II) and Fe(III) Ions
dc.title.alternativeСинтез, сорбційні властивості та оцінка силікагелю з адсорбованим полі[8-оксихінолінметакрилатом] як сорбенту іонів Cu(II), Cd(II), Pb(II) та Fe(III)
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n1_Savchenko_I-Synthesis_Sorption_Properties_45-51.pdf
Size:
668.02 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n1_Savchenko_I-Synthesis_Sorption_Properties_45-51__COVER.png
Size:
1.32 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: