Sensitivity analysis of control systems synthesized by feedback control methods to changes in the moment of inertia of the second mass of a two-mass positioning system

dc.citation.epage60
dc.citation.issue1
dc.citation.journalTitleОбчислювальні проблеми електротехніки
dc.citation.spage45
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЛозинський, Андрій
dc.contributor.authorКаша, Лідія
dc.contributor.authorПакіш, Степан
dc.contributor.authorСадовий, Роман
dc.contributor.authorLozynskyy, Andriy
dc.contributor.authorKasha, Lidiya
dc.contributor.authorPakizh, Stepan
dc.contributor.authorSadovyi, Roman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-08T08:58:13Z
dc.date.created2025-06-10
dc.date.issued2025-06-10
dc.description.abstractВ роботі запропоновано комплексний підхід до аналізу чутливості систем керування за змінними стану. Продемонст- ровано переваги систем, синтезованих методом feedback linearization, перед системою, синтезованою методом модального керування як з точки зору чутливості до зміни моменту інерції другої маси, так і якості регулювання. Проаналізовано вплив застосування ПІ-регулятора та ПІm- регулятора в системах, синтезованих методом feedback linearization, як на чутливість системи до зміни моменту інерції другої маси, так і швидкодію та перерегулювання вихідної координати.
dc.description.abstractIn this work, a comprehensive approach to the sensitivity analysis of state-variable control systems is proposed. The advantages of systems synthesized by a feedback linearization method are demonstrated being compared to a system synthesized by the modal control method, both in terms of sensitivity to changes in the moment of inertia of the second mass and in terms of control quality. The influence of applying a PI controller and a PIμ-controller on the sensitivity of the system to changes in the moment of inertia of the second mass and on the speed of response and overshoot of the output coordinate in systems synthesized by the feedback linearization method is analyzed.
dc.format.extent45-60
dc.format.pages16
dc.identifier.citationSensitivity analysis of control systems synthesized by feedback control methods to changes in the moment of inertia of the second mass of a two-mass positioning system / Andriy Lozynskyy, Lidiya Kasha, Stepan Pakizh, Roman Sadovyi // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 15. — No 1. — P. 45–60.
dc.identifier.citation2015Sensitivity analysis of control systems synthesized by feedback control methods to changes in the moment of inertia of the second mass of a two-mass positioning system / Lozynskyy A. та ін. // Computational Problems of Electrical Engineering, Lviv. 2025. Vol 15. No 1. P. 45–60.
dc.identifier.citationenAPALozynskyy, A., Kasha, L., Pakizh, S., & Sadovyi, R. (2025). Sensitivity analysis of control systems synthesized by feedback control methods to changes in the moment of inertia of the second mass of a two-mass positioning system. Computational Problems of Electrical Engineering, 15(1), 45-60. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOLozynskyy A., Kasha L., Pakizh S., Sadovyi R. (2025) Sensitivity analysis of control systems synthesized by feedback control methods to changes in the moment of inertia of the second mass of a two-mass positioning system. Computational Problems of Electrical Engineering (Lviv), vol. 15, no 1, pp. 45-60.
dc.identifier.doihttps://doi.org/10.23939/jcpee2025.01.045
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/123797
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofОбчислювальні проблеми електротехніки, 1 (15), 2025
dc.relation.ispartofComputational Problems of Electrical Engineering, 1 (15), 2025
dc.relation.referencesen[1] R. Muszynski and J. Deskur, “Damping of Torsional Vibrations in High-Dynamic Industrial Drives”, in IEEE Transactions on Industrial Electronics, vol. 57, No. 2, pp. 544–552, Feb. 2010, doi: 10.1109/TIE.2009.2036034.
dc.relation.referencesen[2] MA Valenzuela, JM Bentley and RD Lorenz, “Evaluation of torsional oscillations in paper machine sections”, in IEEE Transactions on Industry Applications, vol. 41, No. 2, pp. 493–501, March-April2005, doi: 10.1109/TIA.2005.844383
dc.relation.referencesen[3] K. Szabat, T. Orlowska-Kowalska and M. Dybkowski, “Indirect Adaptive Control of Induction Motor Drive System With an Elastic Coupling”, in IEEE Transactions on Industrial Electronics, vol. 56, No. 10, pp. 4038–4042, Oct. 2009, doi: 10.1109/TIE.2009.2022514.
dc.relation.referencesen[4] J. Li, D. Wang, X. Wu, K. Xu, and X. Liu, Vibration Prediction of the Robotic Arm Based on Elastic Joint Dynamics Modeling. Sensors 2022, 22,6170.https://doi.org/10.3390/s22166170
dc.relation.referencesen[5] Ya. Yu. Marushchak, A.O. Lozynskyi, and A. P. Kushnir, Dynamics of two-mass systems of regime stabilization in electric arc furnaces, monograph. L.: Lviv Polytechnic Publishing House,p. 224. 2011.
dc.relation.referencesen[6] SE Saarakkala and M. Hinkkanen, “Identification of Two-Mass Mechanical Systems Using Torque Excitation: Design and Experimental Evaluation”, in IEEE Transactions on Industry Applications, vol. 51, No. 5, pp. 4180–4189, Sept.–Oct. 2015, doi:10.1109/TIA.2015.2416128
dc.relation.referencesen[7] T. Tarczewski, R. Szczepanski, K. Erwinski, X. Hu and LM Grzesiak, “A Novel Sensitivity Analysis to Moment of Inertia and Load Variations for PMSM Drives”, in IEEE Transactions on Power Electronics, vol. 37, No. 11, pp. 13299–13309, Nov. 2022, doi:10.1109/TPEL.2022.3188404.
dc.relation.referencesen[8] K. Szabat and T. Orlowska-Kowalska, “Vibration Suppression in a Two-Mass Drive System Using a PI Speed Controller and Additional Feedbacks–Comparative Study”, in IEEE Transactions on Industrial Electronics, vol. 54, No. 2, pp. 1193–1206, April 2007,doi: 10.1109/TIE.2007.892608
dc.relation.referencesen[9] K. Szabat, T. Orłowska-Kowalska, and P. Serkies, “Robust Control of the Two-mass Drive System Using Model Predictive Control”, in Robust Control Theory and Applications, InTech, 2011.
dc.relation.referencesen[10] MA Valenzuela, JM Bentley and RD Lorenz, “Computer-Aided Controller Setting Procedure for Paper Machine Drive Systems”, in IEEE Transactions on Industry Applications, vol. 45, No. 2, pp. 638–650, March-April 2009, doi: 10.1109/TIA.2009.2013588.
dc.relation.referencesen[11] P. Li, G. -R. Duan, B. Zhang and Y. Wang, “High-order Fully Actuated Approach for Output Position Control of Two Mass Systems based on Extended State Observer”," in Proc. 3rd Conference on Fully Actuated System Theory and Applications (FASTA), Shenzhen, China, 2024, pp. 1193–1198, doi: 10.1109/FASTA61401.2024.10595104.
dc.relation.referencesen[12] SE Saarakkala and M. Hinkkanen, “State-Space Speed Control of Two-Mass Mechanical Systems: Analytical Tuning and Experimental Evaluation”, in IEEE Transactions on Industry Applications, vol. 50, No. 5, pp. 3428–3437, Sept.-Oct. 2014, doi:10.1109/TIA.2014.2306977
dc.relation.referencesen[13] M. Ruderman, “Robust output feedback control of non-collocated low-damped oscillating load”, in Proc.29th Mediterranean Conference on Control and Automation (MED), PUGLIA, Italy, pp. 639–644,2021, doi: 10.1109/MED51440.2021.9480239.
dc.relation.referencesen[14] R. Saathof, T. Riel, M. Bibl, D. Kohl, HW Yoo and G. Schitter, “Non-parametric robustness analysis for feedback motion control for a high precision stage with large mass uncertainty”, in Proc. American Control Conference (ACC), Boston, MA, USA, pp. 2611–2616, 2016, doi: 10.1109/ACC.2016.7525310
dc.relation.referencesen[15] A. Ansari and T. Murphey, “Minimal parametric sensitivity trajectories for nonlinear systems”, in Proc. American Control Conference, Washington, DC, USA, pp. 5011–5016, 2013, doi: 10.1109/ACC.2013.6580616.
dc.relation.referencesen[16] Liang and H. Yamaura, “Robust stabilization for frictioninduced vibration with parameter uncertainties”, in Proc. IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Korea (South), pp. 1373–1377, 2015, doi: 10.1109/AIM.2015.7222730.
dc.relation.referencesen[17] S. Santra and S. Paul, “PSO based robust power system stabilizer design using mixed sensitivity basedH¥output-feedback control in LMI approach”, in Proc. Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, India, pp. 273–278,2017, doi: 10.1109/ICRCICN.2017.8234520.
dc.relation.referencesen[18] B. Kwon, S. Kim and K. Yi, “Design of a robust yaw stability controller for commercial vehicles with parameter sensitivity reduction and stochastic root locus”, in Proc. IEEE Intelligent Vehicles Symposium(IV), Seoul, Korea (South), pp. 1100–1105, 2015, doi:10.1109/IVS.2015.7225831.
dc.relation.referencesen[19] AJ den Hamer, GZ Angelis, MJG van de Molengraft and M. Steinbuch, “A practical loop-shaping approach for pole-placement in mechatronic systems”, in Proc. IEEE Conference on Control Applications, 2005. CCA 2005., Toronto, ON, Canada, 2005, pp. 394–399, doi:10.1109/CCA.2005.1507157.
dc.relation.referencesen[20] A. Accetta, M. Cirrincione, M. Pucci and A. Sferlazza, “Feedback Linearization Based Nonlinear Control of SynRM Drives Accounting for Self- and Cross- Saturation”, in Proc. IEEE Transactions on Industry Applications, vol. 58, No. 3, pp. 3637–3651, May- June 2022, doi: 10.1109/TIA.2022.3155511
dc.relation.referencesen[21] A. Lozynskyy, L. Kasha, S. Pakizh, and R. Sadovyi, “Synthesis of PI- and PID-regulators in control systems derived by the feedback linearization method”, Energy Engineering and Control Systems,vol. 10, No. 2, pp. 120–130, 2024.https://doi.org/10.23939/jeecs2024.02.120
dc.relation.referencesen[22] P. Serkies and K. Szabat, “Predictive position control of the induction two-mass drive system”, in Proc. IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, pp. 871–876,2014. doi: 10.1109/ISIE.2014.6864726
dc.relation.referencesen[23] M. Mola, M. Dehghani, A. Khayatian and SM Mola, “LPV modeling and position control of two mass systems with variable backlash using LMIs”, in Proc.6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, pp. 141–146, 2016. doi:10.1109/ICCSCE.2016.7893560
dc.relation.referencesen[24] G. Vinnicombe, “Frequency domain uncertainty and the graph topology”, in Proc. IEEE Transactions on Automatic Control, vol. 38, No. 9, pp. 1371–1383, Sept. 1993, doi: 10.1109/9.237648.
dc.relation.referencesen[25] Richard C. Dorf and Robert H. Bishop, Modern Control Systems, 14th edition, Pearson, p. 1024, 2021.
dc.relation.referencesen[26] Gustavo Asumu Mboro Nchama, Angela Leon Mecías, and Mariano Rodriguez Richard, The Caputo- Fabrizio Fractional Integral to Generate Some New Inequalities, Information Sciences Letters 8, No. 2,pp. 73–80, 2019.
dc.relation.urihttps://doi.org/10.3390/s22166170
dc.relation.urihttps://doi.org/10.23939/jeecs2024.02.120
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectfeedback linearization method
dc.subjectPI controller
dc.subjectsensitivity function of the synthesized system
dc.subjecttwo-mass system
dc.titleSensitivity analysis of control systems synthesized by feedback control methods to changes in the moment of inertia of the second mass of a two-mass positioning system
dc.title.alternativeАналіз чутливості систем керування, синтезованих методами feedback control, до зміни моменту інерції другої маси двомасової позиційної системи
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v15n1_Lozynskyy_A-Sensitivity_analysis_of_45-60.pdf
Size:
4.48 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: