Investigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis and Quantum Chemical Analysis

dc.citation.epage252
dc.citation.issue2
dc.citation.spage244
dc.contributor.affiliationIbn Tofail University
dc.contributor.affiliationUniversity Moulay Ismail
dc.contributor.authorRafik, Abdellatif
dc.contributor.authorZouihri, Hafid
dc.contributor.authorGuedira, Taoufiq
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:41Z
dc.date.available2024-02-12T08:30:41Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractЦя робота присвячена вивченню органічно-неорганічного гібридного матеріалу, який був успішно отриманий кислотно-основною реакцією за кімнатної температури та структурно вивчений методом рентгенівської дифракції монокристалів. N-(Дициклопропілметиламіно)-4,5-дигідро-1,3-оксазолію дигідрофосфат [10-CN@DP] кристалізується в триклінній системі з просторовою групою P-1. Рентгено-структурний аналіз, підтверджений поверхневим аналізом кристалічної структури Хіршфельда, показує, що найбільший внесок у кристалічне упакування вносять H…H (63,3%), H…O/O…H (32,2%) і H… C/C…H (2,5%) контакти. Розрахунки з використанням теорії функціоналу густини, оптимізовані за геометрією, порівняно з експериментально визначеною структурою. Використовуючи той самий рівень теорії, було намальовано зображення молекулярного електростатичного потенціалу (MEP) з метою уявити хімічну реакційну здатність і розподіл заряду на молекулі, що використовується для визначення діапазону енергетичної щілини ВЗМО-НВМО та густини стану (DOS).
dc.description.abstractThis present work undertakes the study of organic-inorganic hybrid material, which has been obtained successfully by an acid-base reaction at room tem-perature and structurally studied by the single crystal X-ray diffraction method. N-(Dicyclopropylmethylamino)-4,5-dihydro-1,3-oxazolium dihydrogenphosphate [10-CN@DP] crystallizes in the triclinic system with the space group P-1. The X-ray structural analysis supported by a Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H…H (63.3%), H…O/O…H (32.2%) and H…C/C…H (2.5%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure. Using the same level of theory to imagine the chemical reactivity and charge distribution on the molecule, used to determine the HOMO-LUMO energy gap and density of state (DOS) range, the molecular electrostatic potential (MEP) image was drawn. Keywords: HOMO–LUMO, density of state, Hirshfeld surface analysis, electrostatic potential surface.
dc.format.extent244-252
dc.format.pages9
dc.identifier.citationRafik A. Investigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis and Quantum Chemical Analysis / Abdellatif Rafik, Hafid Zouihri, Taoufiq Guedira // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 244–252.
dc.identifier.citationenRafik A. Investigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis and Quantum Chemical Analysis / Abdellatif Rafik, Hafid Zouihri, Taoufiq Guedira // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 244–252.
dc.identifier.doidoi.org/10.23939/chcht17.02.244
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61252
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Guloy, A.M.; Tang, Z.J.; Miranda, P.B.; Srdanov, V.I. A New Luminescent Organic–Inorganic Hybrid Compound with Large Optical Nonlinearity. Adv. Mater. 2001, 13, 833-837. https://doi.org/10.1002/1521-4095(200106)13:11%3C833::AID-ADMA833%3E3.0.CO;2-T
dc.relation.references[2] Chang, H.-Y.; Kim, S.-H.; Halasyamani, P.S.; Ok, K.M. Align-ment of Lone Pairs in a New Polar Material: Synthesis, Characteri-zation, and Functional Properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 2009, 131, 2426-2427. https://doi.org/10.1021/ja808469a
dc.relation.references[3] Chang, H.-Y.; Kim, S.-H.; Ok, K.M.; Halasyamani, P.S. New Polar Oxides: Synthesis, Characterization, Calculations, and Struc-ture−Property Relationships in RbSe2V3O12 and TlSe2V3O12. Chem. Mater. 2009, 21, 1654-1662. https://doi.org/10.1021/cm9002614
dc.relation.references[4] Abu El-Fadl, A.; Gaffar, M.A.; Omar, M.H. Electrical Conduc-tivity and Pyroelectricity of Lithium–Potassium Sulphate Single Crystal in the Temperature Range 300–950 K. Physica B Condens. Matter 1999, 269, 395-402. https://doi.org/10.1016/S0921-4526(99)00116-7
dc.relation.references[5] Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Above-room-temperature Ferroelectricity in a Single-Component Molecular Crystal. Nature 2010, 463,789-792. https://doi.org/10.1038/nature08731
dc.relation.references[6] Mishurov, D.; Voronkin, A.; Roshal, A.; Bogatyrenko, S.; Vashchenko, O. Synthesis and Characterization of Dye-Doped Polymer Films for Non-linear Optical Applications. Chem. Chem. Technol. 2019, 13, 459-464. https://doi.org/10.23939/chcht13.04.459
dc.relation.references[7] Hearn, R.A.; Bugg, C.E. The crystal Structure of (-)-Ephedrine Dihydrogen Phosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1972, B28, 3662-3667. https://doi.org/10.1107/S0567740872008532
dc.relation.references[8] Adams, J.M. The Crystal Structure of Aminoguanidinium Dihydrogen Orthophosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1977, B33, 1513-1515. https://doi.org/10.1107/S0567740877006402
dc.relation.references[9] Rafik, A.; Zouihri, H.; Guedira, T. Analysis of H-Bonding Interactions with Hirshfeld Surfaces and Geometry-Optimized Structure of the DL-Valinium Dihydrogen Phosphate. J. Chem. Technol. Metall. 2021, 56, 275-282.
dc.relation.references[10] Blessing, R.H. Hydrogen Bonding and Thermal Vibrations in Crystalline Phosphate Salts of Histidine and Imidazole. Acta. Crys-tallogr. B. Struct. Sci. Cryst. Eng. Mater. 1986, B42, 613-621. https://doi.org/10.1107/S0108768186097641
dc.relation.references[11] Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 3.0; University of Western Australia, Perth, 2012.
dc.relation.references[12] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. et al. Gaussian; Inc., Wallingford CT, 2016.
dc.relation.references[13] Dennington, R. II; Keith, T.; Millam, J. GaussView, Version 4.1. 2, Semichem Inc Shawnee Mission KS, 2007.
dc.relation.references[14] Guelmami, L.; Gharbi, A.; Jouini, A. 4-Dimethylaminopyridinium dihydrogenmonophosphate (C7H11N2)H2PO4: Synthesis, Structural, 31P, 13C NMR and Thermal Investigations. J. Chem. Crystallogr. 2012, 42, 549-554. https://doi.org/10.1007/s10870-012-0277-x
dc.relation.references[15] Marchewka, M. K.; Drozd, M.; Janczak, Ja. Crystal and Mole-cular Structure of n-(4-Nitrophenyl)-β-alanine—Its Vibrational Spectra and Theoretical Calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 758-766. https://doi.org/10.1016/j.saa.2010.08.050
dc.relation.references[16] Breda, S.; Reva, I.D.; Lapinski, L.; Nowak, M.J.; Fausto, R. Infrared Spectra of Pyrazine, Pyrimidine and Pyridazine in Solid Argon. J. Mol. Struct. 2006, 786, 193-206. https://doi.org/10.1016/j.molstruc.2005.09.010
dc.relation.references[17] Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and Characterisation of Voids in Crystalline Materials. CrystEngComm 2011, 13, 1804-1813. https://doi.org/10.1039/C0CE00683A
dc.relation.references[18] Santhy, K.R.; Sweetlin, M.D.; Muthu, S.; Kuruvilla, T.K.; Abraham, C.S. Structure, Spectroscopic study and DFT Calculations of 2,6 bis (tri fluro methyl) benzoic acid. J. Mol. Struct. 2019, 1177, 401-417. https://doi.org/10.1016/j.molstruc.2018.09.058
dc.relation.references[19] Chethan Prathap, K.N.; Lokanath, N.K. Three Novel Couma-rin-Benzenesulfonylhydrazide Hybrids: Synthesis, Characterization, Crystal Structure, Hirshfeld Surface, DFT and NBO Studies. J. Mol. Struct. 2018, 1171, 564-577. https://doi.org/10.1016/j.molstruc.2018.06.022
dc.relation.references[20] Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588
dc.relation.references[21] Nataraj, A.; Balachandran, V.; Karthick, T. Molecular Orbital Studies (Hardness, Chemical Potential, Electrophilicity, and First Electron Excitation), Vibrational Investigation and Theoretical NBO Analysis of 2-Hydroxy-5-bromobenzaldehyde by Density Functional Method. J. Mol. Struct. 2013, 1031, 221-233. https://doi.org/10.1016/j.molstruc.2012.09.047
dc.relation.references[22] Onitsch, E.M. Uber die Mikroharte der Metalle. Mikroskopie 1947, 2, 131.
dc.relation.references[23] Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V.G.; Benial, A.M.F. DFT Calculation and Vibrational Spectroscopic Studies of 2-(Tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 74-83. https://doi.org/10.1016/j.saa.2014.02.147
dc.relation.references[24] Mathammal, R.; Sudha, N.; Prasad, L.G.; Ganga, N.; Krishna-kumar, V. Spectroscopic (FTIR, FT-Raman, UV and NMR) investigation and NLO, HOMO–LUMO, NBO analysis of 2-Benzylpyridine based on quantum chemical calculations. Spectro-chim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 740-748. https://doi.org/10.1016/j.saa.2014.08.099
dc.relation.references[25] Uzun, S.; Esen, Z.; Koç, E.; Usta, N.C.; Ceylan, M. Experimental and Density Functional Theory (MEP, FMO, NLO, Fukui Functions) and Antibacterial Activity Studies on 2-Amino-4- (4-nitrophenyl) -5,6-dihydrobenzo [h] quinoline-3-carbonitrile. J. Mol. Struct. 2019, 1178, 450-457. http://dx.doi.org/10.1016/j.molstruc.2018.10.001
dc.relation.references[26] Attar, T.; Messaoudi, B.; Benhadria, N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol. 2020, 14, 20-25. https://doi.org/10.23939/chcht14.01.020
dc.relation.references[27] Kaya, S.; Tüzün, B.; Kaya, C.; Obot, I.B. Determination of Corrosion Inhibition Effects of Amino Acids: Quantum Chemical and Molecular Dynamic Simulation Study. J. Taiwan Inst. Chem. Eng. 2016, 58, 528-535. https://doi.org/10.1016/j.jtice.2015.06.009
dc.relation.references[28] Lanez, E.; Bechki, L.; Lanez, T. Ferrocenylmethylnucleobases: Synthesis, DFT Calculations, Electrochemical and Spectroscopic Characterization. Chem. Chem. Technol. 2020, 14, 146-153. https://doi.org/10.23939/chcht14.02.146
dc.relation.references[29] Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
dc.relation.references[30] Pandey, M.; Muthu, S.; Nanje Gowda, N.M. Quantum Mechanical and Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) Studies, NBO, NLO, HOMO, LUMO and Fukui Function Analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT Studies. J. Mol. Struct. 2017, 1130, 511-521. https://doi.org/10.1016/j.molstruc.2016.10.064
dc.relation.references[31] Gumus, S.; Sundius, T.; Yilmaz, V. Vibrational Analyses of 1,3-Dibenzoyl-4,5-dihydro-1H-imidazole-2-thione and 1,3-Dibenzoyl tetrahydropyrimidine-2(1H)-thione by Normal Coordi-nate Treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 98, 384-395. https://doi.org/10.1016/j.saa.2012.08.058
dc.relation.referencesen[1] Guloy, A.M.; Tang, Z.J.; Miranda, P.B.; Srdanov, V.I. A New Luminescent Organic–Inorganic Hybrid Compound with Large Optical Nonlinearity. Adv. Mater. 2001, 13, 833-837. https://doi.org/10.1002/1521-4095(200106)13:11%3C833::AID-ADMA833%3E3.0.CO;2-T
dc.relation.referencesen[2] Chang, H.-Y.; Kim, S.-H.; Halasyamani, P.S.; Ok, K.M. Align-ment of Lone Pairs in a New Polar Material: Synthesis, Characteri-zation, and Functional Properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 2009, 131, 2426-2427. https://doi.org/10.1021/ja808469a
dc.relation.referencesen[3] Chang, H.-Y.; Kim, S.-H.; Ok, K.M.; Halasyamani, P.S. New Polar Oxides: Synthesis, Characterization, Calculations, and Struc-ture−Property Relationships in RbSe2V3O12 and TlSe2V3O12. Chem. Mater. 2009, 21, 1654-1662. https://doi.org/10.1021/cm9002614
dc.relation.referencesen[4] Abu El-Fadl, A.; Gaffar, M.A.; Omar, M.H. Electrical Conduc-tivity and Pyroelectricity of Lithium–Potassium Sulphate Single Crystal in the Temperature Range 300–950 K. Physica B Condens. Matter 1999, 269, 395-402. https://doi.org/10.1016/S0921-4526(99)00116-7
dc.relation.referencesen[5] Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Above-room-temperature Ferroelectricity in a Single-Component Molecular Crystal. Nature 2010, 463,789-792. https://doi.org/10.1038/nature08731
dc.relation.referencesen[6] Mishurov, D.; Voronkin, A.; Roshal, A.; Bogatyrenko, S.; Vashchenko, O. Synthesis and Characterization of Dye-Doped Polymer Films for Non-linear Optical Applications. Chem. Chem. Technol. 2019, 13, 459-464. https://doi.org/10.23939/chcht13.04.459
dc.relation.referencesen[7] Hearn, R.A.; Bugg, C.E. The crystal Structure of (-)-Ephedrine Dihydrogen Phosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1972, B28, 3662-3667. https://doi.org/10.1107/S0567740872008532
dc.relation.referencesen[8] Adams, J.M. The Crystal Structure of Aminoguanidinium Dihydrogen Orthophosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1977, B33, 1513-1515. https://doi.org/10.1107/S0567740877006402
dc.relation.referencesen[9] Rafik, A.; Zouihri, H.; Guedira, T. Analysis of H-Bonding Interactions with Hirshfeld Surfaces and Geometry-Optimized Structure of the DL-Valinium Dihydrogen Phosphate. J. Chem. Technol. Metall. 2021, 56, 275-282.
dc.relation.referencesen[10] Blessing, R.H. Hydrogen Bonding and Thermal Vibrations in Crystalline Phosphate Salts of Histidine and Imidazole. Acta. Crys-tallogr. B. Struct. Sci. Cryst. Eng. Mater. 1986, B42, 613-621. https://doi.org/10.1107/S0108768186097641
dc.relation.referencesen[11] Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 3.0; University of Western Australia, Perth, 2012.
dc.relation.referencesen[12] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. et al. Gaussian; Inc., Wallingford CT, 2016.
dc.relation.referencesen[13] Dennington, R. II; Keith, T.; Millam, J. GaussView, Version 4.1. 2, Semichem Inc Shawnee Mission KS, 2007.
dc.relation.referencesen[14] Guelmami, L.; Gharbi, A.; Jouini, A. 4-Dimethylaminopyridinium dihydrogenmonophosphate (P.7H11N2)H2PO4: Synthesis, Structural, 31P, 13C NMR and Thermal Investigations. J. Chem. Crystallogr. 2012, 42, 549-554. https://doi.org/10.1007/s10870-012-0277-x
dc.relation.referencesen[15] Marchewka, M. K.; Drozd, M.; Janczak, Ja. Crystal and Mole-cular Structure of n-(4-Nitrophenyl)-b-alanine-Its Vibrational Spectra and Theoretical Calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 758-766. https://doi.org/10.1016/j.saa.2010.08.050
dc.relation.referencesen[16] Breda, S.; Reva, I.D.; Lapinski, L.; Nowak, M.J.; Fausto, R. Infrared Spectra of Pyrazine, Pyrimidine and Pyridazine in Solid Argon. J. Mol. Struct. 2006, 786, 193-206. https://doi.org/10.1016/j.molstruc.2005.09.010
dc.relation.referencesen[17] Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and Characterisation of Voids in Crystalline Materials. CrystEngComm 2011, 13, 1804-1813. https://doi.org/10.1039/P.0CE00683A
dc.relation.referencesen[18] Santhy, K.R.; Sweetlin, M.D.; Muthu, S.; Kuruvilla, T.K.; Abraham, C.S. Structure, Spectroscopic study and DFT Calculations of 2,6 bis (tri fluro methyl) benzoic acid. J. Mol. Struct. 2019, 1177, 401-417. https://doi.org/10.1016/j.molstruc.2018.09.058
dc.relation.referencesen[19] Chethan Prathap, K.N.; Lokanath, N.K. Three Novel Couma-rin-Benzenesulfonylhydrazide Hybrids: Synthesis, Characterization, Crystal Structure, Hirshfeld Surface, DFT and NBO Studies. J. Mol. Struct. 2018, 1171, 564-577. https://doi.org/10.1016/j.molstruc.2018.06.022
dc.relation.referencesen[20] Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588
dc.relation.referencesen[21] Nataraj, A.; Balachandran, V.; Karthick, T. Molecular Orbital Studies (Hardness, Chemical Potential, Electrophilicity, and First Electron Excitation), Vibrational Investigation and Theoretical NBO Analysis of 2-Hydroxy-5-bromobenzaldehyde by Density Functional Method. J. Mol. Struct. 2013, 1031, 221-233. https://doi.org/10.1016/j.molstruc.2012.09.047
dc.relation.referencesen[22] Onitsch, E.M. Uber die Mikroharte der Metalle. Mikroskopie 1947, 2, 131.
dc.relation.referencesen[23] Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V.G.; Benial, A.M.F. DFT Calculation and Vibrational Spectroscopic Studies of 2-(Tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 74-83. https://doi.org/10.1016/j.saa.2014.02.147
dc.relation.referencesen[24] Mathammal, R.; Sudha, N.; Prasad, L.G.; Ganga, N.; Krishna-kumar, V. Spectroscopic (FTIR, FT-Raman, UV and NMR) investigation and NLO, HOMO–LUMO, NBO analysis of 2-Benzylpyridine based on quantum chemical calculations. Spectro-chim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 740-748. https://doi.org/10.1016/j.saa.2014.08.099
dc.relation.referencesen[25] Uzun, S.; Esen, Z.; Koç, E.; Usta, N.C.; Ceylan, M. Experimental and Density Functional Theory (MEP, FMO, NLO, Fukui Functions) and Antibacterial Activity Studies on 2-Amino-4- (4-nitrophenyl) -5,6-dihydrobenzo [h] quinoline-3-carbonitrile. J. Mol. Struct. 2019, 1178, 450-457. http://dx.doi.org/10.1016/j.molstruc.2018.10.001
dc.relation.referencesen[26] Attar, T.; Messaoudi, B.; Benhadria, N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol. 2020, 14, 20-25. https://doi.org/10.23939/chcht14.01.020
dc.relation.referencesen[27] Kaya, S.; Tüzün, B.; Kaya, C.; Obot, I.B. Determination of Corrosion Inhibition Effects of Amino Acids: Quantum Chemical and Molecular Dynamic Simulation Study. J. Taiwan Inst. Chem. Eng. 2016, 58, 528-535. https://doi.org/10.1016/j.jtice.2015.06.009
dc.relation.referencesen[28] Lanez, E.; Bechki, L.; Lanez, T. Ferrocenylmethylnucleobases: Synthesis, DFT Calculations, Electrochemical and Spectroscopic Characterization. Chem. Chem. Technol. 2020, 14, 146-153. https://doi.org/10.23939/chcht14.02.146
dc.relation.referencesen[29] Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
dc.relation.referencesen[30] Pandey, M.; Muthu, S.; Nanje Gowda, N.M. Quantum Mechanical and Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) Studies, NBO, NLO, HOMO, LUMO and Fukui Function Analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT Studies. J. Mol. Struct. 2017, 1130, 511-521. https://doi.org/10.1016/j.molstruc.2016.10.064
dc.relation.referencesen[31] Gumus, S.; Sundius, T.; Yilmaz, V. Vibrational Analyses of 1,3-Dibenzoyl-4,5-dihydro-1H-imidazole-2-thione and 1,3-Dibenzoyl tetrahydropyrimidine-2(1H)-thione by Normal Coordi-nate Treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 98, 384-395. https://doi.org/10.1016/j.saa.2012.08.058
dc.relation.urihttps://doi.org/10.1002/1521-4095(200106)13:11%3C833::AID-ADMA833%3E3.0.CO;2-T
dc.relation.urihttps://doi.org/10.1021/ja808469a
dc.relation.urihttps://doi.org/10.1021/cm9002614
dc.relation.urihttps://doi.org/10.1016/S0921-4526(99)00116-7
dc.relation.urihttps://doi.org/10.1038/nature08731
dc.relation.urihttps://doi.org/10.23939/chcht13.04.459
dc.relation.urihttps://doi.org/10.1107/S0567740872008532
dc.relation.urihttps://doi.org/10.1107/S0567740877006402
dc.relation.urihttps://doi.org/10.1107/S0108768186097641
dc.relation.urihttps://doi.org/10.1007/s10870-012-0277-x
dc.relation.urihttps://doi.org/10.1016/j.saa.2010.08.050
dc.relation.urihttps://doi.org/10.1016/j.molstruc.2005.09.010
dc.relation.urihttps://doi.org/10.1039/C0CE00683A
dc.relation.urihttps://doi.org/10.1016/j.molstruc.2018.09.058
dc.relation.urihttps://doi.org/10.1016/j.molstruc.2018.06.022
dc.relation.urihttps://doi.org/10.1063/1.1740588
dc.relation.urihttps://doi.org/10.1016/j.molstruc.2012.09.047
dc.relation.urihttps://doi.org/10.1016/j.saa.2014.02.147
dc.relation.urihttps://doi.org/10.1016/j.saa.2014.08.099
dc.relation.urihttp://dx.doi.org/10.1016/j.molstruc.2018.10.001
dc.relation.urihttps://doi.org/10.23939/chcht14.01.020
dc.relation.urihttps://doi.org/10.1016/j.jtice.2015.06.009
dc.relation.urihttps://doi.org/10.23939/chcht14.02.146
dc.relation.urihttps://doi.org/10.1021/ja983494x
dc.relation.urihttps://doi.org/10.1016/j.molstruc.2016.10.064
dc.relation.urihttps://doi.org/10.1016/j.saa.2012.08.058
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Rafik A., Zouihri H., Guedira T., 2023
dc.subjectВЗМО-НВМО
dc.subjectгустина стану
dc.subjectповерхневий аналіз Хіршфельда
dc.subjectповерхня електростатичного потенціалу
dc.subjectHOMO–LUMO
dc.subjectdensity of state
dc.subjectHirshfeld surface analysis
dc.subjectelectrostatic potential surface
dc.titleInvestigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis and Quantum Chemical Analysis
dc.title.alternativeДослідження гібридного органічно-неорганічного дигідрофосфату за допомогою поверхневого аналізу за Хіршфельдом та квантово-хімічного аналізу
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Rafik_A-Investigation_of_Hybrid_Organic_244-252.pdf
Size:
727.41 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Rafik_A-Investigation_of_Hybrid_Organic_244-252__COVER.png
Size:
525.64 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: