Synergistic Effect of BaCl2 on Corrosion Inhibition of Copper by Mentha Spicata Oil in 1M Nitric Acid: Gravimetric and Raman Spectroscopy Studies
dc.citation.epage | 17 | |
dc.citation.issue | 1 | |
dc.citation.spage | 7 | |
dc.contributor.affiliation | Centre de Recherche Scientifique et Technique en Analyses Physico Chimiques | |
dc.contributor.affiliation | Université de Tlemcen | |
dc.contributor.affiliation | Université Abu Bekr | |
dc.contributor.affiliation | Université Belhadj Bouchaib | |
dc.contributor.author | Belarbi, Nadia | |
dc.contributor.author | Dergal, Fayçal | |
dc.contributor.author | Chikhi, Ilyas | |
dc.contributor.author | Lerari, Djahida | |
dc.contributor.author | Dahmani, Benamar | |
dc.contributor.author | Choukchou-Braham, Noureddine | |
dc.contributor.author | Bachari, Khaldoun | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T10:29:35Z | |
dc.date.available | 2024-02-09T10:29:35Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | За допомогою методів втрати ваги та ман-спектроскопії досліджено вплив суміші олії Mentha Spicata та суміші BaCl2 й олії Mentha Spicata на корозію міді в 1M HNO3. Дослідження показало, що олія Mentha Spicata ефективніше інгібує мідь у присутності BaCl2 порівняні з самою олією. Ефективність інгібування збільшувалась із підвищенням концентрації добавок. З використанням самої лише олії Mentha Spicata dslpyfxtyj найвищу ефективність інгібування 56,12 %. Підвищену ефективність інгібування 75,13 % спостерігали для суміші олії Mentha Spicata і BaCl2 за 298 K в 1M HNO3; цей ефект пояснюється синергізмом між олією Mentha Spicata і BaCl2. Ефективність інгібування знижувалася з підвищенням температури від 298 до 328 K. Адсорбція молекул інгібітора на поверхні металу відповідала ізотермі Фрумкіна та Ленгмюра. Термодинамічні параметри, такі як ентальпія ∆H, вільна енергія адсорбції ∆G та ентропія адсорбції, були отримані з експериментальних температур у діапазоні 298–328 K. Для дослідження поверхневих шарів використовували Раман-спектроскопію та мапінг. | |
dc.description.abstract | The effect of Mentha Spicata oil and the mixture of BaCl2 and Mentha Spicata oil on corrosion of copper in 1M HNO3 have been investigated using weight loss methods and Raman spectroscopy. The study revealed that copper is more efficiently inhibited by Mentha Spicata oil in the presence of BaCl2 than pure oil. The inhibition efficiencies increased with increased concentration of the additives. The highest inhibition efficiency of 56.12 % was observed with single Mentha Spicata oil. An improved inhibition efficiency of 75.13 % was observed with the mixture of Mentha Spicata oil and BaCl2 at 298 K in 1M HNO3, an effect attributed to synergism between Mentha Spicata oil and BaCl2. Inhibition efficiency decreased with increase in temperature from 298-328 K. The adsorption of inhibitor molecules on metal surface followed Frumkin and Langmuir isotherm. Thermodynamic parameters such as enthalpy ∆H, free energy of adsorption ∆G and entropy of adsorption are obtained from experimental temperatures ranging from 298-328 K. Raman Spectroscopy and mapping were used to characterize the surface layers. | |
dc.format.extent | 7-17 | |
dc.format.pages | 11 | |
dc.identifier.citation | Synergistic Effect of BaCl2 on Corrosion Inhibition of Copper by Mentha Spicata Oil in 1M Nitric Acid: Gravimetric and Raman Spectroscopy Studies / Nadia Belarbi, Fayçal Dergal, Ilyas Chikhi, Djahida Lerari, Benamar Dahmani, Noureddine Choukchou-Braham, Khaldoun Bachari // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 7–17. | |
dc.identifier.citationen | Synergistic Effect of BaCl2 on Corrosion Inhibition of Copper by Mentha Spicata Oil in 1M Nitric Acid: Gravimetric and Raman Spectroscopy Studies / Nadia Belarbi, Fayçal Dergal, Ilyas Chikhi, Djahida Lerari, Benamar Dahmani, Noureddine Choukchou-Braham, Khaldoun Bachari // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 7–17. | |
dc.identifier.doi | doi.org/10.23939/chcht17.01.007 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61217 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (17), 2023 | |
dc.relation.references | [1] Chapter 24: Corrosion Control-Cooling Systems. In Handbook of Industrial Water Treatment; Suez, Ed.; Suez: Trevose, 2019. | |
dc.relation.references | [2] Cragnolino, G.A. 2 – Corrosion Fundamentals and Characterization Techniques. In Techniques for Corrosion Monitoring; Woodhead Publishing, 2021, pp 7-42. | |
dc.relation.references | [3] Adebayo, E.O. Corrosion and Corrosion Control of Petroleum Pipelines. Thesis, Department of Mechanical Engineering, University of Ilorin, Nigeria, 2004. | |
dc.relation.references | [4] Hart, K.; James, A.O. Corrosion Inhibition of Copper in Hydrochloric and Tetraoxosulphate (VI) Acid Solutions Using Aloe Vera Barbadensis Gel. Curr. Appl. Sci. Technol. 2014, 4, 4052-4065. https://doi.org/10.9734/BJAST/2014/9658 | |
dc.relation.references | [5] Jmiai, A.; Tara, A.; El Issami, S.; Hilali, M.; Jbara, O.; Bazzi, L. A New Trend in Corrosion Protection of Copper in Acidic Medium by Using Jujube Shell Extract as an Effective Green and Environmentally Safe Corrosion Inhibitor: Experimental, Quantum Chemistry Approach and Monte Carlo Simulation Study. J. Mol. Liq. 2021, 322, 114509. https://doi.org/10.1016/j.molliq.2020.114509 | |
dc.relation.references | [6] Corrosion Resistance of Copper and Copper Alloys; Schütze, M.; Feser, R.; Bender, R., Eds.; Wiley, 2011. | |
dc.relation.references | [7] Shinato, K.W.; Zewde, A.A.; Jin, Y. Corrosion Protection of Copper and Copper Alloys in Different Corrosive Medium Using Environmentally Friendly Corrosion Inhibitors. Corros. Rev. 2020, 38, 101–109. https://doi.org/10.1515/corrrev-2019-0105 | |
dc.relation.references | [8] Antonijevic, M.M.; Petrovic, B.M. Copper Corrosion Inhibitors. A Review. Int. J. Electrochem. Sci. 2008, 3, 1-28. | |
dc.relation.references | [9] Tansuǧ, G.; Tüken, T.; Giray, E.S.; Fındıkkıran, G.; Sığırcık, G.; Demirkol, O.; Erbil, M. A New Corrosion Inhibitor for Copper Protection. Corros. Sci. 2014, 84, 21-29. https://doi.org/10.1016/j.corsci.2014.03.004 | |
dc.relation.references | [10] Petrović Mihajlović, M.B.; Radovanović, M.B.; Tasić, Ž.Z.; Antonijević, M.M. Imidazole Based Compounds as Copper Corrosion Inhibitors in Seawater. J. Mol. Liq. 2017, 225, 127-136. https://doi.org/10.1016/j.molliq.2016.11.038 | |
dc.relation.references | [11] Metals Handbook Desk Edition; Davis, J.R., Ed.; ASM International, 1998. | |
dc.relation.references | [12] Nkuzinna, O.; Menkiti, M.; Onukwuli, O.; Mbah, G.; Okolo, B.; Egbujor, M.; Government, R. Application of Factorial Design of Experiment for Optimization of Inhibition Effect of Acid Extract of Gnetum africana on Copper Corrosion. Nat Resour. J. 2014, 5, 299-307. https://doi.org/10.4236/nr.2014.57028 | |
dc.relation.references | [13] Mas’ud, Z.A.; Darmawan; N.; Dawolo, J.; Apriliyanto, Y.B. Fatty Amidine as Copper Corrosion Inhibitor. J. Chem. 2020, 2020. https://doi.org/10.1155/2020/1092643 | |
dc.relation.references | [14] Fateh, A.; Aliofkhazraei, M.; Rezvanian, A.R. Review of Corrosive Environments for Copper and its Corrosion Inhibitors. Arab. J. Chem. 2020, 13, 481-544. https://doi.org/10.1016/j.arabjc.2017.05.021 | |
dc.relation.references | [15] Tasić, Ž.Z., Petrović Mihajlović, M.B., Radovanović, M.B.; Antonijević, M.M. New Trends in Corrosion Protection of Copper. Chem. Pap. 2019, 73, 2103-2132. https://doi.org/10.1007/s11696-019-00774-1 | |
dc.relation.references | [16] Miralrio, A.; Espinoza Vázquez, A. Plant Extracts as Green Corrosion Inhibitors for Different Metal Surfaces and Corrosive Media: A Review. Processes 2020, 8, 942. https://doi.org/10.3390/pr8080942 | |
dc.relation.references | [17] Khadraoui, A.; Khelifa, A.; Hadjmeliani, M.; Mehdaoui, R.; Hachama, K.; Tidu, A.; Azari, Z.; Obot, I.B.; Zarrouk, A. Extraction, Characterization and Anti-Corrosion Activity of Mentha Pulegium Oil: Weight Loss, Electrochemical, Thermodynamic and Surface Studies. J. Mol. Liq. 2016, 216, 724-731. https://doi.org/10.1016/j.molliq.2016.02.005 | |
dc.relation.references | [18] Khadraoui, A.; Khelifa, A.; Boutoumi, H.; Mettai, B.; Karzazi, Y.; Hammouti, B. Corrosion Inhibition of Carbon Steel in Hydrochloric Acid Solution by Mentha Pulegium Extract. Port. Electrochimica Acta 2014, 32, 271-280. https://doi.org/10.4152/pea.201404271 | |
dc.relation.references | [19] Znini, M.; Bouklah, M.; Majidi, L.; Kharchouf, S.; Aouniti, A.; Bouyanzer, A.; Hammouti, B.; Costa, J.; Al-Deyab S.S. Chemical Composition and Inhibitory Effect of Mentha Spicata Essential Oil on the Corrosion of Steel in Molar Hydrochloric Acid. Int. J. Electrochem. Sci. 2011, 6, 691-704. | |
dc.relation.references | [20] Bouyanzer, A.; Hammouti, B.; Majidi., L. Pennyroyal Oil from Mentha pulegium as Corrosion Inhibitor for Steel in 1M HCl. Mater. Lett. 2006, 60, 2840-2843. https://doi.org/10.1016/j.matlet.2006.01.103 | |
dc.relation.references | [21] Khadraoui, A.; Khelifa, A.; Boutoumi, H.; Hammouti, B. Mentha Pulegium Extract as a Natural Product for the Inhibition of Corrosion. Part I: Electrochemical Studies. Nat. Prod. Res. 2014, 28, 1206-1209. https://doi.org/10.1080/14786419.2014.919288 | |
dc.relation.references | [22] Khadraoui, A.; Khelifa, A.; Hamitouche, H.; Mehdaoui, R. Inhibitive Effect by Extract of Mentha Rotundifolia Leaves on the Corrosion of Steel in 1M HCl Solution. Res. Chem. Intermed. 2014, 40, 961-972. https://doi.org/10.1007/s11164-012-1014-y | |
dc.relation.references | [23] Ansari, A.; Znini, M.; Laghchimi, A.; Costa, J.; Ponthiaux P.; Majidi, L. Chemical Composition, Adsorption Proprieties and Corrosion Inhibition on Mild Steel of Mentha Rotundifolia L. Essential Oil from Morocco. Der Pharm. Lett. 2015, 7, 125-140. | |
dc.relation.references | [24] Bensabah, F.; Houbairi, S.; Essahli, M.; Lamiri A.; Naja, J. Chemical Composition and Inhibitory Effect of the Essential Oil from Mentha Spicata Irrigated by Wastewater on the Corrosion of Aluminum in 1 Molar Hydrochloric Acid. Port. Electrochimica Acta 2013, 31, 195-206. https://doi.org/10.4152/pea.2013041 | |
dc.relation.references | [25] Hamdani, I.; Chikri, M.; Fethi, F.; Salhi, A.; Bouyanzer, A.; Zarrouk, A.; Hammouti, B.; Costa, J.; Desjobert, J.M. Essential Oil Mentha Suaveolens L : Chemical Composition, Anticorrosive Properties on Mild Steel in 0.5M H2SO4 and Chemometric Approach. J. Mater. Environ. Sci. 2017, 8, 526-538. | |
dc.relation.references | [26] Merah, S.; Larabi, L.; Benali, O.; Harek, Y. Synergistic Effect of Methyl Red Dye and Potassium Iodide on Inhibition of Corrosion of Carbon Steel in 0.5 M H2SO4. Pigment. Resin Technol. 2008, 37, 291-298. https://doi.org/10.1108/03699420810901963 | |
dc.relation.references | [27] Brahmi, F.; Adjaoud, A.; Marongiu, B.; Falconieri, D.; Yalaoui-Guellal, D.; Madani, K.; Chibane, M. Chemical and Biological Profiles of Essential Oils from Mentha Spicata L. Leaf from Bejaia in Algeria. J. Essent. Oil Res. 2016, 28, 211-220. https://doi.org/10.1080/10412905.2015.1118411 | |
dc.relation.references | [28] Bouchard-Abouchacra, M. PhD Thesis, Mus´eum National d’Histoire Naturelle. Laboratoire de Min´eralogie, 2001. | |
dc.relation.references | [29] McCann, L.I.; Trentelman, K.; Possley, T.; Golding, B. Corrosion of Ancient Chinese Bronze Money Trees Studied by Raman Microscopy. J. Raman Spectrosc. 1999, 30, 121-132. https://doi.org/10.1002/(SICI)1097-4555(199902)30:2%3C121::AID-JRS355%3E3.0.CO;2-L | |
dc.relation.references | [30] Di Lonardo, G.; Martini, C.; Ospitali, F.; Poli, G.; Prandsraller, D.; Tullini, F. In Proceedings of the 7th International Conference on Non-destructive Testing and Micro-analysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, 2-6 June 2002, Congress Centre Elzenveld: Antwerp, Belgium Antwerp, 2002. | |
dc.relation.references | [31] Geethamani, P. Corrosion inhibitors; London: Intechopen, 2019. | |
dc.relation.references | [32] Xavier, G.T.; Thirumalairaj, B.; Jaganathan, M. Effect of Piperidin-4-ones on the Corrosion Inhibition of Mild Steel in 1 N H2SO4. Int. J. Corros. 2015, 2015, 15. https://doi.org/10.1155/2015/410120 | |
dc.relation.references | [33] Aramaki, K.; Hackerman, N. Inhibition Mechanism of Medium‐Sized Polymethyleneimine. J. Electrochem. Soc. 1969, 116, 568. https://doi.org/10.1149/1.2411965 | |
dc.relation.references | [34] Larabi, L.; Harek, Y. Effect of Iodide Ions on Corrosion Inhibition of Mild Steel in 0.5M H2SO4 by Poly(4-Vinylpyridine). Port. Electrochimica Acta 2004, 22, 227-247. | |
dc.relation.references | [35] Bruneton, J. Pharmacognosie, Phytochimie des Plantes Médicinales. Revue et Augmentée ; Tec & Doc : Paris, 1999. | |
dc.relation.references | [36] Ivanov, E.S. Metallurgy, Moscow 1986. | |
dc.relation.references | [37] Singh, A.; Ahamad, I.; Yadav, D.K.; Singh, V.K.; Quraishi, M.A. The Effect of Environmentally Benign Fruit Extract of Shahjan (Moringa Oleifera) on the Corrosion of Mild Steel in Hydrochloric Acid Solution. Chem. Eng. Commun. 2012, 199, 63-77. https://doi.org/10.1080/00986445.2011.570390 | |
dc.relation.references | [38] Attar, T.; Larabi, L.; Harek, Y. Inhibition Effect of Potassium Iodide on the Corrosion of Carbon Steel (XC 38) in Acidic Medium. Int. J. Adv. Chem. 2014, 2, 139-142. https://doi.org/10.14419/ijac.v2i2.3272 | |
dc.relation.references | [39] Ansari, K.; Yadav, D.K.; Ebenso, E.E.; Quraishi, M. Novel and Effective Pyridyl Substituted 1,2,4-Triazole as Corrosion Inhibitor for Mild Steel in Acid Solution. Int. J. Electrochem. Sci. 2012, 7, 4780-4799. | |
dc.relation.references | [40] El Guerraf, A.; Titi, A.; Cherrak, K.; Mechbal, N.; Azzouzi, M.E.; Touzani, R.; Hammouti, B.; Lgaz, H. The Synergistic Effect of Chloride Ion and 1,5-Diaminonaphthalene on the Corrosion Inhibition of Mild Steel in 0.5 M Sulfuric Acid: Experimental and Theoretical Insights. Surf. Interfaces 2018, 13,168-177. https://doi.org/10.1016/j.surfin.2018.09.004 | |
dc.relation.references | [41] Popova, A.; Sokolova, E.; Raicheva, S.; Christov, M. AC and DC Study of the Temperature Effect on Mild Steel Corrosion in Acid Media in the Presence of Benzimidazole Derivatives. Corros. Sci. 2003, 45, 33-58. https://doi.org/10.1016/S0010-938X(02)00072-0 | |
dc.relation.references | [42] Bentiss, F.; Lebrini, M.; Lagrenée, M. Thermodynamic Characterization of Metal Dissolution and Inhibitor Adsorption Processes in Mild Steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric Acid System. Corros. Sci. 2005, 47, 2915-2931. https://doi.org/10.1016/j.corsci.2005.05.034 | |
dc.relation.references | [43] Abdul Rahiman, A.F.S.; Sethumanickam, S. Corrosion Inhibition, Adsorption and Thermodynamic Properties of Poly(Vinyl Alcohol-Cysteine) in Molar HCl. Arab. J. Chem. 2017, 10, S3358-S3366. https://doi.org/10.1016/j.arabjc.2014.01.016 | |
dc.relation.references | [44] Larouj, M.; Ourrak; K.; El M'Rabet, M.; Zarrok, H.; Serrar, H.; Boudalia, M.; Boukhriss, S.; Warad, I.; Oudda, H.; Touir, R. Thermodynamic Study of Corrosion Inhibition of Carbon Steel in Acidic Solution by New Pyrimidothiazine Derivative J. Mater. Environ. Sci. 2017, 8, 3921-3931. | |
dc.relation.references | [45] El Ouali, I.; Hammouti, B.; Aouniti, A.; Ramli, Y.; Azougagh, M.; Essassi, E.M.; Bouachrine, M. Thermodynamic Characterisation of Steel Corrosion in HCl in the Presence of 2-Phenylthieno(3, 2-b)quinoxaline. J. Mater. Environ. Sci. 2010, 1, 1-8. | |
dc.relation.references | [46] Keleş, H.; Keleş, M.; Dehri, I.; Serindağ, O. The Inhibitive Effect of 6-Amino-m-cresol and its Schiff Base on the Corrosion of Mild Steel in 0.5M HCI Medium. Mater. Chem. Phys. 2008, 112, 173-179. https://doi.org/10.1016/j.matchemphys.2008.05.027 | |
dc.relation.references | [47] Salghi, R.; Jodeh, S.; Ebenso, E.E.; Lgaz, H.; Ben Hmamou, D.; Belkhaouda, M.; Ali, I.H.; Messali, M.; Hammouti, B.; Fattouch, S. Inhibition of C-steel Corrosion by Green Tea Extract in Hydrochloric Solution. Int. Int. J. Electrochem. Sci. 2017, 12, 3283-3295. https://doi.org/10.20964/2017.04.46 | |
dc.relation.references | [48] Cano, E.; Polo, J.L.; Iglesia, A.L.A.; Bastidas, J.M. A Study on the Adsorption of Benzotriazole on Copper in Hydrochloric Acid Using the Inflection Point of the Isotherm. Adsorption 2004, 10, 219-225. https://doi.org/10.1023/B:ADSO.0000046358.35572.4c | |
dc.relation.references | [49] Shaju, K. S.; K. Joby Thomas; Vinod P. Raphael; Aby Paul. Synergistic Effect of KI on Corrosion Inhibition of Mild Steel by Polynuclear Schiff Base in Sulphuric Acid. Int. Sch. Res. Notices 2012, 2012, 425878. https://doi.org/10.5402/2012/425878 | |
dc.relation.references | [50] Lgaz, H.; Bhat, K.S.; Salghi, R.; Shubhalaxmi; Jodeh, S.; Algarra, M.; Hammouti, B.; Ali, I.H.; Essamri, A. Insights into Corrosion Inhibition Behavior of Three Chalcone Derivatives for Mild Steel in Hydrochloric Acid Solution. J. Mol. Liq. 2017, 238, 71-83. https://doi.org/10.1016/j.molliq.2017.04.124 | |
dc.relation.references | [51] Belarbi, N.; Dergal, F.; Chikhi, I.; Merah, S.; Lerari, D.; Bachari, K. Study of anti-corrosion activity of Algerian L. stoechas oil on C38 carbon steel in 1 M HCl medium. Int. J. Ind. Chem. 2018, 9, 115-125. https://doi.org/10.1007/s40090-018-0143-6 | |
dc.relation.references | [52] El-Sabbah, M.M.B.; Bedair, M.A.; Abbas, M.A.; Fahmy, A.; Hassaballa, S.; Moustafa, A.A. Synergistic Effect between Natural Honey and 0.1M KI as Green Corrosion Inhibitor for Steel in Acid Medium. Z. Phys. Chem. 2018. https://doi.org/10.1515/zpch-2018-1208 | |
dc.relation.references | [53] Momeni, M.M.; Ghayeb, Y.; Menati, M. Fabrication, Characterization and Photoelectrochemical Properties of Cuprous Oxide-Reduced Graphene Oxide Photocatalysts for Hydrogen Generation. J. Mater. Sci. Mater. Electron. 2018, 29, 4136-4146. https://doi.org/10.1007/s10854-017-8358-4 | |
dc.relation.referencesen | [1] Chapter 24: Corrosion Control-Cooling Systems. In Handbook of Industrial Water Treatment; Suez, Ed.; Suez: Trevose, 2019. | |
dc.relation.referencesen | [2] Cragnolino, G.A. 2 – Corrosion Fundamentals and Characterization Techniques. In Techniques for Corrosion Monitoring; Woodhead Publishing, 2021, pp 7-42. | |
dc.relation.referencesen | [3] Adebayo, E.O. Corrosion and Corrosion Control of Petroleum Pipelines. Thesis, Department of Mechanical Engineering, University of Ilorin, Nigeria, 2004. | |
dc.relation.referencesen | [4] Hart, K.; James, A.O. Corrosion Inhibition of Copper in Hydrochloric and Tetraoxosulphate (VI) Acid Solutions Using Aloe Vera Barbadensis Gel. Curr. Appl. Sci. Technol. 2014, 4, 4052-4065. https://doi.org/10.9734/BJAST/2014/9658 | |
dc.relation.referencesen | [5] Jmiai, A.; Tara, A.; El Issami, S.; Hilali, M.; Jbara, O.; Bazzi, L. A New Trend in Corrosion Protection of Copper in Acidic Medium by Using Jujube Shell Extract as an Effective Green and Environmentally Safe Corrosion Inhibitor: Experimental, Quantum Chemistry Approach and Monte Carlo Simulation Study. J. Mol. Liq. 2021, 322, 114509. https://doi.org/10.1016/j.molliq.2020.114509 | |
dc.relation.referencesen | [6] Corrosion Resistance of Copper and Copper Alloys; Schütze, M.; Feser, R.; Bender, R., Eds.; Wiley, 2011. | |
dc.relation.referencesen | [7] Shinato, K.W.; Zewde, A.A.; Jin, Y. Corrosion Protection of Copper and Copper Alloys in Different Corrosive Medium Using Environmentally Friendly Corrosion Inhibitors. Corros. Rev. 2020, 38, 101–109. https://doi.org/10.1515/corrrev-2019-0105 | |
dc.relation.referencesen | [8] Antonijevic, M.M.; Petrovic, B.M. Copper Corrosion Inhibitors. A Review. Int. J. Electrochem. Sci. 2008, 3, 1-28. | |
dc.relation.referencesen | [9] Tansuǧ, G.; Tüken, T.; Giray, E.S.; Fındıkkıran, G.; Sığırcık, G.; Demirkol, O.; Erbil, M. A New Corrosion Inhibitor for Copper Protection. Corros. Sci. 2014, 84, 21-29. https://doi.org/10.1016/j.corsci.2014.03.004 | |
dc.relation.referencesen | [10] Petrović Mihajlović, M.B.; Radovanović, M.B.; Tasić, Ž.Z.; Antonijević, M.M. Imidazole Based Compounds as Copper Corrosion Inhibitors in Seawater. J. Mol. Liq. 2017, 225, 127-136. https://doi.org/10.1016/j.molliq.2016.11.038 | |
dc.relation.referencesen | [11] Metals Handbook Desk Edition; Davis, J.R., Ed.; ASM International, 1998. | |
dc.relation.referencesen | [12] Nkuzinna, O.; Menkiti, M.; Onukwuli, O.; Mbah, G.; Okolo, B.; Egbujor, M.; Government, R. Application of Factorial Design of Experiment for Optimization of Inhibition Effect of Acid Extract of Gnetum africana on Copper Corrosion. Nat Resour. J. 2014, 5, 299-307. https://doi.org/10.4236/nr.2014.57028 | |
dc.relation.referencesen | [13] Mas’ud, Z.A.; Darmawan; N.; Dawolo, J.; Apriliyanto, Y.B. Fatty Amidine as Copper Corrosion Inhibitor. J. Chem. 2020, 2020. https://doi.org/10.1155/2020/1092643 | |
dc.relation.referencesen | [14] Fateh, A.; Aliofkhazraei, M.; Rezvanian, A.R. Review of Corrosive Environments for Copper and its Corrosion Inhibitors. Arab. J. Chem. 2020, 13, 481-544. https://doi.org/10.1016/j.arabjc.2017.05.021 | |
dc.relation.referencesen | [15] Tasić, Ž.Z., Petrović Mihajlović, M.B., Radovanović, M.B.; Antonijević, M.M. New Trends in Corrosion Protection of Copper. Chem. Pap. 2019, 73, 2103-2132. https://doi.org/10.1007/s11696-019-00774-1 | |
dc.relation.referencesen | [16] Miralrio, A.; Espinoza Vázquez, A. Plant Extracts as Green Corrosion Inhibitors for Different Metal Surfaces and Corrosive Media: A Review. Processes 2020, 8, 942. https://doi.org/10.3390/pr8080942 | |
dc.relation.referencesen | [17] Khadraoui, A.; Khelifa, A.; Hadjmeliani, M.; Mehdaoui, R.; Hachama, K.; Tidu, A.; Azari, Z.; Obot, I.B.; Zarrouk, A. Extraction, Characterization and Anti-Corrosion Activity of Mentha Pulegium Oil: Weight Loss, Electrochemical, Thermodynamic and Surface Studies. J. Mol. Liq. 2016, 216, 724-731. https://doi.org/10.1016/j.molliq.2016.02.005 | |
dc.relation.referencesen | [18] Khadraoui, A.; Khelifa, A.; Boutoumi, H.; Mettai, B.; Karzazi, Y.; Hammouti, B. Corrosion Inhibition of Carbon Steel in Hydrochloric Acid Solution by Mentha Pulegium Extract. Port. Electrochimica Acta 2014, 32, 271-280. https://doi.org/10.4152/pea.201404271 | |
dc.relation.referencesen | [19] Znini, M.; Bouklah, M.; Majidi, L.; Kharchouf, S.; Aouniti, A.; Bouyanzer, A.; Hammouti, B.; Costa, J.; Al-Deyab S.S. Chemical Composition and Inhibitory Effect of Mentha Spicata Essential Oil on the Corrosion of Steel in Molar Hydrochloric Acid. Int. J. Electrochem. Sci. 2011, 6, 691-704. | |
dc.relation.referencesen | [20] Bouyanzer, A.; Hammouti, B.; Majidi., L. Pennyroyal Oil from Mentha pulegium as Corrosion Inhibitor for Steel in 1M HCl. Mater. Lett. 2006, 60, 2840-2843. https://doi.org/10.1016/j.matlet.2006.01.103 | |
dc.relation.referencesen | [21] Khadraoui, A.; Khelifa, A.; Boutoumi, H.; Hammouti, B. Mentha Pulegium Extract as a Natural Product for the Inhibition of Corrosion. Part I: Electrochemical Studies. Nat. Prod. Res. 2014, 28, 1206-1209. https://doi.org/10.1080/14786419.2014.919288 | |
dc.relation.referencesen | [22] Khadraoui, A.; Khelifa, A.; Hamitouche, H.; Mehdaoui, R. Inhibitive Effect by Extract of Mentha Rotundifolia Leaves on the Corrosion of Steel in 1M HCl Solution. Res. Chem. Intermed. 2014, 40, 961-972. https://doi.org/10.1007/s11164-012-1014-y | |
dc.relation.referencesen | [23] Ansari, A.; Znini, M.; Laghchimi, A.; Costa, J.; Ponthiaux P.; Majidi, L. Chemical Composition, Adsorption Proprieties and Corrosion Inhibition on Mild Steel of Mentha Rotundifolia L. Essential Oil from Morocco. Der Pharm. Lett. 2015, 7, 125-140. | |
dc.relation.referencesen | [24] Bensabah, F.; Houbairi, S.; Essahli, M.; Lamiri A.; Naja, J. Chemical Composition and Inhibitory Effect of the Essential Oil from Mentha Spicata Irrigated by Wastewater on the Corrosion of Aluminum in 1 Molar Hydrochloric Acid. Port. Electrochimica Acta 2013, 31, 195-206. https://doi.org/10.4152/pea.2013041 | |
dc.relation.referencesen | [25] Hamdani, I.; Chikri, M.; Fethi, F.; Salhi, A.; Bouyanzer, A.; Zarrouk, A.; Hammouti, B.; Costa, J.; Desjobert, J.M. Essential Oil Mentha Suaveolens L : Chemical Composition, Anticorrosive Properties on Mild Steel in 0.5M H2SO4 and Chemometric Approach. J. Mater. Environ. Sci. 2017, 8, 526-538. | |
dc.relation.referencesen | [26] Merah, S.; Larabi, L.; Benali, O.; Harek, Y. Synergistic Effect of Methyl Red Dye and Potassium Iodide on Inhibition of Corrosion of Carbon Steel in 0.5 M H2SO4. Pigment. Resin Technol. 2008, 37, 291-298. https://doi.org/10.1108/03699420810901963 | |
dc.relation.referencesen | [27] Brahmi, F.; Adjaoud, A.; Marongiu, B.; Falconieri, D.; Yalaoui-Guellal, D.; Madani, K.; Chibane, M. Chemical and Biological Profiles of Essential Oils from Mentha Spicata L. Leaf from Bejaia in Algeria. J. Essent. Oil Res. 2016, 28, 211-220. https://doi.org/10.1080/10412905.2015.1118411 | |
dc.relation.referencesen | [28] Bouchard-Abouchacra, M. PhD Thesis, Mus´eum National d’Histoire Naturelle. Laboratoire de Min´eralogie, 2001. | |
dc.relation.referencesen | [29] McCann, L.I.; Trentelman, K.; Possley, T.; Golding, B. Corrosion of Ancient Chinese Bronze Money Trees Studied by Raman Microscopy. J. Raman Spectrosc. 1999, 30, 121-132. https://doi.org/10.1002/(SICI)1097-4555(199902)30:2%3C121::AID-JRS355%3E3.0.CO;2-L | |
dc.relation.referencesen | [30] Di Lonardo, G.; Martini, C.; Ospitali, F.; Poli, G.; Prandsraller, D.; Tullini, F. In Proceedings of the 7th International Conference on Non-destructive Testing and Micro-analysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, 2-6 June 2002, Congress Centre Elzenveld: Antwerp, Belgium Antwerp, 2002. | |
dc.relation.referencesen | [31] Geethamani, P. Corrosion inhibitors; London: Intechopen, 2019. | |
dc.relation.referencesen | [32] Xavier, G.T.; Thirumalairaj, B.; Jaganathan, M. Effect of Piperidin-4-ones on the Corrosion Inhibition of Mild Steel in 1 N H2SO4. Int. J. Corros. 2015, 2015, 15. https://doi.org/10.1155/2015/410120 | |
dc.relation.referencesen | [33] Aramaki, K.; Hackerman, N. Inhibition Mechanism of Medium‐Sized Polymethyleneimine. J. Electrochem. Soc. 1969, 116, 568. https://doi.org/10.1149/1.2411965 | |
dc.relation.referencesen | [34] Larabi, L.; Harek, Y. Effect of Iodide Ions on Corrosion Inhibition of Mild Steel in 0.5M H2SO4 by Poly(4-Vinylpyridine). Port. Electrochimica Acta 2004, 22, 227-247. | |
dc.relation.referencesen | [35] Bruneton, J. Pharmacognosie, Phytochimie des Plantes Médicinales. Revue et Augmentée ; Tec & Doc : Paris, 1999. | |
dc.relation.referencesen | [36] Ivanov, E.S. Metallurgy, Moscow 1986. | |
dc.relation.referencesen | [37] Singh, A.; Ahamad, I.; Yadav, D.K.; Singh, V.K.; Quraishi, M.A. The Effect of Environmentally Benign Fruit Extract of Shahjan (Moringa Oleifera) on the Corrosion of Mild Steel in Hydrochloric Acid Solution. Chem. Eng. Commun. 2012, 199, 63-77. https://doi.org/10.1080/00986445.2011.570390 | |
dc.relation.referencesen | [38] Attar, T.; Larabi, L.; Harek, Y. Inhibition Effect of Potassium Iodide on the Corrosion of Carbon Steel (XC 38) in Acidic Medium. Int. J. Adv. Chem. 2014, 2, 139-142. https://doi.org/10.14419/ijac.v2i2.3272 | |
dc.relation.referencesen | [39] Ansari, K.; Yadav, D.K.; Ebenso, E.E.; Quraishi, M. Novel and Effective Pyridyl Substituted 1,2,4-Triazole as Corrosion Inhibitor for Mild Steel in Acid Solution. Int. J. Electrochem. Sci. 2012, 7, 4780-4799. | |
dc.relation.referencesen | [40] El Guerraf, A.; Titi, A.; Cherrak, K.; Mechbal, N.; Azzouzi, M.E.; Touzani, R.; Hammouti, B.; Lgaz, H. The Synergistic Effect of Chloride Ion and 1,5-Diaminonaphthalene on the Corrosion Inhibition of Mild Steel in 0.5 M Sulfuric Acid: Experimental and Theoretical Insights. Surf. Interfaces 2018, 13,168-177. https://doi.org/10.1016/j.surfin.2018.09.004 | |
dc.relation.referencesen | [41] Popova, A.; Sokolova, E.; Raicheva, S.; Christov, M. AC and DC Study of the Temperature Effect on Mild Steel Corrosion in Acid Media in the Presence of Benzimidazole Derivatives. Corros. Sci. 2003, 45, 33-58. https://doi.org/10.1016/S0010-938X(02)00072-0 | |
dc.relation.referencesen | [42] Bentiss, F.; Lebrini, M.; Lagrenée, M. Thermodynamic Characterization of Metal Dissolution and Inhibitor Adsorption Processes in Mild Steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric Acid System. Corros. Sci. 2005, 47, 2915-2931. https://doi.org/10.1016/j.corsci.2005.05.034 | |
dc.relation.referencesen | [43] Abdul Rahiman, A.F.S.; Sethumanickam, S. Corrosion Inhibition, Adsorption and Thermodynamic Properties of Poly(Vinyl Alcohol-Cysteine) in Molar HCl. Arab. J. Chem. 2017, 10, S3358-S3366. https://doi.org/10.1016/j.arabjc.2014.01.016 | |
dc.relation.referencesen | [44] Larouj, M.; Ourrak; K.; El M'Rabet, M.; Zarrok, H.; Serrar, H.; Boudalia, M.; Boukhriss, S.; Warad, I.; Oudda, H.; Touir, R. Thermodynamic Study of Corrosion Inhibition of Carbon Steel in Acidic Solution by New Pyrimidothiazine Derivative J. Mater. Environ. Sci. 2017, 8, 3921-3931. | |
dc.relation.referencesen | [45] El Ouali, I.; Hammouti, B.; Aouniti, A.; Ramli, Y.; Azougagh, M.; Essassi, E.M.; Bouachrine, M. Thermodynamic Characterisation of Steel Corrosion in HCl in the Presence of 2-Phenylthieno(3, 2-b)quinoxaline. J. Mater. Environ. Sci. 2010, 1, 1-8. | |
dc.relation.referencesen | [46] Keleş, H.; Keleş, M.; Dehri, I.; Serindağ, O. The Inhibitive Effect of 6-Amino-m-cresol and its Schiff Base on the Corrosion of Mild Steel in 0.5M HCI Medium. Mater. Chem. Phys. 2008, 112, 173-179. https://doi.org/10.1016/j.matchemphys.2008.05.027 | |
dc.relation.referencesen | [47] Salghi, R.; Jodeh, S.; Ebenso, E.E.; Lgaz, H.; Ben Hmamou, D.; Belkhaouda, M.; Ali, I.H.; Messali, M.; Hammouti, B.; Fattouch, S. Inhibition of C-steel Corrosion by Green Tea Extract in Hydrochloric Solution. Int. Int. J. Electrochem. Sci. 2017, 12, 3283-3295. https://doi.org/10.20964/2017.04.46 | |
dc.relation.referencesen | [48] Cano, E.; Polo, J.L.; Iglesia, A.L.A.; Bastidas, J.M. A Study on the Adsorption of Benzotriazole on Copper in Hydrochloric Acid Using the Inflection Point of the Isotherm. Adsorption 2004, 10, 219-225. https://doi.org/10.1023/B:ADSO.0000046358.35572.4c | |
dc.relation.referencesen | [49] Shaju, K. S.; K. Joby Thomas; Vinod P. Raphael; Aby Paul. Synergistic Effect of KI on Corrosion Inhibition of Mild Steel by Polynuclear Schiff Base in Sulphuric Acid. Int. Sch. Res. Notices 2012, 2012, 425878. https://doi.org/10.5402/2012/425878 | |
dc.relation.referencesen | [50] Lgaz, H.; Bhat, K.S.; Salghi, R.; Shubhalaxmi; Jodeh, S.; Algarra, M.; Hammouti, B.; Ali, I.H.; Essamri, A. Insights into Corrosion Inhibition Behavior of Three Chalcone Derivatives for Mild Steel in Hydrochloric Acid Solution. J. Mol. Liq. 2017, 238, 71-83. https://doi.org/10.1016/j.molliq.2017.04.124 | |
dc.relation.referencesen | [51] Belarbi, N.; Dergal, F.; Chikhi, I.; Merah, S.; Lerari, D.; Bachari, K. Study of anti-corrosion activity of Algerian L. stoechas oil on P.38 carbon steel in 1 M HCl medium. Int. J. Ind. Chem. 2018, 9, 115-125. https://doi.org/10.1007/s40090-018-0143-6 | |
dc.relation.referencesen | [52] El-Sabbah, M.M.B.; Bedair, M.A.; Abbas, M.A.; Fahmy, A.; Hassaballa, S.; Moustafa, A.A. Synergistic Effect between Natural Honey and 0.1M KI as Green Corrosion Inhibitor for Steel in Acid Medium. Z. Phys. Chem. 2018. https://doi.org/10.1515/zpch-2018-1208 | |
dc.relation.referencesen | [53] Momeni, M.M.; Ghayeb, Y.; Menati, M. Fabrication, Characterization and Photoelectrochemical Properties of Cuprous Oxide-Reduced Graphene Oxide Photocatalysts for Hydrogen Generation. J. Mater. Sci. Mater. Electron. 2018, 29, 4136-4146. https://doi.org/10.1007/s10854-017-8358-4 | |
dc.relation.uri | https://doi.org/10.9734/BJAST/2014/9658 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2020.114509 | |
dc.relation.uri | https://doi.org/10.1515/corrrev-2019-0105 | |
dc.relation.uri | https://doi.org/10.1016/j.corsci.2014.03.004 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2016.11.038 | |
dc.relation.uri | https://doi.org/10.4236/nr.2014.57028 | |
dc.relation.uri | https://doi.org/10.1155/2020/1092643 | |
dc.relation.uri | https://doi.org/10.1016/j.arabjc.2017.05.021 | |
dc.relation.uri | https://doi.org/10.1007/s11696-019-00774-1 | |
dc.relation.uri | https://doi.org/10.3390/pr8080942 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2016.02.005 | |
dc.relation.uri | https://doi.org/10.4152/pea.201404271 | |
dc.relation.uri | https://doi.org/10.1016/j.matlet.2006.01.103 | |
dc.relation.uri | https://doi.org/10.1080/14786419.2014.919288 | |
dc.relation.uri | https://doi.org/10.1007/s11164-012-1014-y | |
dc.relation.uri | https://doi.org/10.4152/pea.2013041 | |
dc.relation.uri | https://doi.org/10.1108/03699420810901963 | |
dc.relation.uri | https://doi.org/10.1080/10412905.2015.1118411 | |
dc.relation.uri | https://doi.org/10.1002/(SICI)1097-4555(199902)30:2%3C121::AID-JRS355%3E3.0.CO;2-L | |
dc.relation.uri | https://doi.org/10.1155/2015/410120 | |
dc.relation.uri | https://doi.org/10.1149/1.2411965 | |
dc.relation.uri | https://doi.org/10.1080/00986445.2011.570390 | |
dc.relation.uri | https://doi.org/10.14419/ijac.v2i2.3272 | |
dc.relation.uri | https://doi.org/10.1016/j.surfin.2018.09.004 | |
dc.relation.uri | https://doi.org/10.1016/S0010-938X(02)00072-0 | |
dc.relation.uri | https://doi.org/10.1016/j.corsci.2005.05.034 | |
dc.relation.uri | https://doi.org/10.1016/j.arabjc.2014.01.016 | |
dc.relation.uri | https://doi.org/10.1016/j.matchemphys.2008.05.027 | |
dc.relation.uri | https://doi.org/10.20964/2017.04.46 | |
dc.relation.uri | https://doi.org/10.1023/B:ADSO.0000046358.35572.4c | |
dc.relation.uri | https://doi.org/10.5402/2012/425878 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2017.04.124 | |
dc.relation.uri | https://doi.org/10.1007/s40090-018-0143-6 | |
dc.relation.uri | https://doi.org/10.1515/zpch-2018-1208 | |
dc.relation.uri | https://doi.org/10.1007/s10854-017-8358-4 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Belarbi N., Dergal F., Chikhi I., Lerari D., Dahmani B., Choukchou Braham C., 2023 | |
dc.subject | корозія | |
dc.subject | мідь | |
dc.subject | олія Mentha Spicata | |
dc.subject | інгібітори | |
dc.subject | кисле середовище | |
dc.subject | синергізм | |
dc.subject | corrosion | |
dc.subject | copper | |
dc.subject | Mentha Spicata oil | |
dc.subject | inhibitors | |
dc.subject | acid medium | |
dc.subject | synergism | |
dc.title | Synergistic Effect of BaCl2 on Corrosion Inhibition of Copper by Mentha Spicata Oil in 1M Nitric Acid: Gravimetric and Raman Spectroscopy Studies | |
dc.title.alternative | Синергічний ефект BaCl2 на інгібування олією Mentha Spicata корозії міді в 1M нітратній кислоті: гравіметричне та раман-спектроскопічне дослідження | |
dc.type | Article |
Files
License bundle
1 - 1 of 1