Investigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis and Quantum Chemical Analysis
dc.citation.epage | 252 | |
dc.citation.issue | 2 | |
dc.citation.spage | 244 | |
dc.contributor.affiliation | Ibn Tofail University | |
dc.contributor.affiliation | University Moulay Ismail | |
dc.contributor.author | Rafik, Abdellatif | |
dc.contributor.author | Zouihri, Hafid | |
dc.contributor.author | Guedira, Taoufiq | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:41Z | |
dc.date.available | 2024-02-12T08:30:41Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Ця робота присвячена вивченню органічно-неорганічного гібридного матеріалу, який був успішно отриманий кислотно-основною реакцією за кімнатної температури та структурно вивчений методом рентгенівської дифракції монокристалів. N-(Дициклопропілметиламіно)-4,5-дигідро-1,3-оксазолію дигідрофосфат [10-CN@DP] кристалізується в триклінній системі з просторовою групою P-1. Рентгено-структурний аналіз, підтверджений поверхневим аналізом кристалічної структури Хіршфельда, показує, що найбільший внесок у кристалічне упакування вносять H…H (63,3%), H…O/O…H (32,2%) і H… C/C…H (2,5%) контакти. Розрахунки з використанням теорії функціоналу густини, оптимізовані за геометрією, порівняно з експериментально визначеною структурою. Використовуючи той самий рівень теорії, було намальовано зображення молекулярного електростатичного потенціалу (MEP) з метою уявити хімічну реакційну здатність і розподіл заряду на молекулі, що використовується для визначення діапазону енергетичної щілини ВЗМО-НВМО та густини стану (DOS). | |
dc.description.abstract | This present work undertakes the study of organic-inorganic hybrid material, which has been obtained successfully by an acid-base reaction at room tem-perature and structurally studied by the single crystal X-ray diffraction method. N-(Dicyclopropylmethylamino)-4,5-dihydro-1,3-oxazolium dihydrogenphosphate [10-CN@DP] crystallizes in the triclinic system with the space group P-1. The X-ray structural analysis supported by a Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H…H (63.3%), H…O/O…H (32.2%) and H…C/C…H (2.5%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure. Using the same level of theory to imagine the chemical reactivity and charge distribution on the molecule, used to determine the HOMO-LUMO energy gap and density of state (DOS) range, the molecular electrostatic potential (MEP) image was drawn. Keywords: HOMO–LUMO, density of state, Hirshfeld surface analysis, electrostatic potential surface. | |
dc.format.extent | 244-252 | |
dc.format.pages | 9 | |
dc.identifier.citation | Rafik A. Investigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis and Quantum Chemical Analysis / Abdellatif Rafik, Hafid Zouihri, Taoufiq Guedira // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 244–252. | |
dc.identifier.citationen | Rafik A. Investigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis and Quantum Chemical Analysis / Abdellatif Rafik, Hafid Zouihri, Taoufiq Guedira // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 244–252. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.244 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61252 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Guloy, A.M.; Tang, Z.J.; Miranda, P.B.; Srdanov, V.I. A New Luminescent Organic–Inorganic Hybrid Compound with Large Optical Nonlinearity. Adv. Mater. 2001, 13, 833-837. https://doi.org/10.1002/1521-4095(200106)13:11%3C833::AID-ADMA833%3E3.0.CO;2-T | |
dc.relation.references | [2] Chang, H.-Y.; Kim, S.-H.; Halasyamani, P.S.; Ok, K.M. Align-ment of Lone Pairs in a New Polar Material: Synthesis, Characteri-zation, and Functional Properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 2009, 131, 2426-2427. https://doi.org/10.1021/ja808469a | |
dc.relation.references | [3] Chang, H.-Y.; Kim, S.-H.; Ok, K.M.; Halasyamani, P.S. New Polar Oxides: Synthesis, Characterization, Calculations, and Struc-ture−Property Relationships in RbSe2V3O12 and TlSe2V3O12. Chem. Mater. 2009, 21, 1654-1662. https://doi.org/10.1021/cm9002614 | |
dc.relation.references | [4] Abu El-Fadl, A.; Gaffar, M.A.; Omar, M.H. Electrical Conduc-tivity and Pyroelectricity of Lithium–Potassium Sulphate Single Crystal in the Temperature Range 300–950 K. Physica B Condens. Matter 1999, 269, 395-402. https://doi.org/10.1016/S0921-4526(99)00116-7 | |
dc.relation.references | [5] Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Above-room-temperature Ferroelectricity in a Single-Component Molecular Crystal. Nature 2010, 463,789-792. https://doi.org/10.1038/nature08731 | |
dc.relation.references | [6] Mishurov, D.; Voronkin, A.; Roshal, A.; Bogatyrenko, S.; Vashchenko, O. Synthesis and Characterization of Dye-Doped Polymer Films for Non-linear Optical Applications. Chem. Chem. Technol. 2019, 13, 459-464. https://doi.org/10.23939/chcht13.04.459 | |
dc.relation.references | [7] Hearn, R.A.; Bugg, C.E. The crystal Structure of (-)-Ephedrine Dihydrogen Phosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1972, B28, 3662-3667. https://doi.org/10.1107/S0567740872008532 | |
dc.relation.references | [8] Adams, J.M. The Crystal Structure of Aminoguanidinium Dihydrogen Orthophosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1977, B33, 1513-1515. https://doi.org/10.1107/S0567740877006402 | |
dc.relation.references | [9] Rafik, A.; Zouihri, H.; Guedira, T. Analysis of H-Bonding Interactions with Hirshfeld Surfaces and Geometry-Optimized Structure of the DL-Valinium Dihydrogen Phosphate. J. Chem. Technol. Metall. 2021, 56, 275-282. | |
dc.relation.references | [10] Blessing, R.H. Hydrogen Bonding and Thermal Vibrations in Crystalline Phosphate Salts of Histidine and Imidazole. Acta. Crys-tallogr. B. Struct. Sci. Cryst. Eng. Mater. 1986, B42, 613-621. https://doi.org/10.1107/S0108768186097641 | |
dc.relation.references | [11] Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 3.0; University of Western Australia, Perth, 2012. | |
dc.relation.references | [12] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. et al. Gaussian; Inc., Wallingford CT, 2016. | |
dc.relation.references | [13] Dennington, R. II; Keith, T.; Millam, J. GaussView, Version 4.1. 2, Semichem Inc Shawnee Mission KS, 2007. | |
dc.relation.references | [14] Guelmami, L.; Gharbi, A.; Jouini, A. 4-Dimethylaminopyridinium dihydrogenmonophosphate (C7H11N2)H2PO4: Synthesis, Structural, 31P, 13C NMR and Thermal Investigations. J. Chem. Crystallogr. 2012, 42, 549-554. https://doi.org/10.1007/s10870-012-0277-x | |
dc.relation.references | [15] Marchewka, M. K.; Drozd, M.; Janczak, Ja. Crystal and Mole-cular Structure of n-(4-Nitrophenyl)-β-alanine—Its Vibrational Spectra and Theoretical Calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 758-766. https://doi.org/10.1016/j.saa.2010.08.050 | |
dc.relation.references | [16] Breda, S.; Reva, I.D.; Lapinski, L.; Nowak, M.J.; Fausto, R. Infrared Spectra of Pyrazine, Pyrimidine and Pyridazine in Solid Argon. J. Mol. Struct. 2006, 786, 193-206. https://doi.org/10.1016/j.molstruc.2005.09.010 | |
dc.relation.references | [17] Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and Characterisation of Voids in Crystalline Materials. CrystEngComm 2011, 13, 1804-1813. https://doi.org/10.1039/C0CE00683A | |
dc.relation.references | [18] Santhy, K.R.; Sweetlin, M.D.; Muthu, S.; Kuruvilla, T.K.; Abraham, C.S. Structure, Spectroscopic study and DFT Calculations of 2,6 bis (tri fluro methyl) benzoic acid. J. Mol. Struct. 2019, 1177, 401-417. https://doi.org/10.1016/j.molstruc.2018.09.058 | |
dc.relation.references | [19] Chethan Prathap, K.N.; Lokanath, N.K. Three Novel Couma-rin-Benzenesulfonylhydrazide Hybrids: Synthesis, Characterization, Crystal Structure, Hirshfeld Surface, DFT and NBO Studies. J. Mol. Struct. 2018, 1171, 564-577. https://doi.org/10.1016/j.molstruc.2018.06.022 | |
dc.relation.references | [20] Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588 | |
dc.relation.references | [21] Nataraj, A.; Balachandran, V.; Karthick, T. Molecular Orbital Studies (Hardness, Chemical Potential, Electrophilicity, and First Electron Excitation), Vibrational Investigation and Theoretical NBO Analysis of 2-Hydroxy-5-bromobenzaldehyde by Density Functional Method. J. Mol. Struct. 2013, 1031, 221-233. https://doi.org/10.1016/j.molstruc.2012.09.047 | |
dc.relation.references | [22] Onitsch, E.M. Uber die Mikroharte der Metalle. Mikroskopie 1947, 2, 131. | |
dc.relation.references | [23] Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V.G.; Benial, A.M.F. DFT Calculation and Vibrational Spectroscopic Studies of 2-(Tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 74-83. https://doi.org/10.1016/j.saa.2014.02.147 | |
dc.relation.references | [24] Mathammal, R.; Sudha, N.; Prasad, L.G.; Ganga, N.; Krishna-kumar, V. Spectroscopic (FTIR, FT-Raman, UV and NMR) investigation and NLO, HOMO–LUMO, NBO analysis of 2-Benzylpyridine based on quantum chemical calculations. Spectro-chim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 740-748. https://doi.org/10.1016/j.saa.2014.08.099 | |
dc.relation.references | [25] Uzun, S.; Esen, Z.; Koç, E.; Usta, N.C.; Ceylan, M. Experimental and Density Functional Theory (MEP, FMO, NLO, Fukui Functions) and Antibacterial Activity Studies on 2-Amino-4- (4-nitrophenyl) -5,6-dihydrobenzo [h] quinoline-3-carbonitrile. J. Mol. Struct. 2019, 1178, 450-457. http://dx.doi.org/10.1016/j.molstruc.2018.10.001 | |
dc.relation.references | [26] Attar, T.; Messaoudi, B.; Benhadria, N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol. 2020, 14, 20-25. https://doi.org/10.23939/chcht14.01.020 | |
dc.relation.references | [27] Kaya, S.; Tüzün, B.; Kaya, C.; Obot, I.B. Determination of Corrosion Inhibition Effects of Amino Acids: Quantum Chemical and Molecular Dynamic Simulation Study. J. Taiwan Inst. Chem. Eng. 2016, 58, 528-535. https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.references | [28] Lanez, E.; Bechki, L.; Lanez, T. Ferrocenylmethylnucleobases: Synthesis, DFT Calculations, Electrochemical and Spectroscopic Characterization. Chem. Chem. Technol. 2020, 14, 146-153. https://doi.org/10.23939/chcht14.02.146 | |
dc.relation.references | [29] Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x | |
dc.relation.references | [30] Pandey, M.; Muthu, S.; Nanje Gowda, N.M. Quantum Mechanical and Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) Studies, NBO, NLO, HOMO, LUMO and Fukui Function Analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT Studies. J. Mol. Struct. 2017, 1130, 511-521. https://doi.org/10.1016/j.molstruc.2016.10.064 | |
dc.relation.references | [31] Gumus, S.; Sundius, T.; Yilmaz, V. Vibrational Analyses of 1,3-Dibenzoyl-4,5-dihydro-1H-imidazole-2-thione and 1,3-Dibenzoyl tetrahydropyrimidine-2(1H)-thione by Normal Coordi-nate Treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 98, 384-395. https://doi.org/10.1016/j.saa.2012.08.058 | |
dc.relation.referencesen | [1] Guloy, A.M.; Tang, Z.J.; Miranda, P.B.; Srdanov, V.I. A New Luminescent Organic–Inorganic Hybrid Compound with Large Optical Nonlinearity. Adv. Mater. 2001, 13, 833-837. https://doi.org/10.1002/1521-4095(200106)13:11%3C833::AID-ADMA833%3E3.0.CO;2-T | |
dc.relation.referencesen | [2] Chang, H.-Y.; Kim, S.-H.; Halasyamani, P.S.; Ok, K.M. Align-ment of Lone Pairs in a New Polar Material: Synthesis, Characteri-zation, and Functional Properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 2009, 131, 2426-2427. https://doi.org/10.1021/ja808469a | |
dc.relation.referencesen | [3] Chang, H.-Y.; Kim, S.-H.; Ok, K.M.; Halasyamani, P.S. New Polar Oxides: Synthesis, Characterization, Calculations, and Struc-ture−Property Relationships in RbSe2V3O12 and TlSe2V3O12. Chem. Mater. 2009, 21, 1654-1662. https://doi.org/10.1021/cm9002614 | |
dc.relation.referencesen | [4] Abu El-Fadl, A.; Gaffar, M.A.; Omar, M.H. Electrical Conduc-tivity and Pyroelectricity of Lithium–Potassium Sulphate Single Crystal in the Temperature Range 300–950 K. Physica B Condens. Matter 1999, 269, 395-402. https://doi.org/10.1016/S0921-4526(99)00116-7 | |
dc.relation.referencesen | [5] Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Above-room-temperature Ferroelectricity in a Single-Component Molecular Crystal. Nature 2010, 463,789-792. https://doi.org/10.1038/nature08731 | |
dc.relation.referencesen | [6] Mishurov, D.; Voronkin, A.; Roshal, A.; Bogatyrenko, S.; Vashchenko, O. Synthesis and Characterization of Dye-Doped Polymer Films for Non-linear Optical Applications. Chem. Chem. Technol. 2019, 13, 459-464. https://doi.org/10.23939/chcht13.04.459 | |
dc.relation.referencesen | [7] Hearn, R.A.; Bugg, C.E. The crystal Structure of (-)-Ephedrine Dihydrogen Phosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1972, B28, 3662-3667. https://doi.org/10.1107/S0567740872008532 | |
dc.relation.referencesen | [8] Adams, J.M. The Crystal Structure of Aminoguanidinium Dihydrogen Orthophosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1977, B33, 1513-1515. https://doi.org/10.1107/S0567740877006402 | |
dc.relation.referencesen | [9] Rafik, A.; Zouihri, H.; Guedira, T. Analysis of H-Bonding Interactions with Hirshfeld Surfaces and Geometry-Optimized Structure of the DL-Valinium Dihydrogen Phosphate. J. Chem. Technol. Metall. 2021, 56, 275-282. | |
dc.relation.referencesen | [10] Blessing, R.H. Hydrogen Bonding and Thermal Vibrations in Crystalline Phosphate Salts of Histidine and Imidazole. Acta. Crys-tallogr. B. Struct. Sci. Cryst. Eng. Mater. 1986, B42, 613-621. https://doi.org/10.1107/S0108768186097641 | |
dc.relation.referencesen | [11] Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 3.0; University of Western Australia, Perth, 2012. | |
dc.relation.referencesen | [12] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. et al. Gaussian; Inc., Wallingford CT, 2016. | |
dc.relation.referencesen | [13] Dennington, R. II; Keith, T.; Millam, J. GaussView, Version 4.1. 2, Semichem Inc Shawnee Mission KS, 2007. | |
dc.relation.referencesen | [14] Guelmami, L.; Gharbi, A.; Jouini, A. 4-Dimethylaminopyridinium dihydrogenmonophosphate (P.7H11N2)H2PO4: Synthesis, Structural, 31P, 13C NMR and Thermal Investigations. J. Chem. Crystallogr. 2012, 42, 549-554. https://doi.org/10.1007/s10870-012-0277-x | |
dc.relation.referencesen | [15] Marchewka, M. K.; Drozd, M.; Janczak, Ja. Crystal and Mole-cular Structure of n-(4-Nitrophenyl)-b-alanine-Its Vibrational Spectra and Theoretical Calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 758-766. https://doi.org/10.1016/j.saa.2010.08.050 | |
dc.relation.referencesen | [16] Breda, S.; Reva, I.D.; Lapinski, L.; Nowak, M.J.; Fausto, R. Infrared Spectra of Pyrazine, Pyrimidine and Pyridazine in Solid Argon. J. Mol. Struct. 2006, 786, 193-206. https://doi.org/10.1016/j.molstruc.2005.09.010 | |
dc.relation.referencesen | [17] Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and Characterisation of Voids in Crystalline Materials. CrystEngComm 2011, 13, 1804-1813. https://doi.org/10.1039/P.0CE00683A | |
dc.relation.referencesen | [18] Santhy, K.R.; Sweetlin, M.D.; Muthu, S.; Kuruvilla, T.K.; Abraham, C.S. Structure, Spectroscopic study and DFT Calculations of 2,6 bis (tri fluro methyl) benzoic acid. J. Mol. Struct. 2019, 1177, 401-417. https://doi.org/10.1016/j.molstruc.2018.09.058 | |
dc.relation.referencesen | [19] Chethan Prathap, K.N.; Lokanath, N.K. Three Novel Couma-rin-Benzenesulfonylhydrazide Hybrids: Synthesis, Characterization, Crystal Structure, Hirshfeld Surface, DFT and NBO Studies. J. Mol. Struct. 2018, 1171, 564-577. https://doi.org/10.1016/j.molstruc.2018.06.022 | |
dc.relation.referencesen | [20] Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588 | |
dc.relation.referencesen | [21] Nataraj, A.; Balachandran, V.; Karthick, T. Molecular Orbital Studies (Hardness, Chemical Potential, Electrophilicity, and First Electron Excitation), Vibrational Investigation and Theoretical NBO Analysis of 2-Hydroxy-5-bromobenzaldehyde by Density Functional Method. J. Mol. Struct. 2013, 1031, 221-233. https://doi.org/10.1016/j.molstruc.2012.09.047 | |
dc.relation.referencesen | [22] Onitsch, E.M. Uber die Mikroharte der Metalle. Mikroskopie 1947, 2, 131. | |
dc.relation.referencesen | [23] Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V.G.; Benial, A.M.F. DFT Calculation and Vibrational Spectroscopic Studies of 2-(Tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 74-83. https://doi.org/10.1016/j.saa.2014.02.147 | |
dc.relation.referencesen | [24] Mathammal, R.; Sudha, N.; Prasad, L.G.; Ganga, N.; Krishna-kumar, V. Spectroscopic (FTIR, FT-Raman, UV and NMR) investigation and NLO, HOMO–LUMO, NBO analysis of 2-Benzylpyridine based on quantum chemical calculations. Spectro-chim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 740-748. https://doi.org/10.1016/j.saa.2014.08.099 | |
dc.relation.referencesen | [25] Uzun, S.; Esen, Z.; Koç, E.; Usta, N.C.; Ceylan, M. Experimental and Density Functional Theory (MEP, FMO, NLO, Fukui Functions) and Antibacterial Activity Studies on 2-Amino-4- (4-nitrophenyl) -5,6-dihydrobenzo [h] quinoline-3-carbonitrile. J. Mol. Struct. 2019, 1178, 450-457. http://dx.doi.org/10.1016/j.molstruc.2018.10.001 | |
dc.relation.referencesen | [26] Attar, T.; Messaoudi, B.; Benhadria, N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol. 2020, 14, 20-25. https://doi.org/10.23939/chcht14.01.020 | |
dc.relation.referencesen | [27] Kaya, S.; Tüzün, B.; Kaya, C.; Obot, I.B. Determination of Corrosion Inhibition Effects of Amino Acids: Quantum Chemical and Molecular Dynamic Simulation Study. J. Taiwan Inst. Chem. Eng. 2016, 58, 528-535. https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.referencesen | [28] Lanez, E.; Bechki, L.; Lanez, T. Ferrocenylmethylnucleobases: Synthesis, DFT Calculations, Electrochemical and Spectroscopic Characterization. Chem. Chem. Technol. 2020, 14, 146-153. https://doi.org/10.23939/chcht14.02.146 | |
dc.relation.referencesen | [29] Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x | |
dc.relation.referencesen | [30] Pandey, M.; Muthu, S.; Nanje Gowda, N.M. Quantum Mechanical and Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) Studies, NBO, NLO, HOMO, LUMO and Fukui Function Analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT Studies. J. Mol. Struct. 2017, 1130, 511-521. https://doi.org/10.1016/j.molstruc.2016.10.064 | |
dc.relation.referencesen | [31] Gumus, S.; Sundius, T.; Yilmaz, V. Vibrational Analyses of 1,3-Dibenzoyl-4,5-dihydro-1H-imidazole-2-thione and 1,3-Dibenzoyl tetrahydropyrimidine-2(1H)-thione by Normal Coordi-nate Treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 98, 384-395. https://doi.org/10.1016/j.saa.2012.08.058 | |
dc.relation.uri | https://doi.org/10.1002/1521-4095(200106)13:11%3C833::AID-ADMA833%3E3.0.CO;2-T | |
dc.relation.uri | https://doi.org/10.1021/ja808469a | |
dc.relation.uri | https://doi.org/10.1021/cm9002614 | |
dc.relation.uri | https://doi.org/10.1016/S0921-4526(99)00116-7 | |
dc.relation.uri | https://doi.org/10.1038/nature08731 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.04.459 | |
dc.relation.uri | https://doi.org/10.1107/S0567740872008532 | |
dc.relation.uri | https://doi.org/10.1107/S0567740877006402 | |
dc.relation.uri | https://doi.org/10.1107/S0108768186097641 | |
dc.relation.uri | https://doi.org/10.1007/s10870-012-0277-x | |
dc.relation.uri | https://doi.org/10.1016/j.saa.2010.08.050 | |
dc.relation.uri | https://doi.org/10.1016/j.molstruc.2005.09.010 | |
dc.relation.uri | https://doi.org/10.1039/C0CE00683A | |
dc.relation.uri | https://doi.org/10.1016/j.molstruc.2018.09.058 | |
dc.relation.uri | https://doi.org/10.1016/j.molstruc.2018.06.022 | |
dc.relation.uri | https://doi.org/10.1063/1.1740588 | |
dc.relation.uri | https://doi.org/10.1016/j.molstruc.2012.09.047 | |
dc.relation.uri | https://doi.org/10.1016/j.saa.2014.02.147 | |
dc.relation.uri | https://doi.org/10.1016/j.saa.2014.08.099 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.molstruc.2018.10.001 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.01.020 | |
dc.relation.uri | https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.146 | |
dc.relation.uri | https://doi.org/10.1021/ja983494x | |
dc.relation.uri | https://doi.org/10.1016/j.molstruc.2016.10.064 | |
dc.relation.uri | https://doi.org/10.1016/j.saa.2012.08.058 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Rafik A., Zouihri H., Guedira T., 2023 | |
dc.subject | ВЗМО-НВМО | |
dc.subject | густина стану | |
dc.subject | поверхневий аналіз Хіршфельда | |
dc.subject | поверхня електростатичного потенціалу | |
dc.subject | HOMO–LUMO | |
dc.subject | density of state | |
dc.subject | Hirshfeld surface analysis | |
dc.subject | electrostatic potential surface | |
dc.title | Investigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis and Quantum Chemical Analysis | |
dc.title.alternative | Дослідження гібридного органічно-неорганічного дигідрофосфату за допомогою поверхневого аналізу за Хіршфельдом та квантово-хімічного аналізу | |
dc.type | Article |
Files
License bundle
1 - 1 of 1